
A Mechanism for Automatically Extracting Reusable and Maintainable
Code Idioms from Software Repositories

Argyrios Papoudakis a, Thomas Karanikiotis b and Andreas L. Symeonidis c

Dept. of Electrical and Computer Eng., Aristotle University of Thessaloniki, Thessaloniki, Greece

Keywords: Code Idioms, Syntactic Fragment, Software Reusability, Software Maintainability, Software Engineering.

Abstract: The importance of correct, qualitative and evolvable code is non-negotiable, when considering the maintain-
ability potential of software. At the same time, the deluge of software residing in code hosting platforms has
led to a new component-based software development paradigm, where reuse of suitable software components/
snippets is important for software projects to be implemented as fast as possible. However, ensuring accept-
able quality that will guarantee basic maintainability is also required. A condition for acceptable software
reusability and maintainability is the use of idiomatic code, based on syntactic fragments that recur frequently
across software projects and are characterized by high quality. In this work, we present a mechanism that
employs the top repositories from GitHub in order to automatically identify reusable and maintainable code
idioms. By extracting the Abstract Syntax Tree representation of each project we group code snippets that ap-
pear to have similar structural and semantic information. Preliminary evaluation of our methodology indicates
that our approach can identify commonly used, reusable and maintainable code idioms that can be effectively
given as actionable recommendations to the developers.

1 INTRODUCTION

Delivering software fast and with good quality has al-
ready been a quest for software engineering practi-
tioners. This quest has become more evident in our
era of rapid software prototyping and the establish-
ment of the agile, component-based software engi-
neering paradigm. The narrow time-to-market sched-
ules and the constantly changing features undermine
the quality of developed software and threaten the
maintainability of software projects. Abran et al.
(Abran and Nguyenkim, 1993) argue that the software
maintaining process consumes the largest percentage
of software costs. A poor software maintainability
”score” usually leads to increased bug fixing times
and inability to properly plan features development,
this way derailing the software project time frame,
both in time as well as in budget context.

In order to speed up software development, re-
duce programming effort and minimize the risks of
defective software, developers constantly try to reuse
existing software components/libraries/code snippets,

a https://orcid.org/0000-0001-7371-2277
b https://orcid.org/0000-0001-6117-8222
c https://orcid.org/0000-0003-0235-6046

benefiting from software that has already been imple-
mented and released and resides in some code hosting
facility. However, the quality of the components to be
reused is not granted and suboptimal searches may
lead to code snippets of poor quality that are tough to
integrate and could possibly introduce bugs. So, there
is a high need for software components that the devel-
opers can easily reuse and integrate into their software
and that can guarantee acceptable quality.

This requirement can be satisfied by using id-
iomatic code or code idioms. Code idioms are small
syntactic fragments that recur frequently across var-
ious software projects, with simple tasks to execute.
According to Allamanis et al. (Allamanis and Sut-
ton, 2014), code idioms appear to be significantly
different from ”previous notions of textual patterns
in software”, as they involve syntactic constructs
(decision-making statements, loops and exception-
handling blocks). Idioms, which can improve the
overall quality of the software they are used into, are
characterized by high reusability and can make the
code significantly easier to maintain (Hnatkowska and
Jaszczak, 2014). Popular Integrated Development En-
vironments (IDEs) already support idioms for various
programming languages. However, there are only few
approaches that aspire to mine code idioms automat-

Papoudakis, A., Karanikiotis, T. and Symeonidis, A.
A Mechanism for Automatically Extracting Reusable and Maintainable Code Idioms from Software Repositories.
DOI: 10.5220/0011279300003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 79-90
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

79

ically (Allamanis and Sutton, 2014). The few exist-
ing ones are mostly based on statistical methods and
are not able to capture idioms based also on their in-
creased usage among top-level and popular reposito-
ries.

In this work, we present a mechanism that can
harness data from the top-level, most popular open-
source projects, residing in the code hosting platform
GitHub, and identify reusable and maintainable code
idioms, in a completely unsupervised manner. This
mechanism extracts the most-used code blocks found
across different projects, compares both their struc-
tural and their semantic information and groups code
snippets with similar architecture and functionality.
After automatically processing the generated clusters
and discarding the ones that do not meet specific re-
quirements, our system produces a set of code id-
ioms that have been used considerably across top-
level projects. To sum up, the main contributions of
our approach lie in the following axes:

• We present an approach for automatically identi-
fying and extracting code idioms used in various
projects.

• We build our methodology on projects of high
maintainability and reusability, which is shown in
the projects’ stars and forks.

• The extraction of code idioms is separated and ac-
complished differently for the various code blocks
found in programming languages, such as if and
for, which provide different functionalities.

• We provide an abstract form of the final idioms
extracted by our system, which a developer can
easily integrate into his/her project and modify ac-
cordingly.

• Having evaluated our approach and examined the
extracted idioms, we identify that these idioms
are used in various important programming tasks,
such as null checking, looping through the ele-
ments of an array and reading the content of an
object or file. Such tasks considerably affect soft-
ware maintainability.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the current approaches in the literature
that aspire to extract small fragments of code that re-
cur frequently across projects and are characterized
by high quality. Our methodology, along with the
dataset we have created, the processing steps and the
models we have employed are depicted in Section 3,
while in Section 4 we evaluate the code idioms that
were extracted by our approach. In Section 5, we
analyze potential threats to the internal and external
validity of our approach and, finally in Section 6 we

provide insight for further research and conclude the
paper.

