
Discovering Vulnerabilities and Patches for Open Source Security

Tamara Gunkel and Thomas Hupperich
Department of Information Systems, University of Münster, Germany

Keywords: Web Security, Data Set Generation, Commit Classification.

Abstract: Open source software is used in numerous systems and security vulnerabilities in such software often affect
many targets at once. Hence, it is crucial to find security vulnerabilities as soon as possible. A convenient
method to check software for vulnerabilities is executing a static code analysis tool before deployment. How-
ever, for verifying the reliability of such tools, real-world data including labeled non-vulnerable and vulnerable
code is required. This paper introduces an approach to automatically create and enhance a labeled data set of
open source projects. The ground truth of vulnerabilities is extracted from up-to-date CVEs. We identify
repositories related to known vulnerabilities, select vulnerable versions and take patch commits into account.
In this context, we utilize Gradient Boosting based on regression trees as a meta classifier for associating patch
commits to CWE categories. With a high precision of this matching, we give insights about the impact of cer-
tain vulnerabilities and a general overview of open source code security. Our findings may be used for future
studies, such as the impact of certain code design criteria, e.g. clean code, on the prevalence of vulnerabilities.

1 INTRODUCTION

Open source software is popular and widely used in
many contexts. Therefore, it is crucial to identify
vulnerabilities in open source code as soon as possi-
ble. Using automatic tools such as static code analysis
tools in continuous integration pipelines can prevent
vulnerable code from being deployed. However, test-
ing static code analysis tools and applying machine
learning is challenging as only a few data sets with
real-world vulnerabilities and source code are avail-
able. As this need was already identified, previous
work contributed by creating manually maintained
data sets which were often limited to specific projects
or programming languages. Thus, to foster code anal-
ysis of open source software projects and ultimately
contribute to securing them, we seek a solution to au-
tomatically create data sets of vulnerable and patched
software based on the ground truth of Common Vul-
nerabilities and Exposures (CVE).

Not only is identifying vulnerabilities in software
a key to preventing security incidents but also keep-
ing track of when a vulnerability is mitigated. This
allows security experts an assessment of impact and
provides information about the software being secure
to use in the future. Therefore, we determine for vul-
nerabilities classified by our approach whether or not
these have been fixed.

Our contribution to open source software security is:

• We compose a database to represent current vul-
nerabilities as a ground truth. As vulnerabil-
ity data feed, the popular National Vulnerability
Database (NVD) is used that lists vulnerabilities
following the CVE specification (of Standards and
Technology, 2021; Corporation, 2020b).

• We search open source repositories for known
vulnerabilities and patches. In total, we inspect
545 repositories of mainly web-related projects
written in JavaScript, Java, and PHP.

• We create a classifier to determine the vulnerabil-
ity types fixed by specific commits. In this pro-
cess, we examine commit messages, file exten-
sions, and names to be most relevant for vulner-
ability classification.

• We build a data set containing commits fixing vul-
nerabilities described by CVEs. The data set con-
tains 1000 CVEs and will be published with this
paper.

This work allows developers to create their own data
sets of vulnerable and patched code, which can be
used to conduct further research. By using such data
sets, static code analysis tools may be validated reg-
ularly and analysts may react in a timely manner to
new vulnerabilities that are not yet detected.

Gunkel, T. and Hupperich, T.
Discovering Vulnerabilities and Patches for Open Source Security.
DOI: 10.5220/0011299400003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 641-648
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

641



2 RELATED WORK

The need for a data set consisting of vulnerabilities
and patch commits was already identified by multiple
researchers. Ponta et al. created a data set consisting
of 624 vulnerabilities in 205 Java projects and 1282
commits fixing them (Ponta et al., 2019). Another
data set with 153 projects was created by Gkortzis et
al. (Gkortzis et al., 2018). While promising in their
approaches, both projects are not maintained anymore
and lack actuality. The most recent work, published
in December 2020, is the OpenSSF CVE Benchmark
project. It contains around 200 JavaScript and Type-
Script CVEs (working group, 2021). However, our
approach is not limited to specific programming lan-
guages and can identify multiple patch commits in-
stead of only the last one.

