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Abstract: Functional Mock-up Units (FMU) refer to tool-independent models exported from their original simulation 
tools. They enable component manufacturers and system integrators to exchange models across entire 
production chains to validate solutions virtually. However, since system equations cannot be accessed or 
modified in an FMU, numerical challenges can arise, especially when coupling similar energy storages. In 
this paper, therefore, Differential Algebraic Systems of Equations are analyzed for their suitability for FMU 
couplings. It is shown how such systems of equations can be described in a general way and how suitable 
coupling constraints for FMUs are chosen. Subsequently, three solution approaches are presented and 
analyzed for their feasibility with FMUs.   

1 INTRODUCTION 

Due to the increasing complexity in mechatronic 
systems, a continuous simulation in the development 
is indispensable (Michael et al., 2016). In this way, 
partial solutions can already be virtually validated in 
domain-specific development. This reduces the 
construction of necessary prototypes and thus leads to 
increased cost and time efficiency. 

However, a particular challenge lies in the large 
number of interacting domains. Specialized tools are 
often used for different domains. System integrators 
must therefore couple models from a heterogeneous 
tool landscape with each other in order to represent 
the overall system. The Functional Mock-up Interface 
(FMI) has proven to be a widely used way of coupling 
models in a tool-independent manner. Models are 
exported from their original modeling tools as 
compiled binary files. These are called Functional 
Mock-up Units (FMU). The models can then be 
interconnected via a standardized interface. 

In addition to the tool-independent coupling of the 
models, the FMI standard also allows industrial 
know-how protection to be achieved. Since the model 
behavior is represented by binary files, the internal 

 
a  https://orcid.org/0000-0002-3905-4407 
b  https://orcid.org/0000-0001-7611-7983 
c  https://orcid.org/0000-0001-9987-1655 

system equations can no longer be accessed or 
changed. Thus the FMI standard can be used for a 
modular model exchange over entire production 
chains.  Manufacturers of individual components, e.g. 
from the electrical drive technology, have the 
opportunity to pass on models to customers without 
disclosing their know-how. This increases market 
visibility and enlarges the customer base. On the other 
hand, system integrators can test components from 
different manufacturers virtually in their overall 
solution. 

The model boundaries of an FMU can be defined 
as small as desired. For example, an FMU can 
represent a physical component or an entire assembly. 
However, a component can also be divided further, so 
that an FMU can also be created at subcomponent 
level. For example, an industrial converter can be 
divided into a rectifier and an inverter. Similarly, 
individual FMUs can be created from software 
components, such as control algorithms. A large 
number of FMUs in the overall system ensures 
greater modularization. Individual submodels can be 
exchanged and reused more easily. For example, the 
user can assemble his own system model from a set 
of prefabricated FMUs. 
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However, the tighter the model boundaries are 
chosen, the higher is the integration effort in the 
overall system and numerical difficulties can occur. 
This is especially the case when similar energy 
storages are interconnected across model boundaries. 
Energy storages are physical elements, such as 
masses, springs, capacitances or inductances, whose 
state is described by its stored energy. For example, 
if two masses are rigidly coupled together, they have 
the same state. However, if the two masses are 
arranged in two different models, each model 
calculates its own state for the masses, which are 
independent of each other. 

In this article, therefore, methods are analyzed 
with which FMUs can be coupled to overall systems 
in a generally valid way. Special attention is paid to 
the representation of a total system as a differential 
algebraic equation (DAE) system. The couplings 
should be possible independently of the energy 
storage distribution in the system, so that two similar 
energy storages, which are arranged in different 
FMUs, can be rigidly coupled. In this paper, masses 
are considered as an example. 

2 STATE OF THE ART 

In the following, the required information about the 
Functional Mock-up Interface is given. Subsequently, 
methods for coupling two masses from conventional 
modeling are presented. An evaluation is made 
whether these methods can be implemented with the 
FMI standard.   

2.1 Functional Mock-up Interface 

The Functional Mock-up Interface refers to a standard 
agreed upon by various vendors of modeling and 
simulation tools to export their models as binary files. 
With this standard a Co-Simulation or a model 
integration can be performed. The exported models 
are called Functional Mock-up Units. The standard 
was first published in 2011 and currently exists in 
versions 1.0 and 2.0. In addition, a pre-release of 
version 3.0 exists since 2021 (FMI Development 
Group, 2014). 