2 RELATED WORK

The importance of software maintainability and
reusability has gained increasing interest during the
recent years, where the time schedules for projects
are very tight, features are being constantly added or
modified and the maintenance costs are rising. To
address these issues, the component-based software
paradigm, which is easy to debug, maintain and reuse,
has gained ground. This paradigm relies on soft-
ware components and small fragments of code, that
execute specific and well-defined programming tasks
and can be easily understood by the developers. Id-
iomatic code or code idioms are such small syntactic
blocks that recur frequently across different projects
and execute simple tasks. Idioms can significantly im-
prove the software maintainability of a project, while
they provide small, compact and highly reusable code
blocks, which the developers can effortlessly compre-
hend and (re)use.

The process of extracting useful information from
semi-structured data is a well-known task, in which
the developers attempt to detect frequently encoun-
tered components. Even though mining frequent pat-
terns is an important task, it is not directly correlated
to the idioms mining challenge. A problem that is
highly connected to idioms mining is the identifica-
tion of code clones. Code clones aim to detect sim-
ilar blocks of code across different projects. Zhang
and Wang (Zhang and Wang, 2021) proposed a tool,
named CCEyes, which is based on semantic vector
representations of big repositories and can identify
similar code fragments. Upon evaluating their ap-
proach, the authors argue that CCEyes outperforms
state-of-the-art approaches in code cloning. Similarly,
Ji et al. (Ji et al., 2021) are mainly focused on the hier-
archical structure of the Abstract Syntax Tree, where
they apply an attention mechanism, in order to exam-
ine the importance of different tree nodes. The results
of the experiments conducted by the authors show that
their proposed methodology achieves superior results
compared to the baseline methods.

Another area related to idioms mining is the API
mining problem. In this task, the main goal is the ex-
traction of sequences or graphs of API method calls.
While there have been a number of approaches that
aspire to mine API usage patterns, Wang et al. (Wang
et al., 2013) argued that they lack appropriate metrics
to evaluate the quality of their results. Thus, they pro-
posed two metrics, called succinctness and coverage

ICSOFT 2022 - 17th International Conference on Software Technologies

80

in order to measure the quality of the mined usage
patterns of API methods from the view of the devel-
opers. At the same time, they proposed UP-Miner,
a system that mines API usage patterns from source
code based on the similarity of the sequence and a
clustering algorithm. The experiments conducted on
the effectiveness of UP-Miner indicate that the UP-
Miner outperforms the existing approaches. More-
over, Fowkes and Sutton (Fowkes and Sutton, 2016)
aspire to address the limitation of the large parameter
tuning that is required in the most of the API min-
ing algorithms, by proposing the Probabilistic API
Miner - PAM, which is a near parameter-free prob-
abilistic algorithm for mining API call patterns. PAM
outperformed previously proposed systems, while the
authors argue also that the most of the existing API
calls are not well documented, which makes the API
usage patterns mining a demanding task.

While all these approaches are closely related to
idioms mining, significant variations exist. Code
clones aspire to detect similar code that executes the
same functionality, but not identical one, which is pre-
requisite for the idioms mining. Similarly, API min-
ing is interested only in sequences or graphs mining
and not on the code itself. Additionally, while code
search approaches cover a much wider area, they are
usually not focused on code quality and maintainabil-
ity.

When it comes to idiom mining, research ap-
proaches try to model the problem from a statistical
point of view. Allamanis and Sutton (Allamanis and
Sutton, 2014) proposed HAGGIS, a system for mining
code idioms, which is mostly based on nonparametric
probabilistic tree substitution grammars. Upon apply-
ing HAGGIS to some of the most popular repositories,
the authors claim that the extracted idioms are being
used in a wide range of projects. However, the most
of the idioms that HAGGIS was able to identify per-
form only easy tasks, such as object creation and ex-
ception handling. In their next approach, Allamanis
et al. (Allamanis et al., 2018) focused only on loop
idioms. They were based again on probabilistic tree
substitution grammars, which they augmented with
important semantic, in order to identify loop blocks
that recur frequently and meet the basic requirements
of code idioms. The identified loop idioms seem to
appear frequently, while they are able to identify op-
portunities for new code features. However, a study
conducted in 2019 by Tanaka et al. (Tanaka et al.,
2019) indicated that a lot of the mined code idioms
are not being used frequently, while some types of id-
ioms, such as the Stream idioms that operate on the
elements of a collection, are only used at times. At
the same time, the lack of complete idioms or ex-

amples leads to bad idioms usage. Finally, Sivara-
man et al. (Sivaraman et al., 2021) proposed Jezero,
a system that uses nonparametric Bayesian methods,
in order to extract canonicalized dataflow trees. Even
though Jezero performs better than other baseline ap-
proaches, it appears to significantly depend on the ex-
tent and the nature of the code it is applied to.

In this work, we aspire to tackle the main draw-
backs that are introduced in the approaches found in
the literature. We propose a mechanism to extract id-
ioms from the most popular and reused projects from
GitHub, characterized by high maintainability and
reusability (Papamichail et al., 2016a), split the soft-
ware into small meaningful code snippets and group
commonly used code blocks across different projects
that have similar structural and semantic information.
These groups are then filtered to discard code snip-
pets that do not meet basic requirements of the id-
iomatic code and the final set of code idioms is gener-
ated. We argue that code idioms can effectively help
the developers during both the development phase,
where components that accomplish simple tasks are
selected to be reused, and the maintenance phase. At
the same time, we argue that the extraction of the code
idioms from repositories that have a big number of
stars (users that can comprehend the main content and
functionality of the project) and forks (users that use
the whole project or project components), along with
their long lifespan, is a good indicator of idiomatic
code.

3 METHODOLOGY

In this section we present the architecture of our code
idioms mining system (shown in Figure 1).

3.1 Dataset Construction

The first step towards creating our system is to gener-
ate a dataset that comprises of code snippets derived
from the most popular software projects. The pro-
gramming language selected for creating our corpus
is Java, as it is a well-structured language and is con-
sidered ideal for mining code patterns.

