
Approximate Dictionary Searching at a Scale
using Ternary Search Trees and Implicit Levenshtein Automata

Peter Schneider-Kamp a

Department of Mathematics and Computer Science,
University of Southern Denmark, Campusvej 55, Odense, Denmark

Keywords: Approximate Dictionary Searching, Ternary Search Tree, Edit Distance, Levenshtein Automata, Scalable
Algorithms.

Abstract: Approximate Dictionary Searching refers to the problem of finding entries in a dictionary that match a search
word either exactly or with a certain allowed distance between entry and search word. Extant computationally
efficient data structures and algorithms addressing this problem typically do not scale well to large alphabets
and/or dictionaries, often requiring prohibitive amounts of memory as the sizes of alphabets and dictionaries
increase. This paper presents a data structure and an algorithm for approximate dictionary searching that rely
on ternary search trees and implicit Levenshtein automata and scale well with the sizes of both alphabets and
dictionaries.

1 INTRODUCTION

Approximate dictionary searching refers to the prob-
lem of finding entries in a dictionary that match a
search word. Given a search string k, a distance mea-
sure δ between two strings, and a distance threshold
t, the task is to find all entries e of the dictionary such
that δ(k,e) ≤ t. When δ(k,e) is zero, e is an exact
match for k. Otherwise, it is an approximate match.

Many data structures and algorithms addressing
the approximate dictionary search problem have been
proposed. Boytsov (Boytsov, 2011) reviews and em-
pirically compares the most prolific data structures
and algorithms, finding that many of these are chal-
lenged by the size of alphabets and/or the size of dic-
tionaries. In the experiments, the largest alphabet size
considered is 36 and the largest dictionary has 3.2
million entries.

Tries (aka prefix trees) as data structures with a
search algorithm based on explicit Levenshtein au-
tomata arguably constitute one of the best perform-
ing and elegant solutions to approximate dictionary
searching. A trie for an alphabet of size 36 holding
3.2 million entries holds at least 1.152 billion point-
ers. This is a lower limit under the (unrealistic) best-
case assumption that all the entries only differ from
each other by exactly one character. In this optimistic
case and assuming a 64-bit architecture, the trie would

a https://orcid.org/0000-0003-4000-5570

consume “only” approx. 8.5 GByte of memory.
This scaling behaviour makes the otherwise ele-

gant and efficient trie-based solution prohibitive for
larger real-world scenarios. When consulting a com-
pany offering digital dictionary services, an alphabet
of size 7040 for a dictionary with 162.193.908 entries
had to be stored and searched efficiently to support
up to 10.000 simultaneous users. The memory con-
sumption of a trie-based solution was estimated to be
at least 10 TByte.

Ternary search trees are a slightly less compu-
tationally efficient but more memory efficient alter-
native to tries. This paper presents a data structure
and an algorithm for approximate dictionary search-
ing that rely on ternary search trees and implicit Lev-
enshtein automata and scale well with the sizes of
both alphabets and dictionaries both regarding run-
time and memory usage.

The main contributions of this paper are:

1. The use of ternary search trees for approximate
dictionary searching.

2. A search algorithm that uses implicit Levenshtein
automata.

3. A formal proof that the proposed solution is sound
and complete.

The remainder of this paper is structured as fol-
lows. Section 2 concisely reviews the necessary back-
ground and related work. Section 3 introduces the
proposed solution for approximate dictionary search-

Schneider-Kamp, P.
Approximate Dictionary Searching at a Scale using Ternary Search Trees and Implicit Levenshtein Automata.
DOI: 10.5220/0011312300003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 657-662
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

657

Algorithm 1: Adding entries to a ternary search tree.

procedure ADD(n,s,e)
if n = UNDEF then

n.c← HD(s)
end if
if HD(s) < n.c then

n.`← ADD(n.`,s)
else if HD(s) > n.c then

n.r← ADD(n.r,s)
else if |s| > 1 then

n.r← ADD(n.m,TL(s))
else

n.e← e
end if
return n

end procedure

ing. Section 4 evaluates this solution empirically be-
fore Section 5 briefly concludes.

2 BACKGROUND

A ternary search tree (Bentley and Sedgewick, 1997)
is a search tree where each node has three chil-
dren nodes: a left node leading to lexicographically
smaller entries, a middle node leading to longer en-
tries with the exact prefix, and a right node leading to
lexicographically larger entries. This paper defines a
ternary search tree over a given alphabet Σ and a dis-
tance measure δ as a triple 〈Σ,δ,ρ,N 〉 where N is a
set of nodes and ρ ∈ N is the root. Each node n is
a quintuple 〈c,v, `,m,r〉 where c ∈ Σ is the next letter
of the entry, v is the value associated with the entry,
and `= 〈c`, . . .〉,m = 〈cm, . . .〉,r = 〈cr〉 ∈N such that
c` < cm < cr.