An FMU consists of two files, a DLL file and an 
XML file. The DLL file is the binary file that 
represents the model behavior. For this purpose, it 
implements the system equations of a general 
nonlinear system, as follows. 

𝑥ሶ ൌ 𝑓൫𝑥, 𝑢, 𝑡൯ (1)
 

𝑦 ൌ 𝑤൫𝑥, 𝑢, 𝑡൯ (2)
 

With 
 𝑥: System State 
 𝑢: System Input 
 𝑦: System Output 
 𝑡: System Time 

The DLL file offers functions to read and write 
the variables. In addition, a single simulation step can 
be executed. The equations 𝑓 and 𝑤, however, cannot 
be accessed.  

The XML file represents the model description, 
which contains all the required model information. It 
lists which variables the model contains. Value 
references are specified for these variables, which can 
be used for the model functions from the DLL file to 
reference a variable. Other attributes that a variable 
can have are variability and causality. Causality 
specifies whether a variable is an input, output or 
parameter. Variability specifies whether a variable 
may be changed during the simulation. Possible 
values here are fixed and tunable. For example, output 
variables cannot be written by the user, but are only 
calculated by the model (FMI Development Group, 
2014). 

In (Blochwitz et al., 2012) an approach was 
presented to couple masses in different FMUs. For 
this purpose, a function for calculating directional 
derivatives is used, which was introduced in the FMI 
2.0 version. This can be used to compute a Jacobian 
matrix that can be used to solve algebraic loops 
created by the coupling. However, for this approach, 
the appropriate input and output variables for the 
FMUs must be provided. In this approach, one mass 
provides the position, velocity and acceleration as 
output. The second mass uses these quantities as input 
and calculates a counter torque as output. An example 
is provided by the Standard Modelica Library in the 
GenerationOfFMUs example. However, these 
masses have different interfaces and are not 
considered as generally valid in this article. 
Furthermore, the determination of directional 
derivatives refers only to the FMU inputs. Moreover, 
this function is optional and is only implemented by 
a few tools. 

2.2 Coupling of Similar Energy 
Storages 

In this section, first the problems of coupling similar 
energy storages are shown. Then, common 
approaches for solving the problem are presented. 
Table 1 summarizes the energy storages from the 
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mechanical and electrical domains and shows the 
corresponding differential equations (Isermann, 
2007). The input and output quantities given result 
from the assumption that the equations are solved by 
numerical integrations only.  

Table 1: Equations of Energy Storages. 

Energy 
Storages 

Equations Input Output 

Inductor  𝚤ሶ ൌ
1
𝐿

∙ 𝑢 𝑢 𝑖 

Capacitor 𝑢ሶ ൌ
1
𝐶

∙ 𝑖 𝑖 𝑢 

Mass 𝑣ሶ ൌ
1
𝑚

∙ 𝐹 𝐹 𝑣 

Spring 𝐹ሶ ൌ 𝑐 ∙ 𝑥ሶ
ൌ 𝑐 ∙ 𝑣 

𝑣 𝐹 

The following system variables appear in the 
equations from Table 1: 

 𝑢: voltage 
 𝑖: current 
 𝑣: velocity 
 𝐹: force 

The parameters of the energy storages are given as: 

 𝐿: inductance 
 𝐶: capacity 
 𝑚: mass 
 𝑐: spring stiffness 

In this paper masses are considered for coupling 
similar energy storages. In order to couple two 
masses, they are first considered individually. Figure 
1 shows a free cut of two masses 𝑚ଵ and 𝑚ଶ. 

 

Figure 1: Free cut of two masses. 

Each mass is driven by a force 𝐹 , resulting in a 
velocity 𝑣 . The two masses are described by the 
differential equations from table 1: 

𝑣ሶଵ ൌ
ଵ

௠భ
𝐹ଵ  𝑣ሶଶ ൌ

ଵ

௠మ
𝐹ଶ  (3) 

For each equation the input and output variables from 
table 1 are given. Thus, each mass has the force 𝐹 as 
input and the velocity 𝑣  as output. In this case the 
problem with the coupling of two masses is obvious, 
if they are located in different models. Both masses 
expect a force as input. However, the first mass 

provides a velocity as output, which cannot drive the 
second mass. Thus, there is an interface 
inconsistency. In (Ehlert et al., 2021) approaches 
were presented with which energy storages can be 
coupled, when all equations are known and 
adjustable. These approaches are presented in the 
following. 

