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Abstract: Since its outbreak, the COVID-19 global pandemic had become one of the most serious diseases existed in 
the human history. Millions of people had been infected, and the pandemic is currently affecting the whole 
world in various fields such as public health, economy, and society. As a result, a better understanding of such 
disease is imminently needed to effectively control the ongoing pandemic. Cell-cell communications 
regulated by ligand-receptor pairs are crucial in coordinating diverse gene expression pathways. In a previous 
study, researchers implemented the single-cell RNA-sequencing technology on samples collected from 
COVID patients and healthy controls to obtain their cell-level RNA expression profiles. In this study, we 
statistically analyzed scRNA-seq data from a COVID patient and a healthy control generated by the previous 
study, and compared various gene expression between the samples with packages Scanpy and CellPhoneDB. 
Various plots were created to provide a comprehensive representation and comparison between the samples 
about gene expressions. The results showed numerous distinctions between the two sample in the overall gene 
expression level, the expression level of several immune-related ligand-receptor pairs across different cell 
type pairs, and the expression level of specific types of gene in different cell types. This study provided 
computational and statistical evidences related to COVID-19 pathology, which can be further pursued through 
biological experiments to obtain a better understanding of the global pandemic. The statistical analysis method 
used in this study showed an alternative way that can be potentially used to better understand the SARS-CoV-
2 virus.  

1 INTRODUCTION 

On 31 December 2019, a novel coronavirus disease 
(COVID-19) was first reported in Wuhan city, China 
(Li 2020). As time passed by, more than 80,000 cases 
had been found from more than 30 provinces in 
People’s Republic of China, and thousands of people 
around the world were died from such disease (Li 
2020). The genes in ORF1 downstream region 
enables COVID-19 virus to replicate itself, forming 
nucleocapsid and glycoprotein spikes that allows the 
viruses to attach and enter the host cells (Shereen 
2020). After successfully entered the host’s cell, the 
SARS-CoV-2 will release and translate the genome 
RNA into pp1a and pp1ab, which are viral replicase 
polyproteins, and finally turn to viral proteins due to 
subgenomic mRNAs produced through discontinuous 
transcription (Shereen 2020).  

Single-cell RNA-sequencing (scRNA-seq) is a 
technology that solves the long-existing challenge of 
using genotypes to infer the phenotypes, and 

therefore it can be used to obtain a better 
understanding of the dynamics of the organism’s 
tissues and the complex relationships between diverse 
cell types (Hwang 2018). The technology enables 
researchers to establish valuable insights by 
examining information such as the population 
distribution of cells and regulatory relationship 
between genes (Hwang 2018). However, since the 
technology is still new, certain challenges exist and 
the technology can be furtherly improved. For 
example, currently it is hard to distinguish the 0 
values in the data as either undetected or unexpressed, 
and the current clustering of cells may be conceiving 
due to the lack of reliable reference systems 
(Lähnemann 2020). While further improvement of 
the technology may bring deeper insights, the current 
scRNA-seq technology can still provide valuable 
information that can help researchers learn about cell-
cell communications through analysis and 
examination of databases (Jin 2021).  
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Cell-cell communication regulated by ligand-
receptor complex plays a critical role in coordinating 
various biological processes such as the development 
and death of cells (Jin 2021). By analyzing the gene 
expression information obtained through scRNA-seq, 
such intercellular communications can be inferred to 
establish diverse biological discoveries (Jin 2021). 
CellPhoneDB (Efremova 2020) is a Python package 
that was developed to statistically analyze the 
database generated by the scRNA-seq. CellPhoneDB 
uses permutation tests to create null distributions that 
maps ligand-receptor interactions to understand 
cellular behaviors and responses to neighboring cells 
(Efremova 2020). With the analysis between ligand-
receptor pairs in different cells in each given 
database, a better understanding of cell-cell 
communication network can be constructed with the 
detailed visual presentations in the Python package 
CellphoneDB. In this study, we developed a pipeline 
that utilized the CellphoneDB to find cell-cell 
communication patterns and discover biologically 
meaningful signals out of COVID scRNA-seq data. 

2 METHOD 

In a recent study, researchers collected heart, kidney, 
and lung tissue specimens from 19 individuals died 
from COVID-19 and 7 control at New York 
Presbyterian Hospital and Columbia University 
Medical Center. They then analyzed the samples 
using single-nucleus RNA sequencing and generated 
the gene expression matrices. The data was filtered 
and normalized to remove the background noise and 
control the quality of the data (Li 2020). More details 
including the filtering and normalization methods can 
be found in their paper. One COVID patient (l07) and 
one normal control (c52) counts and meta data 
generated through the experiment are further 
analyzed with two Python packages Scanpy and 
CellPhoneDB.  