In order to build our dataset, we use the 1,500
most popular Java repositories from GitHub1, based
on their reputation with respect to their number of
stars and forks and their long lifespan, as it originates
from the date of their first release. As our main target
is the identification of reusable and maintainable code
idioms, the initial dataset used in our system needs to

1https://github.com/

A Mechanism for Automatically Extracting Reusable and Maintainable Code Idioms from Software Repositories

81

switch blocks

if blocks

for blocks

while blocks

try blocks

do blocks

Dataset Complexity
Clustering

Snippet
Filtering

Similarity
Scheme

Snippets
Filtering

Clustering

PQ - GRAMS

Cluster Selection
&

Generalized Form

Preprocessing

Figure 1: Overview of the Code Idioms Mining System.

include idiomatic source code that is popular among
the developers. This can be ensured by the reputation
metrics; forks measure how many times a software
repository has been cloned and, thus, a large number
of forks indicates great reusability, while the number
of stars reflects the attractiveness of the project and
hence a qualitative and maintainable software. Each
project should also satisfy specific criteria posed by
the idioms mining problem and the need for highly
maintainable and reusable code. Except from the high
number of stars and forks, each project needs to ex-
hibit a large number of different contributors as well
as steady and short release cycles (i.e. new features
constantly added). These requirements aspire to en-
sure maintainability and reusability, as they are re-
flected by the project’s persistence in time and its high
acceptance from a lot of developers.

From the 1,500 software repositories, we ran-
domly select 1,000 repositories to be used in the ini-
tial stage of our approach, where the code idioms are
identified, and employ the remaining 500 repositories
to evaluate the extracted idioms. The source code
of these projects needs to be converted into a form
suitable for our models. For this purpose, we make
use of the Abstract Syntax Tree (AST) representation,
which maintains both the structural and the seman-
tic information of the source code. Specifically, the
execution order of the code statements is encoded in
the structure of the AST, while the semantic infor-
mation is stored in the leaves of the tree, where the
names of variables, methods and objects are found.
The transformation of the source code files to ASTs
is performed with the use of the ASTExtractor2 tool.

As the code idioms are small syntactic fragments
with a single semantic role and execute specific and
well-defined programming tasks, we can easily as-
sume that the most important code idioms concern a
small block of code (e.g. an if block or a for block)
and not a sequential snippet of code. Therefore, we
mainly focus on fragments of code that belong to

2https://github.com/thdiaman/ASTExtractor

the Control Flow Statements (CFSs), which break up
the sequential execution of the code with looping,
decision-making or exception-handling statements.
The main CFSs used in nearly any programming lan-
guage are the If, For, Try, While, Do and Switch
blocks. After traversing the ASTs of the source code
files, we extract all the fragments of code that belong
to the CFSs categories. Each CFS category is han-
dled independently, as the snippets of each category
have totally different semantic content and there is no
similarity between them, that could lead to the identi-
fication of a code idiom. Table 1 depicts the number
of snippets that each category of the CFS contains,
where the Enhanced For statements refer to the it-
eration on the elements of an array or collection. It
should be noted that the number of the If Statements
was too large, so we narrowed it down using only 300
repositories and split them into 7 different files. The
data have been publicly available and can be accessed
at Zenodo3. The data can be accessed by any pro-
gramming language, as it completely follows the csv
standards.

Table 1: Number of Snippets per Category.

Type of CFS # SnippetsBlocks

If 4,988,452
For 411,770

Enhanced For 495,256
Try 716,776

While 174,644
Switch 106,904

Do 10,739

3https://doi.org/10.5281/zenodo.5391965

ICSOFT 2022 - 17th International Conference on Software Technologies

82

3.2 Preprocessing

Prior to calculating the similarity matrix between
code snippets, we have to adjust the initially created
dataset to the requirements of the mining idioms prob-
lem. Taking into account the large number of repos-
itories we employed, it is crucial that we reduce the
computational cost, while, at the same time, discard
data that may lead to deficient results. Therefore, we
apply some preprocessing steps, which make the im-
plementation of the main clustering procedure feasi-
ble.

As it has been already mentioned, the code id-
ioms are small syntactic fragments with specific and
well-defined programming tasks to execute. Thus, a
larger snippet of code would not be part of a code
idiom, as it contradicts with the main principles of
code idioms. In order to exclude larger blocks of
code from our dataset, we discard all the snippets that
are greater than seven logical lines of code, i.e. ex-
ecutable lines of code, as idioms need to be signif-
icantly small and execute simple tasks and they usu-
ally do not exceed the above threshold 45. It should be
mentioned, however, that this is just a tunable param-
eter in our methodology and can easily be changed for
further experimentation. Table 2 depicts the number
of snippets each category contains, after removing the
large snippets of code.

Table 2: Number of Snippets per Category after Filtering.

Type of CFS # SnippetsBlocks

If 1,049,729
For 194,299

Enhanced For 252,587
Try 246,632

While 55,438
Switch 10,482

Do 3,482

From the Table 2 we can notice that the first four
categories (i.e. If, For, Enhanced For and Try state-
ments) include a large amount of code snippets, which
greatly impedes the effective clustering analysis of
the next steps, especially during the calculation of the
similarity matrices. In order to cope with this limi-
tation, we split the respective categories into smaller
parts, applying an initial clustering. The main goal
of this initial clustering is the ability to perform only
targeted comparisons when applying the main cluster-

4https://programming-idioms.org/
5https://www.nayuki.io/page/good-java-idioms

ing, avoiding the comparisons between code blocks
that are considerably different.