2.2.1 Substitute Variables 

One of the most common methods for coupling 
similar energy storages in conventional modeling is 
the creation of substitute quantities. In this case, the 
two masses are calculated to a total mass. This results 
in a differential equation for both masses. 

𝑣ሶ ൌ
ଵ

௠೟೚೟ೌ೗
𝐹                (4) 

With this method, exact simulation results with a fast 
computation time can be expected. However, the 
system equations must be changed for this, which is 
not possible with FMUs. 

2.2.2 Fictitious Coupling Elements 

Another possibility is the dynamic coupling via 
fictitious coupling elements. In the case of two 
masses, a fictitious spring is placed between the 
masses. From this, the following differential 
equations are derived: 

𝑣ሶଵ ൌ
ଵ

௠భ
∙ ሺ𝐹ଵ െ 𝐹௖ሻ    (5) 

𝐹ሶ௖ ൌ 𝑐 ∙ ሺ𝑣ଵ െ 𝑣ଶሻ     (6) 

𝑣ሶଶ ൌ
ଵ

௠మ
∙ ሺ𝐹ଶ െ 𝐹௖ሻ    (7) 

Each mass is only dependent on its own input force 
and the fictitious spring force 𝐹௖. Thus, the states of 
the masses are decoupled from each other. The stiffer 
the spring is chosen, the more a rigid coupling is 
approximated. 

However, this approach can lead to long 
computation times if the spring is chosen to be very 
stiff, since this results in small time constants in the 
system. On the other hand, if the stiffness is too small, 
the simulation results are distorted by fictitious 
dynamics. 

One possibility to solve the coupled system with 
less computational effort is to perform an order 
reduction before the simulation. Equations (5) to (7) 
represent a third order differential equation system. 
Since a rigid coupling is approximated here, the 
difference of the independent states 𝑣ଵ and 𝑣ଶ will be 
very small. Here, an order reduction can compute a 
minimum order in which no independent states for the 
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velocities would be considered. In the field of 
snapshot-based methods, there exist procedures for 
model order reduction that can also be implemented 
as a black box (Benner et al., 2021). It will be 
separately analyzed if these methods can be applied 
to FMUs. 

2.2.3 Definition of Coupling Constraints 

A third way of coupling similar energy storages is to 
define constraints. Thereby, the ordinary differential 
equations of the masses are arranged independently in 
a state space model. This is completed by coupling 
constraints to a Differential Algebraic System (DAE). 
In (Najafi, 2018), an extension of the Functional 
Mock-up Interface is presented to solve DAE systems 
in FMUs. In this approach, however, the algebraic 
constraints are part of the FMUs. In this paper, the 
constraints are formed by the coupling. Thus, they are 
located outside the FMUs and have to be solved by a 
higher-level simulation algorithm considering the 
available model information.   

Since the ordinary differential equations from the 
FMUs are considered independently, this approach 
will be further analyzed.  

3 MODEL COUPLING USING 
DAE-SYSTEMS 

For the model coupling using DAE systems, two 
masses are considered again. Each mass is arranged 
in its own FMU, as shown in Figure 2. Both FMUs 
have at least one force input and one velocity output. 
The coupling is realized via a constraint force 𝐹௭ , 
which can be applied via the force inputs in the 
FMUs. In addition, the first mass is actuated via a 
driving force 𝐹௔.   

 

Figure 2: Coupled masses using coupling constraints. 