Furthermore, research was conducted on identi-
fying security-relevant commits. Sabetta and Bezzi
as well as Sawadogo et al. trained machine learn-
ing classifiers for commit messages and the changed
code lines to flag security-relevant commits (Sabetta
and Bezzi, 2018; Sawadogo et al., 2020). As part of
their methodology, regular expressions are used, e.g.,
to filter out obvious non-security patches (Sawadogo
et al., 2020). Another approach by Barish et al. uses
only the source code as input vector (Greg Barish and
Minton, 2017). In our research, we combine the ap-
proaches and use source code, commit messages, and
file types to classify commits into vulnerability types.

The research closest to this paper is the VulData7
framework from Jimenez et al. (Jimenez et al., 2018).
For a given project, VulData7 can retrieve related
CVEs and commits. Although it is partly automated,
the approach is still limited in terms of usability. The
user has to define regular expressions to match CVEs
to a project. This requires extensive knowledge of the
project itself and CVEs. Moreover, unknown projects
cannot be included in the data set. Our approach over-
comes these limitations and provides a tool that is
independent of specific software projects and can be
used without further configuration.

3 APPROACH

Chasing vulnerabilities to measure open source
projects’ security needs to be based on reliable data
about relevant vulnerabilities. Therefore, we utilize
CVEs, officially released by The MITRE Corpora-
tion (Corporation, 2020b). Two limitations apply.
First, we focus on GitHub because most repositories
are hosted there. Second, we do not process CVEs
with multiple Common Platform Enumeration (CPE)

configurations referring to different products as the
identification of vulnerabilities cross-repository may
be ambiguous. In the following, we describe the pro-
cess of matching CVEs to repositories and their cor-
responding patch commits.

3.1 Locating Source Code Repositories

After retrieving a CVE, the affected repository has to
be found by utilizing five different heuristics that in-
clude the following criteria:

The Similarity Criterion is used to check if a
repository is similarly named as specified in the CPE.
The normalized Levenshtein similarity is calculated
between (1) repository and CPE product name, and
(2) repository owner and CPE vendor name. The av-
erage of both similarities must exceed 0.7 to consider
the repository as a potential match. The Levenshtein
measure is well suited as we allow only minor dif-
ferences between the names. The threshold 0.7 was
chosen because it worked well during manual testing.

The Language Criterion identifies the program-
ming language(s) of repositories belonging to a CVE
by utilizing the target software configuration from the
CPE as well as the file endings of files and program-
ming languages mentioned in the CVE description. If
more than one programming language was identified,
the potential repository must include at least one of
these languages.

The heuristics for finding potential repositories are
based on two information sources: CVE/CPE refer-
ences and GitHub Search API. GitHub repository ref-
erences are considered as a potential match if

1. CVE References are tagged as Patch or Issue
Tracking.

2. CPE References are tagged as as Product, Ver-
sion, Project, or Change Log.

3. Remaining CVE or CPE References fulfill the
similarity criterion. We include references from
CVEs sharing the CPE as other CVEs of the same
product might be more descriptive.

Additionally, up to five repositories from the follow-
ing GitHub search queries are considered as potential
matches.

4. CPE Product Name as keyword.

5. CPE Product Name as keyword and CPE Ven-
dor as user. The results of this query and the pre-
vious one must fulfill the similarity criterion.

6. CPE Product Name as keyword and Program-
ming Language specified. The product name
must be mentioned in the repository description,
or the similarity between the CPE product and

ICSOFT 2022 - 17th International Conference on Software Technologies

642



repository name must exceed 0.7. The similarity
criterion was weakened because repositories with
high name similarities were already identified by
previous heuristics.

The last heuristic uses the GitHub links included in
referenced websites. Repositories must include the
product name in the description or readme and fulfill
the language criterion. Additionally, only the repos-
itory with the highest name similarity is considered
as a potential match. If no repository is found be-
cause e.g. it is not open source, the CVE cannot be
further processed. After collecting potential reposito-
ries, they are rated by summing up the scores of the
applicable heuristics. The scores are derived during
the evaluation in section 4.1.