The initial clustering applied on this step of our
modelling procedure is based on the code complexity
of the snippets. Snippets with a quite large difference
in their complexity probably perform different tasks,
while, even if they execute the same programming
task, they are based on different approaches. Thus,
we apply a clustering algorithm making use of two
complexity metrics; the McCabe’s Cyclomatic Com-
plexity (McCabe, 1976), which counts the indepen-
dent execution paths of the source code, as well as the
total number of variables, methods and objects that
the code contains. These two metrics are used as fea-
tures for the clustering algorithm, in order to create
groups that contain snippets with the same character-
istics.

Applying this preprocessing step in the sets of If,
For, Enhanced For and Try statements, we create sev-
eral subsets that contain a significantly smaller num-
ber of snippets. The main point of this modelling
step is that each of our sets contains only fragments
of code that appear to have similar code complexity
and hence they could lead to the identification of a
code idiom. Table 3 depicts a summary of the results
of the initial clustering, including the number of dif-
ferent groups that are created and the average number
of snippets that are included in each group.

Table 3: Initial Clustering Results.

Type of CFS # Groups Average #
Blocks Snippets

If 21 49,987
For 8 24,287

Enhanced For 10 25,258
Try 10 24,663

3.3 Similarity Scheme

Before applying the main clustering algorithm, we
need to calculate a distance matrix for each one of the
subsets of our corpus, which reflects the similarity be-
tween two snippets of code. For the comparison of the
snippets, we use their AST representations and calcu-
late the Tree Edit Distance (TED). TED is defined as
the minimum cost sequence of edit operations (node
insertion, node deletion and label change) that can
transform one tree into another (Tai, 1979). Over the
years, various methods have been introduced to cal-
culate the TED, in order to improve the runtime algo-
rithm’s complexity (Zhang and Shasha, 1989; Klein,
1998). It is remarkable, though, that the complexity in

A Mechanism for Automatically Extracting Reusable and Maintainable Code Idioms from Software Repositories

83

all these implementations is greater or equal to O(n2).
In order to avoid using such a computationally expen-
sive method, we approximate the TED by using the
pq-Grams algorithm (Augsten et al., 2005).

Towards using the pq-Grams algorithm, we first
need to transform each AST into an ordered label tree
T, using the type of AST statements as labels and con-
necting the nodes so that the tree is traversed in a pre-
order manner. Then a pq-Extended-Tree T pq is con-
structed by adding null nodes on the tree T. Precisely,
p−1 ancestors are added to the root of the tree, q−1
children are added before the first and after the last
child of each non-leaf node and q children are inserted
to each leaf of T. In our methodology, we define p= 2
and q= 3, as these values have been used significantly
in tree matching approaches with great results. Figure
2 illustrates the extended tree transformation of a sim-
ple labelled tree, where p = 2 and q = 3.

a

b c

d

(a)

*

a

* * b

* * *

c

* * d

* * *

* *

* *

(b)

Figure 2: (a) Example tree T . (b) T 2,3 Extended-Tree.

For each Extended-Tree, we need to calculate a
list of all the pq-Gram patterns it contains. A pq-Gram
pattern is defined as a subtree of the extended tree T pq

that consists of an anchor node with p− 1 ancestors
and q children. These lists are called Profiles P(T)
and are used to calculate the distance between trees.
For instance, the profile of the tree in Figure 2 is the
list [∗a∗∗b,∗a∗bc,∗abc∗,∗ac∗∗,ab∗∗∗,ac∗∗d,ac∗
d∗,acd ∗ ∗,cd ∗ ∗∗]. Overall, the pq-Gram distance
between two trees T1 and T2 is defined as follows:

distance(T1,T2) = 1−2∗ |Pp,q(T1)∩Pp,q(T2)|
|Pp,q(T1)∪Pp,q(T2)|

(1)

As it is depicted in Equation 1, the distance be-
tween two trees depends on the number of mutual
pq-Grams patterns contained in both their profiles di-
vided by the union of the two lists, which results
in a value between 0 and 0.5 (when the union con-
tains double the instances of the intersection) (Aug-
sten et al., 2008). It is obvious that the similarity be-
tween two trees can be easily calculated using the for-
mula 1− distance(T1,T2). The final similarity value
ranges from 0 to 1.

3.4 Snippets Filtering

The pq-Gram algorithm discussed in the previous sec-
tion outputs the distance matrices calculated between
code snippets in the same subsets presented above.
We, then, proceed to the next step of our modelling
procedure, where we remove duplicate instances from
the data. The term duplicate instances refers to two
different cases:

• snippets with zero pq-Gram distance that belong
to the same code repository, as it is quite common
for a fragment of code to be used numerous times
in the same repository.

• snippets with zero pq-Gram distance that derived
from different code repositories but, however,
originate from the same package or library. It
is a usual case, when developers need to make a
change to an existing library or package and, thus,
they include it into their project.
It should be noted that this processing step, which

removes the duplicate instances from the data, is im-
portant in order to ensure that the resulting clusters
will contain patterns used by many different software
projects and, therefore, many different developers.

3.5 Clustering

In order to group code snippets, we perform Agglom-
erative Hierarchical Clustering, which is a bottom-up
approach that initially considers each snippet as a sep-
arate cluster and iteratively merges the groups with
the lesser distance. As a method of measuring the
distance between clusters we use the average linkage,
which is defined as the average distance between all
the snippets, while the optimal number of clusters is
identified using the average silhouette score. Silhou-
ette coefficient ranges from -1 to 1, indicating whether
the point is assigned to the correct cluster (positive
value) or not (negative value). Equation 4 shows the
calculation form of this metric using the mean intra-
cluster distance (variable a) and the min nearest clus-
ter distance (variable b) as shown in Equations 2 and
3 respectively.