For the example shown, a DAE system can now be 
set up. DAE systems consist of a set of ordinary 
differential equations (ODE) and a set of algebraic 
constraints. The ordinary differential equations for 
the system shown above are: 

𝑣ሶଵ ൌ
ଵ

௠భ
ሺ𝐹௔ െ 𝐹௭ሻ  𝑣ሶଶ ൌ

ଵ

௠೥
𝐹௭ (8)

Whereas an algebraic equation could limit the 
velocities: 

𝑣ଵ െ 𝑣ଶ ൌ 0 (9)

In general, DAE systems are defined as follows 
(Janschek, 2010): 

𝑥ሶ ൌ 𝑓൫𝑥, 𝑧, 𝑢, 𝑡൯ (10)

0 ൌ 𝑔൫𝑥, 𝑧, 𝑡൯ (11)

Here, 𝑓  represents the set of ordinary differential 
equations and 𝑔 the set of algebraic constraints. The 
additional vector 𝑧 describes all algebraic variables 
that do not occur differentially. It should be noted that 
the DAE system represents the overall system and not 
the individual FMUs. Therefore, the DAE system has 
only the driving force 𝐹௔ as input and not the other 
FMU inputs used for coupling. For the example 
above, this results in the following assignments: 

 𝑥 ൌ ሾ𝑣ଵ, 𝑣ଶሿ்          (12) 

 𝑧 ൌ 𝐹௭           (13) 

 𝑢 ൌ 𝐹௔           (14) 

In order to be able to couple models using DAE 
systems, possible coupling constraints are analyzed 
first. Then, the index of a DAE system has to be 
determined in order to be able to select a solution 
approach based on it. 

3.1 Choice of Coupling Constraints 

Coupling constraints can be chosen differently for 
different systems. An example is provided by the 
Modelica modeling language (Elmquist et al., 1998). 
Here, the user creates a topology of a system. The 
modeling tool that implements the Modelica language 
uses this topology to create coupling constraints for 
the basic differential equations of the modeling 
modules and thus generates a system of equations. 
The coupling constraints are chosen in a way that the 
potential quantities of two elements, that have been 
connected with each other, are equal. The sum of all 
flux quantities in this connection must result in zero. 

In (Woernle, 2016) coupling conditions for 
mechanical systems are classified. The constraints 
can be divided into holonomic and non-holonomic 
constraints. Holonomic constraints describe 
constraints on the position level. Non-holonomic 
constraints limit the velocities of the individual 
models. A further classification takes place in 
scleronome and rheonome constraints, whereby 
scleronome constraints are time independent and 
rheonome systems have a time dependence.  
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In this paper, scleronomic bindings are chosen for 
coupling different masses, since it is a rigid coupling 
and no time dependence is necessary. Moreover, the 
bindings are defined at velocity level to keep the 
index of the DAE system small. Furthermore, 
possible solution approaches for solving the DAE 
system could be applied to other energy storages as 
well. This assumes that the initial states of the masses 
are equal. The resulting DAE system is classified as 
nonholonomic scleronomic. The algebraic constraint 
looks as follows: 

𝑔൫𝑥൯ ൌ 𝑥ଵ െ 𝑥ଶ ൌ 𝑣ଵ െ 𝑣ଶ ൌ 0 (15)

A detailed analysis of approaches for solving 
holonomic DAE systems with FMUs can be given as 
part of the future work.  

3.2 Determination of the Index 

The index of a DAE system is an indicator for the 
degree of difficulty to solve the system. It describes 
how often the algebraic constraints have to be 
differentiated in time to transform the DAE system 
into an ODE system. This procedure is also called 
index reduction. If an ODE system could be formed, 
it can be solved with ordinary numerical integration 
methods.  

To determine the index, the algebraic constraint is 
first differentiated and checked whether it 
subsequently represents another ODE. For this 
purpose, the algebraic variables 𝑧  must occur in a 
differentiated form.   

𝑑
𝑑𝑡

𝑔൫𝑥൯ ൌ
𝜕𝑔
𝜕𝑥

𝑥ሶ ൌ 0 (16)

→
𝑑
𝑑𝑡

𝑔൫𝑥൯ ൌ
𝜕𝑔
𝜕𝑥

𝑓൫𝑥, 𝑧, 𝑢൯ ൌ 0 (17)

Since 𝑧ሶ does not appear in equation (17), there is no 
further ODE for the constraint. Therefore, it is not an 
index 1 system and the constraint must be 
differentiated further. 