3.2 Probing for Vulnerable and Fixed
Versions

Next, the first and last vulnerable and first fixed ver-
sions are identified to isolate the relevant range of
commits. The lowest and highest affected versions
are extracted from the CVE applicability statements.
These versions have to be found in the repository
where versions are represented by Git tags. The low-
est tag between the lower and upper boundary ver-
sions is considered as the first vulnerable version and
the highest tag as the last vulnerable version. For the
comparison, we extract the version from the tag name.

Furthermore, any version of the repository higher
than the last vulnerable version is assumed to be fixed
because a patch must have been implemented if the
version is not affected anymore. The first fixed ver-
sion is defined as the lowest release version among
all repository versions, which are higher than the last
vulnerable version.

3.3 Identifying Patch Commits

After identifying the repository and vulnerable ver-
sions, we seek to find patch commits to gain informa-
tion about possible mitigations. A vulnerability may
be fixed with one or multiple commits.

The first heuristic instruments the CVE refer-
ences. If references tagged as Patch are commit or
pull request links, they are considered as the patch
commits. For pull requests, the commits are ex-
tracted. If the pull request not merged, the CVE re-
ceives the status No fix because the fix is not in-
cluded in the repository yet. The second heuris-
tic checks if any Issue Tracking reference links to a
GitHub issue. Open issues are considered as not fixed.
If it is closed, associated commits are marked as the
patches. Then, commit hashes are extracted from the

CVE description. If these heuristics do not yield use-
ful information, the individual commits are investi-
gated. The identified boundary vulnerable versions
are used to limit the commit range. The obvious way
to identify patch commits is to search for the CVE
Identifier (CVE ID) in the commit message. If one or
multiple commits contain the CVE ID, they are con-
sidered as patches. If not, a commit scoring system
is used to rate the commits. We utilize the following
heuristics:
(1) The tool git-vuln-finder is used to determine if a
commit is security-related by utilizing regular expres-
sions (Dulaunoy, 2021).
(2) The similarity of the CVE description and commit
message is calculated. We tokenize both inputs and
calculate the the Inverse Document Frequency (IDF)
score of every token to respect the different impor-
tance of tokens. As vocabulary, all commit messages
and the description are used. For an individual com-
mit, the similarity is then calculated by summing up
the IDF values of the commit message and descrip-
tion tokens. The similarity is normalized by the sum
of the IDF values of all description tokens to allow the
comparison of the scores across CVEs.
(3) We check if a URL contained in the commit mes-
sage appears in the CVE references.
(4) If file names were extracted from the description,
all commits modifying the files receive points.
(5) The Common Weakness Enumeration (CWE)
classifier categorizes commits into CWE-79 (XSS),
CWE-89 (SQLi), CWE-119 (Improper Restriction of
Operations within the Bounds of a Memory Buffer),
and CWE-20 (Path Traversal). These CWEs were se-
lected because they are part of the top 25 CWEs and
performed best during the experiments (Corporation,
2020a). The training data for the classifier was col-
lected automatically. For each CWE, all CVEs with a
Patch reference to a GitHub commit or pull requests
were retrieved. From the commits, the following five
features are engineered and used as input vectors.

a) Tokens of the commit message
b) File extensions of the modified files.

c) Class names occurring in all modified files.

d) Method names occurring in all modified files.

e) Names (variables, parameters, methods called)
occurring in the modified lines only as they are es-
pecially relevant for the vulnerability. Names con-
sisting of multiple words e.g. using camel-case
notation are split into single words.

The last three features utilize the modified source
code of a commit and might be well suited to distin-
guish between CWE categories. For example, names

Discovering Vulnerabilities and Patches for Open Source Security

643



such as database are more likely to occur in com-
mits regarding SQL Injection than buffer overflows.
All features are transformed into a numerical repre-
sentation by applying a count vectorizer, meaning that
the frequency of the tokens is used. After that, TF-
IDF transformation is applied so that the importance
of each token is reflected. The classifier is only used
as scoring criteria for commits if the CVE is catego-
rized as one of the supported CWEs.