Firstly, to draw the box plots that show the 
percentage in total counts within a cell for the top 20 
genes with the highest gene expression, we applied 
the function pl.highest_expr_genes in the Python 
package Scanpy. Then, to draw the violin plot that 
shows the number of genes expressed in each cell and 
the total counts per cell, we applied the pl.violin 
function in Scanpy. Next, we applied the pl.scatter 
function to draw scatter plots where the x-axis 
represents the total counts of expressed genes in each 
cell and the y-axis represents the number of genes 
expressed in each cell. The x-axis was specified as 
total_counts, and the y-axis was specified as 

n_genes_by_counts. Finally, to create violin plots 
that compare the expression levels of some highly 
variable genes across each different cell type between 
this two conditions, we again implemented the 
pl.violin function.  

To obtain a more thorough understanding, we also 
used CellphoneDB (Efremova 2020) to create dot 
plots and heatmaps to describe the cell-cell 
communications and interactions between different 
ligand-receptor pairs in the samples. CellPhoneDB is 
a Python package that analyzes scRNA-seq data using 
the permutation test. The input data of the package 
should be scRNA-seq count data and an annotation of 
cell-types. A null distribution that describes the 
specificity between a ligand-receptor pair, which is 
represented by the average mean of expression level 
between ligand-receptor cell pairs, can be generated 
by randomly permuting clusters of all cell-types. The 
P value of the null distribution is based on the 
proportion of gene expression means that have as 
high or higher gene expression level than the actual 
mean. The specificity between a ligand-receptor pair 
can thus be inferred based on the overall amount of 
significant P values across the cell-type. Smaller P 
value means a more significant relativity between the 
ligand-receptor pair. In the end, different ligand-
receptor pairs can be ranked based on their relativity, 
and the result can then be visually represented 
through functions that generate various graphs. To 
obtain the significant ligand-receptor pairs, we used 
the function statistical_analysis in CellphoneDB. 
Then, we applied the function dot plot in Cellphone 
DB to create a dot plot where the x axis represents the 
ligand-receptor cell types, and the y axis represents 
the ligand-receptor pairs in these cells. In the end, we 
used the function heatmap plot to create heatmaps 
showing the number of significant ligand-receptor 
pairs between each cell type pairs. 

3 RESULTS 

Through the data and plots obtained, it can be clearly 
observed that there are many differences between the 
heathy control and the COVID patient.  

Table 1: Cell type proportions in the healthy control and the 
COVID patient. 

Healthy Control COVID Patient 
Cell Type Proportion Cell Type Proportion
T cells 0.040762 T cells 0.040762
Myeloid 0.118742 Myeloid 0.118742
Epithelial 
cells

0.652193 Epithelial 
cells 

0.652193 

B cells 0.002215 B cells 0.002215
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Fibroblasts 0.101019 Fibroblasts 0.101019
Neuronal 
cells 

0.009304 Neuronal 
cells 

0.009304 

Mast cells 0.005760 Mast cells 0.005760
Endothelial 
cells 

0.062915 Endothelial 
cells 

0.062915 

APC-like 0.007089 APC-like 0.007089

Table 1 represents the proportion of different 
types of cells in the sample of the healthy control and 
the COVID patient. In the healthy control, the 
proportion of Epithelial cells is the greatest, but in the 
COVID patient T cells are significantly more than in 
the healthy control. The pattern is the same for other 
immune cells like B cells and mast cells, which 
suggests the potential role that immune cells play in 
patients with COVID-19.  

A 

 
B 

 
Figure 1: Box plots of highest expression genes in healthy 
control (A) and COVID patient (B).   

Figure 1 are box plots that represent the 
percentage of different genes in each cell across all 

cells in the normal control and COVID patient. By 
comparing the two plots, it can be observed that the 
most enriched genes between the COVID patient and 
the healthy control are distinct. Many genes that were 
not enriched in the normal control turned out to be 
dominant in COVID patient. For example, CHST11 
is more dominant in the COVID patient than in the 
normal control. Previous study had shown that the 
increase in expression of chondroitin 
sulfotransferases like CHST11 may Lead to COVID 
progression of respiratory disease (Bhattacharyya 
2020). At the same time, FKBP5 in COVID patient is 
also more enriched than in normal control. FKBP5 
has been known as an elite gene related to 
schizophrenia and depression, and the alteration in its 
expression is associated with autism, and this implies 
the potential impact that COVID-19 has on 
neuropsychiatric disorders (Melms 2021). Last but 
not least, the HSP90AA1 is also enriched in the 
COVID patients. HSP90AA1 is “a highly-conserved 
molecular chaperone protein” (Wauters 2021) and 
has been proved to be involved in wide ranges of virus 
infections and replications (Geller 2012). Previous 
study had shown that HSP90AA1 has positive 
correlation with the viral RNA and high level of 
expression in cells with SARS-CoV-2, also known as 
COVID-19, while the level is not high in SARS-CoV-
1, which implies the potential role it plays in the 
COVID-19 viral infection progress (Wauters 2021， 
Wyler 2021). 
                         A                                            B 