Adding entries to a ternary search tree is straight-
forward by traversing the tree from the root. By
executing ADD(ρ,s) as described in Algorithm 1,
the string s is added. Checking for an exact match
with the string s follows the same pattern and is de-
scribed in Algorithm 2. In both cases, HD and TL
are functions that return the first letter of a string
and the remaining string, respectively. For example,
HD(“Levenshtein”) = “L” while TL(“Levenshtein”)
= “evenshtein”.

The Levenshtein distance (Levenshtein, 1966) be-
tween two strings s1,s2 ∈ Σ∗ is the minimal number of
edits (insertions, deletions, and replacements) needed
to make these two strings identical. For the follow-
ing definition, without loss of generality, we assume
|s1|< |s2|:

Algorithm 2: Exact search in a ternary search tree.

procedure GET(n,s)
if n = UNDEF then

return UNDEF
end if
if HD(s) < n.c then

return GET(n.`,s)
else if HD(s) > n.c then

return GET(n.r,s)
else if |s| > 1 then

return GET(n.m,TL(s))
else

return 〈n.e,n.v〉
end if

end procedure

LEV(s1,s2) =



|s2| if |s1|= 0
LEV(TL(s1),TL(s2)) if TL(s1) = HD(s2)

1+min


LEV(TL(a),b)
LEV(a,TL(b))
LEV(TL(a),TL(b))

otherwise

A fast way of checking that the edit distance be-
tween s1 and s2 is below a threshold t is to construct
a Levenshtein automaton (Schulz and Mihov, 2002)
for distance t and string s1. The automaton is built in
such a way that it accepts all strings s ∈ Σ∗ such that
δ(s1,s) ≤ t. The size of Levenshtein automata grows
with the threshold t, the size of the string s1 and the
alphabet Σ.

Approximate dictionary searching is based on
approximate string matching, for which Ukkonen
presented an efficient algorithm (Ukkonen, 1985).
For an overview of string matching, see Navarro’s
guide (Navarro, 2001). Different approaches to ap-
proximate dictionary searching have been reviewed
systematically and evaluated empirically (Boytsov,
2011), including tries with Levenshtein automata.
Leveling et al. (Leveling et al., 2012) mention the
use of ternary search trees without providing details
of their implementation of approximate matching.

3 TST FOR APPROXIMATE
DICTIONARY SEARCHING

The main idea of this paper is to store all the dictio-
nary entries in a ternary search tree and use implicit
compressed Levenshtein automata to implement an
efficient search algorithm for approximate matches.

In other words, while following the general idea
of Algorithm 2, we keep track of the remaining num-
ber of edits we are allowed to perform. In the search
through parts of the tree, as long as we still have at

ICSOFT 2022 - 17th International Conference on Software Technologies

658

least one edit that we are allowed to perform, we de-
scend into both left, middle, and right children.

When considering a possible deletion, the search
continues with the first letter of the search word re-
moved. When considering a possible insertion, the
search continues with a wildcard flag ω 6∈ Σ that signi-
fies that the first letter of the search word now matches
all possible letters from Σ. Likewise, when consider-
ing a possible replacement, the search continues with
a search word where the first letter has been replaced
by a wildcard flag ω 6∈ Σ. For example, if the search
word is “evenshtein”, the search continues with “ven-
shtein” for deletion, “ωevenshetin” for insertion, and
“ωvenshtein” for replacement.

The use of a wildcard flag and threshold corre-
sponds to a compressed Levenshtein automaton. In
order to prune redundant paths through the tree, the
algorithm also keeps track of whether possible edits
already have been explored for this part of the path.

The approximate search algorithm is presented in
Algorithm 3. Here, n is the current node under con-
sideration, s is the search word, t is the threshold, v is
the value associated with an entry to possibly return
as a result, w is a flag indicating that a wild card pre-
cedes the search word, and d is a flag indicating that
the current part of the path has already been explored
in relation to possible edits. The final parameter keeps
track of the entry such that entries and values can be
returned as pairs. We denote the empty word as ε and
string concatenation as an infix operator ·. The al-
gorithm returns a list of results consisting of pairs of
entries and associated values.

For the sake of clarity, the construction of this list
is made implicit by the yield and yield from state-
ment implementing the popular generator semantics
of high-level languages such as Python. Here, yield
adds a single value to the implicit result list while
yield from adds all values from the implicit result list
of a recursive call.

The presented algorithm for approximate search
in ternary search trees is guaranteed to find all exact
matches, as well as matches that require at most t edits
from the search word. Likewise, it is guaranteed not
to find any other matches.