4 EVALUATION

For evaluating how well the introduced approach
works, we created a data set with commits that fix
a vulnerability described by a CVE. The data set
contains 1000 CVEs. The data set was created by
manual selection of the CVEs, crawling the Snyk vul-
nerability database (Ltd., 2021) and extracting CVEs
from the Vulas data set (Ponta et al., 2019)and the
OpenSSF CVE Benchmark (working group, 2021).
Most CVEs are related to injection and resource han-
dling vulnerabilities because the majority of projects
are web-related. Another negative data set with 142
CVEs, where the repository is not publicly available
or not hosted on GitHub, was created to evaluate how
many false positives are found.

4.1 Finding the Source Code Repository

As different heuristics (also called origins) are used,
a scoring system was developed to select the best
match. First, we grouped the CVEs by the target
repository and for the CVEs without a repository by
the CPE vendor and product. Some heuristics such as
the GitHub search always return the same results for
shared CPE. Thus, the success rate rather depends on
the repository than on the CVE. The groups are called
repository groups. There are 572 repository groups
for the normal and 73 groups for the negative data set.

The scoring system is dynamically calculated and
evaluated by using a 10-fold cross validation. First, it
is determined how many points an origin should re-
ceive. For each CVE, every origin referring to the
correct repository receives one point. The points are
added up within a repository group. After that, the
relative success rate of each origin is calculated by di-
viding the points by the total number of found repos-
itories within the repository group. We average the
success rate across all repository groups. The final
score for an origin is determined by rounding the suc-
cess rate to either the next 10% or 5%. We map the
score to numbers between 0 to 10 and 0 to 20, respec-
tively.

After calculating the origin scores, the best repos-
itory needs to be selected. Two different approaches
were evaluated. The hard threshold approach accepts
the highest-rated repository if it has a score above or
equal to a certain threshold. The soft threshold ap-
proach also accepts a repository if only the language
criterion and the version criterion are fulfilled. The
version criterion requires that at least one of the af-
fected versions must appear as a tag in the repository.
Thus, it is possible that the top-ranked repository is
not selected if it has a score below the threshold and
does not fulfill the additional checks.

In total, four approach combinations were eval-
uated. The CVEs were labeled with the result of
the scoring system, allowing the following combina-
tions. For CVEs from the negative data set, either no
repository (NN) or an incorrect repository (NI) can be
found. For CVEs from the general data set, no repos-
itory (RN), an incorrect (RI), or the correct repository
(RC) might be selected.

The metrics used to evaluate the performance of
the approaches should be suitable for the following
two goals: G1: Select as few wrong repositories as
possible, G2: select as many correct repositories as
possible. The first goal is considered more important
because wrong repositories reduce the quality of the
final data set. However, not detecting some repos-
itories does not affect the data quality but only the
quantity. We select the three following metrics for
evaluation:
1. Precision is used to evaluate goal G1.

RC
RC+RI +NI

(1)

2. Recall reflects goal G2.
RC

RC+RI +RN
(2)

3. The F0.5-score is used to combine the previous
metrics into a single evaluation score. We use the
F0.5-score to put more emphasis on precision than
on recall to reflect the different importance of the
two goals (Chinchor, 1992).

The evaluation results in Table 1 demonstrate no sig-
nificant difference between the 10% and 5% round-
ing. We select the 10% threshold because the score

Table 1: Scoring Performance Metrics.

10 % 10 % 5 % 5 %
Hard Soft Hard Soft

Precision .9405 .9608 .9497 .9608
Recall .8974 .8942 .8645 .8942
F0.5-Score .9314 .9465 .9310 .9465

All numbers are averages on test fold

ICSOFT 2022 - 17th International Conference on Software Technologies

644



range is smaller and easier to interpret. Furthermore,
the soft threshold performs better showing that the
additional checks are sufficient to select the correct
repository.

To create the final scoring system, the approach
is applied to the entire data set. The threshold of 19
has the best F0.5-score of 0.9493 with a precision of
96.43% and a recall of 89.37%. The following origin
scores show that a repository must be supported by at
least two origins to be directly selected as the match
without the additional checks.

