Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., 
Bougares,  F.,  Schwenk,  H.,  &  Bengio,  Y.  (2014). 
Learning  phrase  representations  using  RNN  encoder-
decoder  for  statistical  machine  translation.  arXiv 
preprint arXiv:1406.1078.  
Edel, M., & Köppe, E. (2016). Binarized-blstm-rnn based 
human activity recognition. Paper presented at the 2016 
International  conference  on  indoor  positioning  and 
indoor navigation (IPIN). 
Ermes,  M.,  Pärkkä,  J.,  Mäntyjärvi,  J.,  &  Korhonen,  I. 
(2008).  Detection  of  daily  activities  and  sports  with 
wearable  sensors  in  controlled  and  uncontrolled 
conditions.  IEEE transactions on information 
technology in biomedicine, 12(1), 20-26.  
Graves,  A.  (2012).  Supervised  sequence  labelling.  In 
Supervised sequence labelling with recurrent neural 
networks (pp. 5-13): Springer. 
Hammerla,  N.  Y.,  Fisher,  J.,  Andras,  P.,  Rochester,  L., 
Walker, R., & Plötz, T. (2015). PD disease state 
assessment in naturalistic environments using deep 
learning.  Paper  presented  at  the  Twenty-Ninth  AAAI 
conference on artificial intelligence. 
Hernández, F., Suárez, L. F., Villamizar, J., & Altuve, M. 
(2019, 24-26 April 2019). Human Activity Recognition 
on Smartphones Using a Bidirectional LSTM Network. 
Paper  presented  at  the  2019  XXII  Symposium  on 
Image,  Signal  Processing  and  Artificial  Vision 
(STSIVA). 
Inoue, M., Inoue, S., & Nishida, T. (2018). Deep recurrent 
neural network  for mobile  human activity recognition 
with  high  throughput.  Artificial Life and Robotics, 
23(2), 173-185.  
Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, 
J. (2019). On the variance of the adaptive learning rate 
and beyond. arXiv preprint arXiv:1908.03265.  
Madanian, S., & Parry, D. (2019). IoT, Cloud Computing 
and Big Data: Integrated Framework for Healthcare in 
Disasters. Stud Health Technol Inform, 264, 998-1002. 
doi:10.3233/shti190374 
Moya Rueda, F., Grzeszick, R., Fink, G. A., Feldhorst, S., 
&  Ten  Hompel,  M.  (2018).  Convolutional neural 
networks for human activity recognition using body-
worn sensors. Paper presented at the Informatics. 
Nguyen, L. N. N., Rodríguez-Martín, D., Català, A., Pérez-
López,  C.,  Samà,  A.,  &  Cavallaro,  A.  (2015). 
Basketball activity recognition using wearable inertial 
measurement units. Paper presented at the Proceedings 
of  the  XVI  international  conference  on  Human 
Computer Interaction. 
Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional 
and  lstm  recurrent  neural  networks  for  multimodal 
wearable activity recognition. Sensors, 16(1), 115.  
Shoaib,  M.,  Bosch,  S.,  Incel,  O.  D.,  Scholten,  H.,  & 
Havinga,  P.  J.  (2014).  Fusion  of  smartphone  motion 
sensors  for  physical  activity  recognition.  Sensors, 
14(6), 10146-10176.  
Srivastava, N., Mansimov, E., & Salakhudinov, R. (2015). 
Unsupervised learning of video representations using 
lstms.  Paper  presented  at  the  International  conference 
on machine learning. 
Stephen, O., Maduh, U. J., & Sain, M. (2021). A Machine 
Learning Method for Detection of Surface Defects on 
Ceramic Tiles Using Convolutional Neural Networks. 
Electronics, 11(1), 55.  
Subetha, T., &  Chitrakala,  S.  (2016).  A survey on human 
activity recognition from videos. Paper presented at the 
2016  international  conference  on  information 
communication and embedded systems (ICICES). 
Tun, S. Y. Y., Madanian, S., & Mirza, F. (2021). Internet of 
things  (IoT)  applications for elderly  care: a  reflective 
review.  Aging Clinical and Experimental Research, 
33(4), 855-867. doi:10.1007/s40520-020-01545-9 
Tun, S. Y. Y., Madanian, S., & Parry, D. (2020). Clinical 
Perspective on Internet of Things Applications for Care 
of the Elderly. Electronics, 9(11), 1925. Retrieved from 
https://www.mdpi.com/2079-9292/9/11/1925 
Yang,  L.,  Ng,  T.  L.  J.,  Mooney,  C.,  &  Dong,  R.  (2017). 
Multi-level attention-based neural networks for distant 
supervised relation extraction.  Paper  presented  at  the 
AICS. 
Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., 
Wu,  P.,  &  Zhang,  J.  (2014).  Convolutional neural 
networks for human activity recognition using mobile 
sensors.  Paper  presented  at  the  6th  international 
conference  on  mobile  computing,  applications  and 
services.