𝑑
𝑑𝑡

ቈ
𝜕𝑔
𝜕𝑥

𝑓൫𝑥, 𝑧, 𝑢൯቉ ൌ 0 (18)

→
𝜕𝑔
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝑥ሶ ൅
𝜕𝑔
𝜕𝑥

𝜕𝑓
𝜕𝑢

𝑢ሶ ൅
𝜕𝑔
𝜕𝑥

𝜕𝑓
𝜕𝑧

𝑧ሶ ൌ 0 (19)

To form another ODE, it must be possible to resolve 
to 𝑧ሶ. This leads to the following index 2 condition: 

𝑑𝑒𝑡 ൬
𝜕𝑔
𝜕𝑥

𝜕𝑓
𝜕𝑧

൰ ് 0 (20)

𝑑𝑒𝑡

⎣
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎡

డ௚భ

డ௫భ
…

డ௚భ

డ௫೙

⋮ ⋱ ⋮
డ௚೘

డ௫భ
…

డ௚೘

డ௫೙ ⎦
⎥
⎥
⎤

⎣
⎢
⎢
⎡

డ௙భ

డ௭భ
…

డ௙భ

డ௭೙

⋮ ⋱ ⋮
డ௙೘

డ௭భ
…

డ௙೘

డ௭೙ ⎦
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎤

് 0     (21) 

With the ODEs from equation (8), the assignment 
from (12) - (14) and the constraint from (15) this 
results in 

𝑑𝑒𝑡

⎝

⎜
⎛

൤
𝜕𝑔
𝜕𝑣ଵ

𝜕𝑔
𝜕𝑣ଶ

൨

⎣
⎢
⎢
⎡
𝜕𝑓ଵ

𝜕𝐹௭
𝜕𝑓ଶ

𝜕𝐹௭⎦
⎥
⎥
⎤

⎠

⎟
⎞

് 0 (22)

→ 𝑑𝑒𝑡

⎝

⎛ሾ1 1ሿ

⎣
⎢
⎢
⎡െ

1
𝑚ଵ
1

𝑚ଶ ⎦
⎥
⎥
⎤

⎠

⎞ ് 0 (23)

For 𝑚ଵ ് 𝑚ଶ. 

Thus, DAE systems for coupling different masses are 
index 2 systems. In the following, it is explained how 
these can be solved (Janschek, 2010). 

3.3 Solving the DAE-system 

The following section presents procedures that can be 
used to solve the DAE systems described above. 
However, in addition to the general conception, it 
must also be evaluated whether these procedures can 
be implemented with the information that are 
provided by the FMUs. 

DAE systems of index 2 can be solved directly 
with implicit integration methods. Otherwise, index 
reduction is necessary to reduce it further. With that 
explicit integration methods can be used for 
simulating an index 1 system or a full index reduction 
to an ODE system is performed (Janschek, 2010). All 
three possibilities are evaluated in the following. 

3.3.1 Index Reduction 

An index reduction has already been performed in the 
determination of the index. Thereby, it can be seen in 
equation (16) that a single differentiation of the 
constraints is independent of the system equations in 
the FMUs. However, since the coupling of the masses 
are constraints of index 2, a second differentiation is 
necessary. From equation (19) it can be seen that 
partial derivatives of the FMU system equations are 
necessary in this process. However, since these 
equations are not known, the second differentiation 
cannot be performed analytically with FMUs. 
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Therefor a numerical approach to calculate partial 
derivatives is discussed in a later section.   

At this point it should be mentioned that in the 
FMI 2.0 standard there is the possibility to calculate 
directional derivatives from FMUs. However, this 
function is optional in the standard specification and 
is only supported by a few tools. Furthermore, these 
directional derivations refer to the input variables of 
an FMU and not to general algebraic variables.  

3.3.2 Explicit Integration Methods 

Explicit integration methods perform a calculation of 
a new state value based solely on past state values. 
For DAE systems, this means that the ordinary 
differential equations and the algebraic constraints 
can be solved sequentially. This can be illustrated by 
a simple Euler method applied to an index 1 system. 