The origins Patch and Issue Tracking perform best
and receive 10 points. This supports the assumption
that these references are reliable because they are in-
dividually added to each CVE. The CPE References
also have a high success rate with 9 points because
they are specific to the project but not to the CVE.
If they fail, the reason is generally the imprecise la-
beling of the CVEs. The origin Third Party Web-
sites receives 9 points as well demonstrating the rel-
evance of CVE references. The scores of the GitHub
search (Owner and Repository Search, and Language
Search) are comparably low with 6 and 3 points be-
cause weaker similarity criteria are applied. This is
intended because these origins rather have the pur-
pose of supporting other origins than to be used as
individual indicators.

4.2 Finding the Vulnerable and Fixed
Versions

To evaluate if the version/tag matching works, we col-
lected statistics about the characteristics. In contrast
to the repository search evaluation, this and the fol-
lowing sections are based on CVE and not repository
level because CVEs of the same repository group have
different versions and patches.

Of 1,000 CVEs in total, only 26 do not define
vulnerable versions. For the other CVEs, manual
inspection shows that the tags are correctly identi-
fied in most cases. Multiple reasons were identified
why the version matching might fail: no maintaining
of tags and releases, insufficient support for parsing
some version formats and missing tags due to main-
taining releases on external platforms. This shows
that well maintained repositories following common
coding and naming guidelines allow a more precise
security assessment of possible vulnerabilities.

4.3 Finding the Patch Commits

An essential part of our research is evaluating how
well the heuristics can identify patch commits and
creating a scoring system for selecting patch commits.

As this step is built upon the version matching, it is
assumed that the correct repository was identified to
evaluate the performance independently of the repos-
itory search.

During the evaluation, four categories are used
to group the commit results. If the found commits
exactly correspond to the true commits, the CVE is
flagged as success. If the found commits are a sub-
set of the true commits, the category not complete
is used, and if it is the other way around, the tag
found more is used. The last category failure is
used if wrong commits were found and not all of the
true commits are included. On the commit level, com-
mits are evaluated like binary classification. Positive
commits are patch commits and negative commits are
non-patch commits.

First, the three approaches extraction of commits
from the Patch references, the Issue Tracking refer-
ences and the CVE description are evaluated because
they execute very fast in contrast to the scoring sys-
tem and are more precise. The approaches demon-
strate the following success rates: 97.46% for Patch
references, 92.68% for Issue Tracking references and
91.67% for the CVE Description heuristic. To calcu-
late the success rate not only the success CVEs were
considered as successful but also the found more
CVEs. The latter CVEs were manually inspected,
and the additional commits are either commits with
the same content but on different branches or contain
patch related information such as changelog updates.
These CVEs are considered as successful because the
tool does not intend to narrow down the fix to specific
code lines.

If none of these approaches finds a patch commit,
we utilize a high-effort method by further investigat-
ing the commits within the valid version range. This
process required between one minute and eight hours
for one CVE depending on the number of commits as
the commits’ messages are parsed through the Natural
Language Processing (NLP) pipelines. Though this
seems to be a high time effort, this part of the pro-
cedure needs to be run only once on creation of the
data set. However, CVEs from ten repositories were
excluded from the following evaluation because the
process took over eight hours on a standard computer.

When the individual commits are inspected,
CVE IDs are extracted from the commit messages.
This method could be applied to 38 CVEs and was
successful for 94.74%. One CVE failed because
someone suggested including the CVE ID after the
patch was already partially implemented. For another
CVE only the changelog commit was found because
the inspected version range which was incompletely
listed in the CVE specification.

Discovering Vulnerabilities and Patches for Open Source Security

645



Overall, 597 CVEs remain where the scoring sys-
tem must be applied. For 179 CVEs, the true patch
commits were not included in the retrieved com-
mits. The main reason was that the version range
was wrongly specified in the CVE. These CVEs are
skipped because the preceding steps are obligatory to
evaluate the scoring system. The evaluation of the
scoring system is conducted on commit level. In to-
tal, 195,507 commits are included and out of these,
549 patches must be identified showing that finding
patch commits is a highly imbalanced problem.