ICSOFT 2022 - 17th International Conference on Software Technologies

84

a(i) =
1

|ci|−1 ∑
j∈Ci
j ̸=i

d(i, j) (2)

b(i) = min
k ̸=i

1
|ck| ∑

j∈Ck

d(i, j)) (3)

s(i) =
b(i)−a(i)

max(a(i),b(i))
(4)

Figure 3 illustrates a histogram of the cohesion
achieved on a set of different clusters for the If state-
ments. Table 4 depicts the average number of snip-
pets per cluster, the average cohesion of the clusters
and the average number of repositories found within
the cluster.

Cl
us

te
rs

Cohesion
0.70

0

1

2

3

4

5

0.75 0.80 0.85 0.90

Figure 3: A histogram of the cohesion achieved in a set of
different clusters.

Table 4: Clustering Results.

Type of CFS Cluster Cohesion # ReposBlocks Size

If 622.3 0.81 75.8
For 202.1 0.82 69

Enhanced For 527.9 0.78 79.3
Try 299 0.86 102.5

While 195.6 0.83 100.8
Switch 93 0.78 49

Do 26 0.87 5

3.6 Cluster Selection & Generalized
Form

After performing the clustering analysis, the final step
of our approach examines the generated clusters and
selects only those that meet the requirements of the id-
ioms mining problem. The extracted idioms and clus-
ters need to satisfy two specific criteria. First of all,

the idioms have to be widely used by a lot of differ-
ent developers and, thus, it is important to examine
the number of different code repositories that contain
snippets within a cluster. Additionally, the clusters
derived from a clustering algorithm have to be cohe-
sive, so that the code snippets they carry are quite sim-
ilar both structurally and semantically.

Using these remarks, we define the three parame-
ters that designate an optimal cluster:

• The number of code snippets it contains

• The number of different repositories that contain
at least one snippet in the cluster

• The cluster cohesion, which is calculated as the
average similarity of the snippets from the cen-
troid. The centroid of each cluster is defined as
the snippet with the lowest average distance from
all the other snippets of the group. Equations 5
and 6 depict these calculations:

m = min
i
(

1
|C|−1 ∑

j∈C
j ̸=i

d(i, j)) (5)

cohesion = 1− 1
|C|−1 ∑

x∈C
d(x,m) (6)

Table 5 depicts the minimum thresholds applied to
each category described above. The values of these
parameters were carefully selected, taking into ac-
count the number of the available snippets and the
clustering results. Discarding the generated clusters
that do not meet these thresholds, a total of 101 opti-
mal clusters have been produced. From each of these
optimal clusters, we extract the centroid of the cluster
as the representative one, i.e. the code idiom of the
respective cluster.

Table 5: Threshold Parameters per Category.

Type of CFS # Snippets # Repos CohesionBlocks

If 100 50 0.7
For 100 40 0.7

Enhanced For 100 40 0.7
Try 100 30 0.7

While 50 30 0.7
Switch 80 20 0.7

Do 25 5 0.7

The last step in our approach is to transform the
generated idioms into a generalized form, that can be
easily recognized and used by any developer. The
main task of this step is the identification of variables,

A Mechanism for Automatically Extracting Reusable and Maintainable Code Idioms from Software Repositories

85

functions and objects that are commonly used within
the idiom, which remain as is. On the other hand, all
the other names, that change according to the domain
the idiom is used on, are replaced with an abstract
naming convention. For this purpose, we compute the
frequency of each token of the centroid in the snip-
pets of the corresponding cluster. All the tokens of
the centroid, with a frequency lower than a specific
threshold, which in our case is set to 0.5 (i.e. less than
half of the snippets in the cluster contain the examined
token), are replaced by an abstract token. Figure 4 de-
picts an example idiom extracted by our approach, as
well as the generalized form it is transformed to.

try {
writer . close ();

}
catch (IOException e) {

throw new RuntimeException(e);
}

(a)
try {

$(object). close ();
}
catch (IOException e) {

throw new $(method)(e);
}

(b)

Figure 4: (a) An example idiom extracted by our system.
(b) Generalized form of the pattern adding metavariables.

Figure 5 depicts some examples of the top idioms
that were extracted using our methodology, accord-
ing to the number of different repositories they are
found in. These abstract code snippets meet the ba-
sic requirements set for the code idioms, as they are
small syntactic fragments that perform well-defined
programming tasks and that are used widely by a
number of different developers. Table 6 depicts the
number of idioms identified in each category of the
CFS.

Table 6: Number of idioms extracted per category.

Type of CFS # IdiomsBlocks

If 44
For 20

Enhanced For 15
Try 15

While 5
Switch 1

Do 1

4 EVALUATION

In this section we evaluate our methodology for ex-
tracting code idioms from the most popular GitHub
repositories. The evaluation is performed in three di-
verse axes. At first, we examine the extracted idioms
based on a set of repositories used for testing and as-
sess their association with top repositories. Addition-
ally, we evaluate our approach and compare our re-
sults with the respective idioms identified by Allama-
nis and Sutton (Allamanis and Sutton, 2014), using
the PROJECTS dataset as baseline. Finally, towards
the evaluation of the effectiveness of our approach in
practice, we investigate the applicability of our ex-
tracted idioms, by employing the most popular ques-
tions and answers from StackOverflow.

4.1 Evaluation of Extracted Idioms

In the first step towards assessing the effectiveness
of our system and the applicability of the extracted
code idioms in the most popular and most (re)used
repositories, we inspect the appearance of our idioms
into these projects. Specifically, we examine the code
blocks of the generalized code idioms against code
snippets coming from a set of testing repositories, in
order to identify blocks of code in these projects that
are identical to the extracted idioms.