𝑥௞ାଵ ൌ 𝑥௞ ൅ ℎ ∙ 𝑓൫𝑥௞, 𝑧௞൯  →  𝑥௞ାଵ (24)

0 ൌ 𝑔൫𝑥௞ାଵ, 𝑧௞ାଵ൯  →  𝑧௞ାଵ (25)

Here 𝑘 describes the previous number of integration 
steps and ℎ the step size. For already known 𝑥௞ and 
𝑧௞ , 𝑥௞ାଵ  can be determined from the ordinary 
differential equations. This 𝑥௞ାଵ can then be used to 
calculate 𝑧௞ାଵ  from the constraints. For the initial 
values, 𝑥଴  is arbitrary. This implies that 𝑧଴  can be 
derived directly from the constraint (Janschek, 2010). 

However, explicit integration methods can only 
be used for systems up to index 1. As mentioned in 
section 3.3.1, the constraint can be differentiated 
once, which obtains an index 1 system for an FMU 
coupling. This results in a new constraint, which is 
shown in equation (17). This constraint now depends 
on the system equations 𝑓. If it is set equal to zero, 
𝑧௞ାଵ can be determined. However, this is not directly 
possible with the FMU system equations because the 
output variables are not declared as tunable. Thus, the 
FMU output cannot be written and the internal 
parameters do not change.  

One possibility to use this approach is to integrate 
the constraint equation in a control loop, as shown in 
Figure 3. In this case, only the input variables are 
written in the FMU, whereby 𝑧 is adjusted by a P-
controller in such a way that the output is controlled 
to zero. However, several iterations per time step may 
be necessary until the output has reached its 
stationary final value. To reduce the number of 
iterations and the stationary error of the equation 
output, the gain factor 𝐾 should be chosen very high.  

 
Figure 3: Control loop for constraint equation. 

3.3.3 Implicit Integration Methods 

Implicit integration methods are used when a system 
of equations cannot be solved sequentially. This is the 
case for DAE systems of index 2, as will be shown 
below using Euler's method.   

𝑥௞ାଵ ൌ 𝑥௞ ൅ ℎ ∙ 𝑓൫𝑥௞, 𝑧௞൯ (26)

0 ൌ 𝑔൫𝑥௞ାଵ൯ (27)

Here, the constraint is independent of 𝑧௞ାଵ. Thus, the 
algebraic variables cannot be determined for solving 
the ordinary differential equations in the next 
integration step. An implicit method must be chosen 
here, in which equations (26) and (27) are formulated 
into a root finding problem. The unknown quantities 
𝑥௞ାଵ  and 𝑧௞ାଵ  can then be determined by a zero 
search. An implicit Euler method looks as follows 
(Janschek, 2010): 

𝑥௞ାଵ ൌ 𝑥௞ ൅ ℎ ∙ 𝑓൫𝑥௞ାଵ, 𝑧௞ାଵ൯ (28)

0 ൌ 𝑔൫𝑥௞ାଵ൯ (29)

When formulating the root finding problem, a 
substitution can be made for simplicity, introducing 
the following new variables: 

Φ௞ାଵ൫𝑃௞ାଵ൯ ≔ ቂ
𝜑ଵ,௞ାଵ
𝜑ଶ,௞ାଵ

ቃ (30)

With 

𝑃௞ାଵ ≔ ൫𝑥௞ାଵ, 𝑧௞ାଵ൯
்
 (31)

and 

𝜑ଵ,௞ାଵ ൌ 𝑥௞ାଵ െ 𝑥௞ െ 𝑓൫𝑥௞ାଵ, 𝑧௞ାଵ൯ (32)

𝜑ଶ,௞ାଵ ൌ 𝑔൫𝑥௞ାଵ൯ (33)

The root finding problem can thus be described in a 
simple way. 