For the scoring system, appropriate scores for the
five heuristics must be determined. Except for the
CWE Classifier heuristic, each heuristic score is rep-
resented by its F-measure value because it reflects the
heuristic’s precision and reliability. By creating three
different scoring systems using the F0.25-, F0.5-, or
F1-Score, the users can decide how much they value
precision and recall.

For the Description Fit heuristic, a commit re-
ceives the points if the fit is above or equal to a certain
threshold. We evaluated different absolute and rela-
tive thresholds and found that the absolute threshold
0.2 with a precision of 86.29% and recall of 12.54%
should be used if precision is highly important. Other-
wise, both the F0.5- and F1-score are best at threshold
0.1 with a precision of 58.41% and recall of 32.35%.
This shows that the heuristic works well in a few cases
but is limited in its applicability because commit mes-
sages are short and often use abbreviations for terms
occurring in the CVE description.

For the heuristics git-vuln-finder, URLs, and Files,
no thresholds exist. The heuristics either succeed for a
commit or not. Thus precision, recall, and F-measure
are calculated from the results of the entire data set.
The performance values are listed in Table 2.

Table 2: Performance of the Heuristics URLs, Files and git-
vuln-finder.

Num. Precision Recall
CVEs in % in %

URLs 7 100.00 100.00
Files 50 49.68 93.75
git-vuln-finder 295 22.70 41.67

The last heuristic is the CWE classifier which
was evaluated in further experiments. Three common
classification algorithms suitable for labeled data with
a small data set were evaluated using 10-fold cross
validation. The Gradient Boosting classifier outper-
formed the Random Forest and the Support Vector
Machine (SVM). The average precision of the cross
validation is 0.85 and the recall is 0.73. Further-
more, undersampling techniques applied to the major-

ity class were evaluated because the class CWE-79 in-
cluded approx. 700 CVEs while the other classes in-
cluded between 150 to 300 CVEs. The Tomek Links
method performed best and increased the precision by
2% and the recall by 1%. Thus, the final classifier
uses Gradient Boosting with Tomek Links undersam-
pling for CWE-79.

Since the CWE classifier only categorizes vulner-
ability types, it is used for discarding commits unre-
lated to the vulnerability type. As a metric, only per-
formance values from the CWE classifier evaluation
can be used because there are too few CVEs in the
test data set with corresponding CWEs to reevaluate
the classifier. We use recall as score because it reflects
how reliable the classifier discards negative commits.
The following recall values apply: 0.97 (CWE-79),
0.90 (CWE-119), 0.61 (CWE-22), 0.46 (CWE-89).
The CVE classifier can be applied to 22% of CVEs
included in the commit scoring system evaluation.

After creating the scores for all heuristics, the final
threshold, below which commits are discarded, needs
to be determined by applying the heuristics to all com-
mits. For each CVE, precision and recall are calcu-
lated so that all CVEs are equally weighted. Finally,
the F-measures are calculated to select the best thresh-
olds. To evaluate how well this approach performs
on unseen data, 10-fold cross validation is conducted.
The heuristic scores and the thresholds are selected
based on the training set and the performance is eval-
uated on the test set. The F.025 strategy shows a pre-
cision of 80.17% and a recall of 22.70% whereas the
F1 strategy has a precision of 47.55% and 47.41%.
The metrics of F0.5 lie between these values. Con-
sidering that the data set is highly imbalanced with
549 patches and 195,507 non-patches, a precision of
80% is quite good. Moreover, it is reasonable to of-
fer different precision levels as there are remarkable
differences in the metrics.