From the initial dataset coming from 1,500 of the
most popular repositories, we had already left out a
set of 500 repositories in the first place. We use the
projects of these repositories as our main testing set,
in which we examine whether they make use of our
extracted idioms or not. Table 7 depicts some statis-
tics on these repositories.

Table 7: Testing Repositories Statistics.

Metric Value

Mean Stars 1,385.8
Mean Forks 499.2
Mean Commits 3,344.7
Mean Watches 620.7

The comparison of the code idioms identified
by our approach, with code blocks from the test-
ing repositories is performed in three steps. At first,
code coming from the repositories is transformed into
ASTs, which are then traversed, in order to obtain
code blocks that belong to the CFSs. Next, the two
ASTs, the one of the code idiom and the one of the
tested code fragment, are edited and the leaves, which
contain the names of the variables, methods and ob-
jects, are removed, so that we can compare only the

ICSOFT 2022 - 17th International Conference on Software Technologies

86

try {
Thread. sleep ($(simpleVariable1));

}
catch (InterruptedException e) {
}

(a)

if (value == null) {
$(method1)();

}
else {

$(method2)((String)value);
}

(b)

for (int i=0; i < $(object1). length ; i++) {
$(object1)[i]=$(method1)(i);

}
(c)

for (Thread thread : threads) {
thread .$(method1)();

}
(d)

while ((line =$(object1). readLine ()) != null){
$(object2). $(method1)(line);

}
(e)

while ($(object1). hasNext ()) {
$(object2). add($(object1). next ());

}
(f)

for (Map.Entry<String,String> entry : $(object1). entrySet ()){
$(object2). $(method1)(entry .getKey (), entry . getValue ());

}
(g)

Figure 5: Examples of idioms extracted using our approach (a) Suspends a thread for a period of time. (b) Checks if a value is
equal to null and calls the appropriate method. (c) Loops through an array and assigns its values using a method. (d) Iterates
over a sequence of threads calling a method (e) Reads the content of an object line by line. (f) Adds the values of iterator to
an object. (g) Iterates through the key-value pairs of a java map and calls the appropriate method of another java map object.

syntactical similarity of the two snippets. The pq-
Grams algorithm is then used to calculate the distance
between the two trees and, in case the resulting dis-
tance is zero, the snippets are syntactically similar
and the next step can be executed. In the final step
of the comparison, we examine the original variables
included in the two code snippets and, specifically, we
check if all the variables, excluding the ones that were
replaced by meta-variables in the generalized form, of
the tested snippet are also contained in the generalized
idiom. In this case, the two code snippets are both
structurally and semantically similar and the idiom is
considered to be used by the project.

Using the aforementioned comparison approach
and the set of the 500 testing repositories, it emerged
that only 4 of our extracted idioms are not used at all
by any repository of the testing set. In fact, each code
idiom can be found at least once in 66 different repos-
itories on average. Figure 6 illustrates the number of
different code repositories where the extracted idioms
are used at least once.

Additionally, in an attempt to evaluate the extent
to which the extracted idioms can contribute to the
software development procedure, we calculated the
number of idioms identified by our methodology that
are employed by the repositories of the testing set.
From the results, it appears that each testing reposi-
tory uses about 10 code idioms from our set at least
once, while only 47 projects do not use any of our ex-

Pe
rc

en
ta

ge
 o

f I
di

om
s

0.0% 0 50 100 150 200 250 300

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

Number of Repositories
Figure 6: Number of different repositories in which our ex-
tracted idioms can be found in.

tracted idioms at all, which can be justified by the fact
that the selected projects span along a wide variety of
domains and functionalities. Figure 7 illustrates the
number of idioms extracted by our methodology that
are used at least once in the testing repositories.

4.2 Evaluation on the PROJECTS
Dataset

For the evaluation of Haggis, their code idioms min-
ing system, Allamanis and Sutton (Allamanis and
Sutton, 2014) created two evaluation datasets, which
contain some of the top open-source Java reposito-

A Mechanism for Automatically Extracting Reusable and Maintainable Code Idioms from Software Repositories

87

Pe
rc

en
ta

ge
 o

f R
ep

os
it

or
ie

s

0.0% 0 10 20 30 40 50 60 70

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%

Number of Idioms
Figure 7: Number of our extracted idioms used by the
repositories of the testing set.

ries from GitHub. The LIBRARY dataset is a se-
lection of Java classes that make use of 15 popu-
lar Java libraries (just import the libraries without
re-implementing them). The LIBRARY dataset was
used to mine code idioms that occur across differ-
ent libraries and is the main set of code blocks that
was used to extract idioms. On the other hand, the
PROJECTS dataset is a selection of the top 13 Java
GitHub projects (by the time the authors accessed the
code hosting platform), based on their z-score of forks
and watchers. These projects were used in order to
evaluate the mined idioms from the LIBRARY dataset.
Table 8 depicts these repositories, along with the sha
of the last commit that was used by the authors.

Table 8: The repositories of the PROJECTS dataset.

Name Forks Stars Commit SHA

arduino 2,633 1,533 2757691
atmosphere 1,606 370 a0262bf
bigbluebutton 1,018 1,761 e3b6172
elasticsearch 5,972 1,534 ad547eb
grails-core 936 492 15f9114
hadoop6 756 742 f68ca74
hibernate 870 643 d28447e
libgdx 2,903 2,342 0c6a387
netty 2,639 1,090 3f53ba2
storm 1,534 7,928 cdb116e
vert.x 2,739 527 9f79416
voldemort 347 1,230 9ea2e95
wildfly 1,060 1,040 043d7d5

In an attempt to compare the usefulness and the
applicability of the code idioms extracted by our ap-
proach against the ones identified in (Allamanis and
Sutton, 2014), we evaluated our idioms also on the
PROJECTS dataset. After cloning the project reposi-
tories and checking out in the same commit ids used

in (Allamanis and Sutton, 2014), we performed the
comparison analysis that was described and employed
also in the previous subsection. Each code block from
these projects was compared to our extracted idioms
and the evaluation metric was calculated. The eval-
uation metric used in that case is Precision, defined
as the percentage of the identified idioms that were
found at least once in the testing repositories.