Lemma 1 (Soundness and Completeness). Let T =
〈Σ,LEV,ρ,N 〉 be a ternary search tree, s ∈ Σ∗ be a
string, and t ≥ 0 be an integer.

Let E = {e ∈ Σ∗ | GET(ρ,e) = 〈e,v〉 for some
v ∈ Σ∗ and LEV(s,e)≤ t} be the set of all entries rep-
resented by T that have a distance at most t from the
search word s.

Let S = {e ∈ Σ∗ | 〈e,v〉 ∈ GET(ρ,s, t,UNDEF,
FALSE,FALSE,e)} be the set containing all the pro-
jections of the first element of the pairs of the result

Algorithm 3: Approximate search in a ternary search tree.
procedure GET(n, s, t)

yield from GET(n, s, t, UNDEF, FALSE, FALSE, ε)
end procedure
procedure GET(n, s, t, v, w, d, e)

if |s| = 0 and ¬w and v 6= UNDEF then
yield 〈e,v〉

end if
if n 6= UNDEF and (|s| ≥ 1 or w) then

if w or HD(s) < n.c then
yield from GET(n.`, s, t, UNDEF, w, TRUE, e)

end if
if w or HD(s) > n.c then

yield from GET(n.r, s, t, UNDEF, w, TRUE, e)
end if
if w or HD(s) = n.c then . consume letter

yield from GET(n.m, (w ? s : TL(s)), t, n.v, FALSE, FALSE, n.c · e)
end if

end if
if ¬c and t ≥ 1 and ¬w then . edit allowed

if n 6= UNDEF then
yield from GET(n, s, t-1, UNDEF, TRUE, FALSE, e) . insert

end if
if |s| ≥ 1 then

yield from GET(n, TL(s), t-1, UNDEF, FALSE, FALSE, e) . delete
end if
if n 6= UNDEF and |s| ≥ 1 then

yield from GET(n, TL(s), t-1, UNDEF, TRUE, FALSE, e) . replace
end if

end if
end procedure

list constructed by Algorithm 3.
Then, we have that S = E , i.e., that these two sets

are identical.

Proof. We split the proof into two parts: (i) sound-
ness, i.e, S ⊆ E , and (ii) completeness, i.e., E ⊆ S .

For (i), for any string e ∈ S , we need to show
that (a) GET(ρ,e) = v for some v ∈ Sigma∗ and (b)
LEV(s,e) ≤ t. Claim (a) can be proven straightfor-
wardly by structural induction over the ternary search
tree and Algorithm 2.

Claim (b) can be proven by induction over the
threshold t. For the base case t = 0, Algorithm 3 is
obviously equivalent to returning the result of Algo-
rithm 2 as a singleton list.

For the step case t > 0, the induction hypothesis is
that Claim (b) holds for t− 1. The condition for the
if statement marked as “edit allowed” in Algorithm 3
can be proven to evaluate to TRUE for any prefix p
of s by straightforward structural induction over the
ternary search tree and Algorithm 3. For a given pre-
fix p, if an edit is possible at this stage, i.e., the re-
mainder of s without prefix p is not the empty word
for deletion and replacement, the three recursive calls
marked as “insert”, “delete”, and “replace” are exe-
cuted. In the case of “delete”, the induction hypothe-
sis is immediately applicable. In the case of “insert”
and “replace”, the induction hypothesis is applicable
when the wildcard flag is consumed through the recur-
sive call in the body of the if statement marked “con-
sume letter”. Claim (b) thus follows from the obser-
vation that the prefix is concatenated with the strings
from the resulting set in the body of the if statement
marked “consume letter”.

Approximate Dictionary Searching at a Scale using Ternary Search Trees and Implicit Levenshtein Automata

659

0 500 1000 1500 2000 2500
Tree size in MByte

0

2

4

6

8

10

12

14

Se
ar

ch
 ti

m
e

in
 m

s

t = 1 (Python)
t = 2 (C)
t = 1 (C)
t = 0 (Python)
t = 0 (C)

Figure 1: Mean search time depending on tree size for Levenshtein distances 0, 1, and 2.

For (ii), for any string e ∈ E , we need to
show that for some v ∈ Σ∗, we have 〈e,v〉 ∈
GET(ρ,s, t,UNDEF,FALSE,FALSE,e). Let v be

the result of executing Algorithm 2, i.e., 〈e,v〉 =
GET(ρ,e). The existence of v follows from the defi-
nition of E . The definition of E further provides that
LEV(s,e) ≤ t.

We proceed by induction over the threshold t as
for Claim (i) (b). For the base case t = 0, the claim
follows again directly from the same observation as
for the base case of the induction in Claim (i) (b). For
the step case t > 0, the induction hypothesis is appli-
cable for the same reasons as outlined in the step case
of the induction in Claim (i) (b).