 
                       C                                           D 

 
Figure 2: Total number of genes expressed and the gene 
expression level in each cell in normal control (A, B) and 
COVID patient (C, D). 
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Figure 3: Scatter plot of gene expression in healthy control 
A and COVID patient B. 

Figure 2 and figure 3 suggest overall suppression 
of gene expression across different cell types in the 
COVID patient. Figure 2A represents the total 
amount of expressed genes in cells of the normal 
control, and figure 2B represents the gene expression 
level in each cell of the COVID patient. By 
comparing the plot with that of the COVID patient, 
the suppression can be observed. Through the 
comparison of figure 2A and figure 2C, it can be 
observed that the average total amount of gene 
expressed in the patient is less than that of the healthy 
control. Meanwhile, by comparing figure 2B and 
figure 2D, the similar observation can also be made 
on the gene expression level in cells of the COVID 
patient. The scatter plots in figure 3 provides deeper 
insights of the observation. It clearly shows that there 
are higher extreme expressions in the COVID patient, 
where the outliers for figure 3B are more extreme 
than the ones in figure 3A. At the same time, the 
ranges of the distributions in figure 3B are also 
broader than in 3A. 

A 

 
B 

 
Figure 4: Heatmap plot of gene relativity between ligand-
receptor cell pairs in healthy control A and COVID patient 
B. 

Figure 4 represents the overall gene relativity 
between ligand-receptor cell pairs in the healthy 
control and COVID patient. Figure 4 is a heatmap 
plot, and the color in each square represents the gene 
relativity/number of significant ligand-receptor pairs 
between the corresponding ligand-receptor cell pairs. 
Due to the overall gene expression suppression 
showed by figure 2 and 3, the overall amount of 
significant ligand-receptor pairs decreased, which is 
why the maximum amount significant ligand-
receptor cell pairs in figure 4B (5) is less than that of 
figure 4A (7). By comparing figure 4A and figure 4B, 
it can be clearly observed that the communications 
between Epithelial cells and B cells are more 
significant in the COVID patients, as the color 
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changed from light blue to red. Previous studies had 
shown that the airway epithelial-immune cells 
interactions can cause heightened harm to airway 
system, including lung injury, tissue inflammatory 
damage, and even respiratory failure (Chua 2020). 
This result further implies the potential role that B 
cells play in interacting with epithelial cells in 
patients with COVID 19. At the same time, the cell 
type relationships between B cells and Myeloid cells 

are also stronger in the COVID patients, as the color 
changed from gray to pink. Previous study has shown 
that the decreased interaction between Epithelial and 
myeloid may be caused by the depletion of epithelial 
cells upon COVID infection (Stanford 2012). This 
result implies the potential role that B cells play in 
interacting with Myeloid in COVID patients and adds 
new potential evidence to the previous study. 

A 

 
B 

 
Figure 5: Dot plot of gene relativity between ligand-receptor cell pairs in healthy control A and COVID patient B. 

Figure 5A and 5B provide further analysis of the 
gene relativity between ligand and receptor cells by 
representing specific gene pairs’ interactions between 
different ligands-receptors pairs. The color of the dot 
shows the mean value of the expression level. The 
higher the expression level, the stronger the 
interaction is, and the color will be closer to red. The 
size of the dot represents the negative log p-value, and 
it shows how statistically significant the relationship 
is. The larger the dot means smaller the p value, which 
means more statistical significance of the result 
regarding the relativity between the ligand-receptor 
pair. By comparing figure 5A and 5B, it can be 