Table 9 depicts the precision of our extracted id-
ioms against the precision achieved in (Allamanis and
Sutton, 2014). Our mined idioms achieve a precision
value of 58%, compared to the 50% precision value of
the Haggis’ idioms. Each code idiom has been found
in 3.5 repositories on average.

Table 9: Evaluation results on PROJECTS dataset.

Approach Precision

Haggis 50%
Ours 58%

4.3 Applicability Evaluation in Practice

Finally, in order to further assess the applicability of
our methodology in practice in providing actual and
useful recommendations during the development pro-
cess, we made use of the StackOverflow questions
dataset (Baltes et al., 2018). It is well-known that
questions and answers in StackOverflow usually con-
tain short code snippets that need to cover the re-
quested functionality, so they are traditionally con-
cise, cover only the essential code statements and
represent the best programming practices. Thus,
StackOverflow is considered to incorporate highly id-
iomatic code snippets.

From the StackOverflow questions dataset, we
created two different sets of data for our evalua-
tion. We extracted the answers referred to Java-tagged
questions that contain at least one block of code and
generated one set of code snippets using all code
blocks found in these answers. A second set of code
blocks was also build, that includes only the snippets
that belong to the answers marked as correct.

We make use of the comparison method men-
tioned in subsection 4.1, in order to examine whether
our code idioms can be found in code snippets that
usually constitute idiomatic code. Finally, we use two
different metrics; we calculate the precision of the ex-
tracted idioms, i.e. the percentage of the code idioms
that are found in the StackOverflow snippets, and the

6The branch of the hadoop project that contained the
selected commit id has been dropped by the developers and,
thus, we did not use this project in our evaluation.

ICSOFT 2022 - 17th International Conference on Software Technologies

88

average number of times a code idiom is being used
in these snippets. Table 10 depicts these results. The
precision metric in the whole StackOverflow dataset
is 66% and in the accepted answers 62%, while our
idioms were found in 243 different posts and 30 cor-
rect answers on average. The reduced metrics on the
accepted answers dataset were expected, as this set
contains significantly fewer code snippets. It should
be noted that Allamanis and Sutton achieved a pre-
cision of 67% on the StackOverflow answers dataset,
which is almost similar to ours.

Table 10: Evaluation results on StackOverflow dataset.

Dataset Precision Average #
Occurrences

Answers 66% 243
Accepted Answers 62% 30

5 THREATS TO VALIDITY

In this work, we presented our approach towards iden-
tifying and extracting maintainable and reusable code
idioms from the most popular code hosting platforms.
Based on the evaluation performed, the only limita-
tion that applies to the internal validity of our system
is the selection of the repositories based on their num-
ber of stars and forks, as a reflection of their reusabil-
ity. At the same time, our design choice of select-
ing the most popular repositories from GitHub in or-
der to mine and extract our code idioms can possi-
bly be a threat to the external validity of our system.
However, the selection of the top repositories is not
random, as these projects have proven their quality
in practice (including maintainability and reusability)
and their popularity proves that they have the accep-
tance of a huge team of developers. Moreover, many
researchers have argued that projects that exhibit large
numbers of stars and forks, also exhibit high qual-
ity (Dimaridou et al., 2018; Dimaridou. et al., 2017;
Papamichail et al., 2016b), involve frequent mainte-
nance releases (Borges et al., 2016) and have suffi-
cient documentation (Aggarwal et al., 2014; Weber
and Luo, 2014).

As far as the external validity of our approach is
concerned, one should take into account also the fol-
lowing limitation. We selected to look for code id-
ioms only in CFS and not on each possible code snip-
pet. Even though this fact can be considered as a limi-
tation of our approach, in fact it is proven in our eval-
uation section that code idioms extracted from CFS
are really useful.

6 CONCLUSIONS AND FUTURE
WORK

In this work, we proposed a mechanism that can au-
tomatically examine the most popular projects and
repositories and identify code idioms that are used
within those projects. These idioms are character-
ized by high reusability and can be easily used by
developers, in order to accelerate the software devel-
opment procedure, while improving the quality of the
project and ensuring an acceptable level of maintain-
ability. As argued by Allamanis et al. (Allamanis
et al., 2018), code idioms can help ”developers clearly
communicate the intention of their code” and, thus,
produce more readable and reusable software. Addi-
tionally, they can help developers avoid frequent er-
rors or, even, provide useful suggestions in the most
common ”how to” questions asked by developers and
”bootstrap” the quality of work of junior developers
by adopting the ”best practices”.

The evaluation of our approach in three diverse
axes indicates that the code idioms generated by our
system can be found in a large number of the top
repositories, execute useful and commonly asked pro-
gramming tasks, seem natural to developers and can
be actionable recommendations to the developers.
Moreover, our code idioms can be found in a large de-
gree in question-and-answers systems, such as Stack-
Overflow, which is the main point where developers
usually look for idiomatic code. Additionally, the
extraction of our code idioms from the most popu-
lar repositories in GitHub ensures that these code id-
ioms are characterized by high reusability, while, at
the same time, can help the developers achieve an ac-
ceptable level of maintainability.