Lemma 1 immediately implies the correctness of
Algorithm 3.

Theorem 1 (Correctness of Algorithm 3). Algo-
rithm 3 is a correct implementation of approximate
dictionary searching with Levenshtein distance.

Proof. The GET procedure in Algorithm 3
calls the procedure GET with the parameters
(ρ,s,t,UNDEF,FALSE,FALSE). By Lemma 1 we ob-
tain that GET returns all exact matches and matches
with an edit distance of less than t.

4 EVALUATION

An implementation of Algorithm 3 has been evaluated
on the use case described in Section 1, i.e., on a dictio-
nary with an alphabet of size 7040 and 162.193.908
entries. Instead of consuming at least 10 TByte with
a trie datastructure, the ternary search tree for the full
dictionary consumed just over 2.5 GByte. In initial
experiments, the search algorithm with implicit Lev-
enshtein automata (Algorithm 3) outperformed other
memory-friendly data structures and algorithms such
as Burkhard-Keller trees (Burkhard and Keller, 1973)
regarding mean search time by at least an order of
magnitude. For a real-world workload representing
one month of user queries, the minimum query time
was 0.004 ms, with a median of 0.077 ms, a mean
of 2.146 ms, and a maximum of 53.858 ms. In ad-
dition to simulated workloads, real-world workloads,
and stress testing, the performance was also evalu-
ated qualitatively through the continuous involvement
of end users and stakeholders (Sejr and Schneider-
Kamp, 2021) at the company.

Figure 1 shows how the mean search time of Al-
gorithm 3 depends on the the size of the ternary search
tree, which was varied by performing experiments

ICSOFT 2022 - 17th International Conference on Software Technologies

660

0 500 1000 1500 2000 2500
Tree size in MByte

38

39

40

41

42

43

Ac
cu

ra
cy

 in
 p

er
 c

en
t

top-1, t = 2
top-1, t = 1
top-1, t = 0

Figure 2: Accuracy depending on tree size for Levenshtein distances 0, 1, 2.

with 30 differently sized subsets of the full dictio-
nary. A first implementation in the Python languag
was found to be prohibitively slow for all but the ex-
act case (t = 0). A second implementation in hand-
optimized C performed an order of magnitude faster,
facilitating the handling of thousands of simultane-
ous users on a single server instance with 4 GByte
of RAM for a Levenshtein distance threshold t = 1 or
t = 2.

The approximate dictionary searching in the con-
sidered application had the purpose of suggesting
choices to users for misspelled search words. The
top-k accuracy for this application is defined as the
proportion of cases in which the intended search word
was among the first k suggestions. Figure 2 shows
how the top-1 accuracy depends on the size of the
ternary search tree. The top-3 and top-10 accuracy
reached approx. 62 and 76 per cent, respectively.

5 CONCLUSION

This paper has presented and proven correct a solution
to the problem of approximate dictionary searching at
a scale that relies on ternary search trees and implicit
Levenshtein automata and scales well with the sizes

of both alphabets and dictionaries both regarding run-
time and memory usage.

REFERENCES

Bentley, J. L. and Sedgewick, R. (1997). Fast algorithms
for sorting and searching strings. In Proceedings of
the eighth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’97, pages 360–369, USA. Society
for Industrial and Applied Mathematics.

Boytsov, L. (2011). Indexing methods for approximate
dictionary searching: Comparative analysis. ACM
Journal of Experimental Algorithmics, 16:1.1:1.1–
1.1:1.91.

Burkhard, W. A. and Keller, R. M. (1973). Some ap-
proaches to best-match file searching. Communica-
tions of the ACM, 16(4):230–236.

Leveling, J., Ganguly, D., Dandapat, S., and Jones, G.
(2012). Approximate Sentence Retrieval for Scal-
able and Efficient Example-Based Machine Transla-
tion. In Proceedings of COLING 2012, pages 1571–
1586, Mumbai, India. The COLING 2012 Organizing
Committee.

Levenshtein, V. (1966). Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.

Approximate Dictionary Searching at a Scale using Ternary Search Trees and Implicit Levenshtein Automata

661

Navarro, G. (2001). A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88.

Schulz, K. U. and Mihov, S. (2002). Fast string correction
with Levenshtein automata. International Journal on
Document Analysis and Recognition, 5(1):67–85.

Sejr, J. H. and Schneider-Kamp, A. (2021). Explainable
outlier detection: What, for Whom and Why? Ma-
chine Learning with Applications, 6:100172.

Ukkonen, E. (1985). Algorithms for approximate string
matching. Information and Control, 64(1):100–118.

ICSOFT 2022 - 17th International Conference on Software Technologies

662