The approach was applied to the entire data set to
create the final scoring system. Figure 1 shows the
precision-recall curves of the three precision levels.
For the highest precision level with the F0.25-score as
well as the F0.5-score precision level, the final thresh-
old is 0.3 and for the F1-score 0.2. The plot illustrates
that a threshold above zero results in a recall decrease
of 40%, meaning that there are many patch commits
where no heuristic succeeds.
In summary, the results show that it is not trivial to
identify the patch commits. The biggest challenge is
that patches are not always described appropriately in
the commit message and might even be included in
a bigger merge commit. Additionally, it is hard to
identify the correct patch if multiple vulnerabilities of
the same type exist in the repository.

ICSOFT 2022 - 17th International Conference on Software Technologies

646



Figure 1: Precision-recall Curve of the Proposed Commit
Scoring System.

4.4 Total Performance

After evaluating the individual steps, this section
gives an overview of the entire approach’s perfor-
mance. Figure 2 shows the previously presented met-
rics and the overall performance. Step 2 presents the
aggregated performance of the Patch, Issue Tracking,
CVE Description and CVE ID heuristics. The blue
numbers presents the number of CVEs that are pro-
cessed or omitted in the paths. As for step 4 and
the overall performance, the metrics of the F0.25 pre-
cision level are illustrated because the scoring sys-
tem outperforms the other levels in the relevant area
around the threshold of 0.3 (see Figure 1). Overall, a
precision of 74.65% and recall of 48.42% is achieved.

Since there are not any similar studies, these met-
rics cannot be directly compared to previous work.
The performance of the simple heuristics can be clas-
sified as really good, while the scoring system may
still be improved. However, the evaluation shows that
the approach is independent of any programming lan-
guage or specific repositories and does not require any
user interaction. A shortcoming of the prototype is its
slowness if the version range cannot be limited and
many commits need to be investigated. As a mitiga-
tion, the processing of CVEs could be parallelized.
In summary, the following four key takeaways can be
derived from the conducted evaluation:

1. Matching from a CVE to a repository is simple be-
cause the CVE references and applicability state-
ments usually describe the repository well.

2. The CVE description, references, and CVE IDs
mentioned in commits are a reliable source for
identifying patch commits.

3. The NVD information regarding the vulnerable
versions does sometimes not match vulnerable
tags in repositories.

4. Finding the patch commits using the scoring sys-
tem is challenging as documentation of the vul-
nerabilities in issues or explicit commit descrip-
tions is often missing.

5 DISCUSSION

Despite the high performance of our approach, there
are underlying assumptions and certain limitations.
These lead to possible enhancements for future work
to strengthen the overall robustness.
CVE Correctness. The evaluation showed that the
performance depends on the availability and correct-
ness of the CVE applicability statements. We found
in 1.8% that the applicability statements are wrong or
imprecise. As a mitigation, the software name could
be extracted from the CVE description and used for
finding the repository.
Source Diversity. For further enhancement, addi-
tional information sources such as the GitHub secu-
rity advisories could be incorporated. The API end-
point for the GitHub security advisories did not work
reliably at the time of our experiments but might be a
valuable information source in the future.
Scoring Precision. The developed approach and
first four heuristics to find patch commits are found
to be highly precise. Nevertheless, there is room for
improvement on the commit scoring system.

As for the Description Fit heuristic, a more so-
phisticated approach could be developed that goes
beyond textual similarity e.g. by incorporate code
semantics. The same applies for the git-vuln-finder
heuristic. A machine learning model might improve
the precision as it was developed by Sabetta and Bezzi
(Sabetta and Bezzi, 2018). Their model yields a pre-
cision of 80% and a recall of 43%, but their tool is
not published. The CWE classifier might be used as a
stronger indicator if more CWEs are recognized. Cur-
rently, we focus on four vulnerability types to ensure
high performance. When collecting more indepen-
dent training data, additional vulnerability types can
be included allowing to apply the classifier heuris-
tic to more CVEs. Additionally, the CWE classi-
fier could be improved by adding further data sources
such as changelogs or comments in the source code.

While the existing heuristics already demonstrate
good performance, additional heuristics based on new
information sources could enhance it even further.
Such information sources might be mailing lists or
external issue trackers that contain information about
the affected files or patches. The challenge is that
this information is unstructured and the relevant data
needs to be identified.