Future work lies in various axes. First of all, our
methodology could be further expanded by including
snippets of code that do no belong to CFS, in order to
identify also general code idioms. Additionally, in the
last step of our methodology, which produces the gen-
eralized form of the code idioms, the initialization of
variables, methods and objects could also be included
into the idiom. Moreover, we would suggest the use
of various methods that can speed up the process of
identifying code idioms, such as the use of a GPU for
the distance calculations, the investigation of faster
comparison methods and the additional preprocessing
methods that could significantly reduce the size of the
distance matrices. Finally, the usefulness of the gen-
erated idioms could be further evaluated on the basis
of a developer survey.

A Mechanism for Automatically Extracting Reusable and Maintainable Code Idioms from Software Repositories

89

REFERENCES

Abran, A. and Nguyenkim, H. (1993). Measurement of the
maintenance process from a demand-based perspec-
tive. J. Softw. Maintenance Res. Pract., 5:63–90.

Aggarwal, K., Hindle, A., and Stroulia, E. (2014). Co-
evolution of project documentation and popularity
within github. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR
2014, page 360–363, New York, NY, USA. Associ-
ation for Computing Machinery.

Allamanis, M., Barr, E. T., Bird, C., Devanbu, P., Marron,
M., and Sutton, C. (2018). Mining semantic loop id-
ioms. IEEE Transactions on Software Engineering,
44(7):651–668.

Allamanis, M. and Sutton, C. (2014). Mining idioms from
source code. CoRR, abs/1404.0417.

Augsten, N., Böhlen, M., and Gamper, J. (2008). The
¡i¿pq¡/i¿-gram distance between ordered labeled trees.
ACM Trans. Database Syst., 35(1).

Augsten, N., Böhlen, M. H., and Gamper, J. (2005). Ap-
proximate matching of hierarchical data using pq-
grams. In VLDB.

Baltes, S., Dumani, L., Treude, C., and Diehl, S. (2018).
Sotorrent: reconstructing and analyzing the evolution
of stack overflow posts. In Zaidman, A., Kamei, Y.,
and Hill, E., editors, Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
pages 319–330. ACM.

Borges, H., Hora, A., and Valente, M. T. (2016). Un-
derstanding the factors that impact the popularity of
github repositories. In 2016 IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME), pages 334–344.

Dimaridou., V., Kyprianidis., A., Papamichail., M., Dia-
mantopoulos., T., and Symeonidis., A. (2017). To-
wards modeling the user-perceived quality of source
code using static analysis metrics. In Proceedings
of the 12th International Conference on Software
Technologies - ICSOFT,, pages 73–84. INSTICC,
SciTePress.

Dimaridou, V., Kyprianidis, A.-C., Papamichail, M., Dia-
mantopoulos, T., and Symeonidis, A. (2018). Assess-
ing the user-perceived quality of source code compo-
nents using static analysis metrics. In Cabello, E.,
Cardoso, J., Maciaszek, L. A., and van Sinderen, M.,
editors, Software Technologies, pages 3–27, Cham.
Springer International Publishing.

Fowkes, J. and Sutton, C. (2016). Parameter-free proba-
bilistic api mining across github. In Proceedings of
the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE
2016, page 254–265, New York, NY, USA. Associa-
tion for Computing Machinery.

Hnatkowska, B. and Jaszczak, A. (2014). Impact of se-
lected java idioms on source code maintainability –
empirical study. In Zamojski, W., Mazurkiewicz, J.,
Sugier, J., Walkowiak, T., and Kacprzyk, J., editors,
Proceedings of the Ninth International Conference

on Dependability and Complex Systems DepCoS-
RELCOMEX. June 30 – July 4, 2014, Brunów, Poland,
pages 243–254, Cham. Springer International Pub-
lishing.

Ji, X., Liu, L., and Zhu, J. (2021). Code clone detection with
hierarchical attentive graph embedding. International
Journal of Software Engineering and Knowledge En-
gineering, 31(6):837–861. cited By 0.

Klein, P. (1998). Computing the edit-distance between un-
rooted ordered trees. In ESA.

McCabe, T. (1976). A complexity measure. IEEE Transac-
tions on Software Engineering, SE-2:308–320.

Papamichail, M., Diamantopoulos, T., and Symeonidis, A.
(2016a). User-perceived source code quality estima-
tion based on static analysis metrics. pages 100–107.

Papamichail, M., Diamantopoulos, T., and Symeonidis, A.
(2016b). User-perceived source code quality estima-
tion based on static analysis metrics. In 2016 IEEE
International Conference on Software Quality, Relia-
bility and Security (QRS), pages 100–107.

Sivaraman, A., Abreu, R., Scott, A., Akomolede, T., and
Chandra, S. (2021). Mining idioms in the wild. CoRR,
abs/2107.06402.

Tai, K. (1979). The tree-to-tree correction problem. J. ACM,
26:422–433.

Tanaka, H., Matsumoto, S., and Kusumoto, S. (2019). A
study on the current status of functional idioms in
java. IEICE Transactions on Information and Systems,
E102.D:2414–2422.

Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., and
Zhang, D. (2013). Mining succinct and high-coverage
api usage patterns from source code. In 2013 10th
Working Conference on Mining Software Repositories
(MSR), pages 319–328.

Weber, S. and Luo, J. (2014). What makes an open source
code popular on git hub? In 2014 IEEE Interna-
tional Conference on Data Mining Workshop, pages
851–855.

Zhang, K. and Shasha, D. (1989). Simple fast algorithms for
the editing distance between trees and related prob-
lems. SIAM J. Comput., 18:1245–1262.

Zhang, Y. and Wang, T. (2021). Cceyes: An effective tool
for code clone detection on large-scale open source
repositories. pages 61–70. cited By 0.

ICSOFT 2022 - 17th International Conference on Software Technologies

90