observed that there is significantly heightened 
relativity between PTPRC and MRC1 genes in the 
COVID patient. The large red dots in plot B shows 
significant interactions between B/T cells and. 
endothelial/epithelial/myloid/fibroblasts/neuronal 
cells. B cells and T cells are both immune cells, and 
the result shows the strong interaction within immune 
cells or between immune cells and non-immune cells 
with the PTPRC-MRC1 pathway. At the same time, 
CD6-ALCAM pathway also had strong expression 
between B/T immune cells and 
endothelial/epithelial/myloid/fibroblasts/neuronal 
cells in COVID patients. Previous studies showed 
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that CD6-ALCAM pathway is responsible for T cell 
activation and migration (Ampudia 2020). Through 
interacting with its ligand activated leukocyte cell 
adhesion molecule (ALCAM), CD6 promotes 
immune synapse formation (Ampudia 2020). The 
result shown in figure 5 provides further support to 
the previous study, pointing out the potential 
involvement of this pathway on B cells and non-
immune cells in the COVID patients. Last but not 
least, the PECAM1-CD38 pathway also had stronger 
expression in the COVID patient compared to healthy 
control. PECAM1 is known as the ligand of CD38, 
and in a previous study the potential correlation 
between PECAM1 and CD38 expression in patients 
with B-cell chronic lymphocytic leukemia (B-CLL) 
was suggested (Ibrahim 2003). The result in figure 5 
implies the potential role that PECAM1-CD38 
gateway plays in patients with COVID 19, adding 
another topic to be further investigated besides the 
unsolved topic in the previous study. 

A                                       B 

 
C                                       D 

 

E                                      F 

 
G                                    H 

 
Figure 6: Violin plots that shows expression of different 
genes in different cells in healthy control (A,B,C,D) and 
COVID patient (E,F,G,H). 

Figures on the top and figures on the bottom 
represent the expression of some significant genes in 
different cells of the normal control and the COVID 
patients. By comparing figure 6A and 6E, it can be 
observed that gene CD6 overall has higher expression 
in most type of cells in the COVID patient, especially 
for APC like cells, B cells. Both APC like cells and B 
cells are immune cells, and previous studies have 
shown the involvement of CD6 in regulating immune 
responses and in contacts between cells (Consuegra-
Fernández 2018). The result in this study supports the 
previous result and implies the potential role it plays 
in COVID patients. At the same time, the comparison 
between figure 6B and 6F shows that PTPRC gene 
expression overall is significantly heightened in 
various cell types of the COVID patient. Previous 
studies have shown the important role that PTPRC 
plays in regulating the immune functions of B cells 
and T cells (Chen 2021, Shereen 2020). The result 
indicates altered immune functions in cell types such 
as T cells and B cells in COVID patients. In contrast, 
the expression level of CRTAM is significantly lower 
in COVID patients comparing to the normal control. 
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Previous studies had showed that CRTAM can 
generate cytotoxic T cells and clear viruses in mice 
(Kusnadi 2021). The result in figure 6 adds on to the 
previous study, implying that COVID may have 
disrupted the immune system in the COVID patients. 
Thus, the expression level of some immune related 
genes is down regulated in B cells. Moreover, the 
CADM1 gene in immune cells of the COVID patient 
is also significantly lower than in the healthy control. 
CADM1 helps adhesion of cell, delivering cell 
signals through contact, and plays an import role in 
establishing immune responses for immune cells by 
acting as the scaffolding molecule (Quincozes-Santos 
2021, Sawada 2020). The result in this study shows 
the potential role that CADM1 plays in B cells as its 
expression largely decreased in the COVID patient. 

4 CONCLUSIONS 

This study statistically analyzes and compares the 
data obtained from the sample of the COVID patient 
and healthy control through single-cell RNA-
sequencing. Using various statistical methods, results 
were generated to provide a comprehensive and 
detailed comparison between the gene expression of 
the healthy control and COVID patient. Through the 
comparison between the samples, many significant 
differences can be observed. While the gene that is 
responsible for major gene expression is different in 
the two samples, the overall gene expression and 
number of genes expressed decayed in the COVID 
patient. At the same time, genes have higher 
expression in immune cells like B cells and T cells of 
the COVID patient, and the communications between 
non-immune cells and immune cells also increased. 
All these are evidence of the immune cells’ roles in 
different part of human body. By further analyzing 
the different gene pathways of ligand-receptor pairs, 
more detailed interactions and correlation were 
understood. The result also provided new topics that 
require further research to gain more insights. Since 
this study only analyzes two of samples, possible 
errors may exist due to the limit data. At the same 
time, direct corrections between genes and proteins 
produced are assumed in this study. The input of 
Cellphone DB (Efremova 2020) is mRNA-level data, 
but the conclusions are inferred based on protein 
interactions. This can be solved through further 
analysis of more samples, and the result obtained can 
be more accurate. However, the study can act as a 
starting point and provide a novel way to analyze data 
and better understand the effect of COVID-19 on 
patients. 
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