Discovering Vulnerabilities and Patches for Open Source Security

647



End

5

Select
repository

1

96.08%
Precision

89.42% Recall

Select patch
commits using

precise
heuristics

2

98.92% Precision

94.81% Recall

Select patch
commits using

scoring
system

4

Limit to
vulnerable

version range

3

- 29.98%
CVEs 77.96% Precision

26.51% Recall

74.65% Precision

48.42% Recall

36.76%
CVEs

63.24%
CVEs

Figure 2: Evaluation of the Entire Approach.

6 CONCLUSION

This work presented a novel approach to find vul-
nerable open source repositories and patch commits
matching given CVEs. We retrieved relevant CVE
information directly from the NVD, identified repos-
itories with a vulnerable code version, and finally
checked for a patch commit to determine whether or
not the vulnerability has been mitigated. To select
the correct repositories and commits, we developed
sophisticated scoring systems, instrumenting multiple
heuristics, and conducted an evaluation with a data set
containing 1000 CVEs, validating our approach.

We have found that the success of identifying the
correct patch commits greatly depends on the reposi-
tory. Well-maintained repositories provide more qual-
itative information to find connections to CVEs. Fur-
thermore, especially patches to CVEs from the CWE-
119 category are successfully identified. Good suc-
cess rates are also demonstrated in the categories
CWE-706 and CWE-74.

Future studies may be built upon the generated
data set and our methodology to assess the effects of
coding practices, guidelines, and clear documentation
on code security.

REFERENCES

Chinchor, N. (1992). MUC-4 Evaluation Metrics. In Pro-
ceedings of the 4th Conference on Message Under-
standing, MUC4 ’92, page 22–29, USA. Association
for Computational Linguistics.

Corporation, T. M. (2020a). 2020 CWE Top 25 Most Dan-
gerous Software Weaknesses. https://cwe.mitre.org/
top25/archive/2020/2020 cwe top25.html. (Accessed
on 10/07/2020).

Corporation, T. M. (2020b). About CVE. https://cve.mitre.
org/about/index.html. (Accessed on 02/14/2021).

Dulaunoy, A. (2021). git-vuln-finder. https://github.com/c
ve-search/git-vuln-finder. (Accessed on 01/01/2021).

Gkortzis, A., Mitropoulos, D., and Spinellis, D. (2018).
Vulinoss: A dataset of security vulnerabilities in open-
source systems. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR ’18, page 18–21, New York, NY, USA. Associ-
ation for Computing Machinery.

Greg Barish, M. M. and Minton, S. (2017). Mining commit
log messages to identify risky code. In Proceedings of
the 2017 International Conference on Artificial Intel-
ligence, pages 345–349. CSREA Press.

Jimenez, M., Le Traon, Y., and Papadakis, M. (2018). [en-
gineering paper] enabling the continuous analysis of
security vulnerabilities with vuldata7. In 2018 IEEE
18th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 56–
61.

Ltd., S. (2021). Vulnerability DB — Snyk. https://snyk.io/
vuln/. (Accessed on 02/09/2021).

of Standards, N. I. and Technology (2021). NVD - Gen-
eral. https://nvd.nist.gov/general. (Accessed on
01/14/2021).

Ponta, S. E., Plate, H., Sabetta, A., Bezzi, M., and Dan-
gremont, C. (2019). A Manually-Curated Dataset
of Fixes to Vulnerabilities of Open-Source Software.
In Proceedings of the 16th International Conference
on Mining Software Repositories, MSR ’19, page
383–387. IEEE Press.

Sabetta, A. and Bezzi, M. (2018). A Practical Approach
to the Automatic Classification of Security-Relevant
Commits. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
579–582.

Sawadogo, A. D., Bissyandé, T. F., Moha, N., Allix, K.,
Klein, J., Li, L., and Traon, Y. L. (2020). Learning to
Catch Security Patches.

working group, O. S. T. (2021). OpenSSF CVE Benchmark.
https://github.com/ossf-cve-benchmark/ossf-cve-ben
chmark. (Accessed on 01/07/2021).

ICSOFT 2022 - 17th International Conference on Software Technologies

648