Φ௞ାଵ൫𝑃௞ାଵ൯ ൌ 0 (34)

For the solution of this equation different iterative 
methods for the root finding are possible. In the 
following, the Newton-Raphson iteration from 
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(Schwarz et al., 2009) is considered. For this method 
the following recursion rule results: 

𝑃௞ାଵ,௜ାଵ ൌ 𝑃௞ାଵ,௜ െ 𝐽൫𝑃௞ାଵ,௜൯
ିଵ

Φ௞ାଵ൫𝑃௞ାଵ,௜൯   (35) 
The variable 𝑖  denotes the number of previous 
iterations of the Newton-Raphson method. Several 
iterations are required per time step until 𝑃௞ାଵ,௜ାଵ is 
close enough to 𝑃௞ାଵ,௜ . The Jacobian matrix 𝐽  is 
defined as follows: 

𝐽൫𝑃൯ ൌ

⎣
⎢
⎢
⎢
⎡

𝜕𝜑ଵ

𝜕𝑥௜ାଵ

𝜕𝜑ଵ

𝜕𝑧௜ାଵ

𝜕𝜑ଶ

𝜕𝑥௜ାଵ

𝜕𝜑ଶ

𝜕𝑥௜ାଵ⎦
⎥
⎥
⎥
⎤
 (36)

Now it has to be evaluated whether this approach is 
feasible with FMUs. Equation (36) shows that the 
partial derivatives of the equations 𝜑ଵ  and 𝜑ଶ  are 
needed to form the Jacobian matrix. However, these 
equations depend on the FMU system equations 𝑓. 
Since 𝑓  cannot be accessed from the FMUs, these 
partial derivatives cannot be formed analytically. 
Therefore, in the following section, a possibility of 
numerical calculation of partial derivatives is 
discussed. 

3.4 Numerical Partial Differentiation 

Both the index reduction and the implicit integration 
methods depend on partial derivatives of the system 
equations. Since these are not known, an analytical 
solution is not possible. Here, a numerical solution 
using difference quotients can be considered. A 
numerical partial differentiation of the system 
equation 𝑓  to 𝑥  looks as follows (Schwarz et al., 
2009): 

𝜕𝑓
𝜕𝑥

ൎ
𝑓൫𝑥 ൅ ∆𝑥, 𝑧, 𝑢൯ െ 𝑓൫𝑥, 𝑧, 𝑢൯

∆𝑥
 (37)

A differentiation according to 𝑧 results in 

𝜕𝑓
𝜕𝑧

ൎ
𝑓൫𝑥, 𝑧 ൅ ∆𝑧, 𝑢൯ െ 𝑓൫𝑥, 𝑧, 𝑢൯

∆𝑧
 (38)

With this approach, the system equations only have 
to be evaluated and not changed. Thus, the difference 
quotients offer an opportunity to couple and simulate 
FMUs using DAE systems. 

4 CONCLUSIONS 

In this paper, methods for coupling masses from 
different models were investigated. Thereby, the 

couplings using DAE systems were dealt with in 
more detail. It was shown how FMUs can be arranged 
in such systems and how coupling constraints have to 
be chosen. Subsequently, various possible solutions 
were presented. A full index reduction or the direct 
simulation via an implicit or explicit integration 
method are suitable for solving the DAE system. For 
index reduction and implicit solvers a numerical 
partial differentiation is necessary. Explicit 
integration methods could use a control algorithm to 
solve the constraint equations of the DAE system. A 
concrete implementation of a FMU coupling remains 
to be validated afterwards. For this purpose one of the 
presented solutions has to be chosen.  

5 FUTURE WORK 

As an outlook, the concrete implementation of an 
FMU coupling via DAE systems can be given. For 
this, first one of the presented solution methods must 
be chosen. Thereby an index reduction up to an ODE 
system or the solving with an implicit or explicit 
integration method is suitable. The choice can 
strongly depend on the application. For example, an 
iterative method would not be suitable for real-time 
applications. 

Furthermore, the couplings of other energy 
storages still need to be analyzed. These could lead to 
changed coupling constraints. At the position level 
further coupling constraints could be analyzed for 
masses as well. Once coupling constraints are defined 
for all relevant energy storages, the interaction with 
the user of a simulation has to be defined. FMUs are 
signal flow oriented models. However, the couplings 
described here do not take place on the basis of 
signals. An input must be found with which the user 
determines the FMUs to be interconnected. From this 
input, the coupling constraints have to be derived in 
an automated way in order to build a DAE system. 
Here, it is particularly important to analyze the 
interfaces of the FMUs.  

Besides the FMU coupling via DAE systems, the 
dynamic coupling with fictious coupling elements 
can be analyzed further. Here, a model order 
reduction for black box models can be investigated to 
reduce the computation time of the simulation.  
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