Keywords: Vulnerability Analysis, Security Metrics, Software Weaknesses.

Abstract: One of the first lines of defense against cyberattacks is to understand and evaluate the weaknesses and vulnerabilities that a system exposes to malicious users. To address this need, several scoring systems have been developed, providing security analysts and practitioners with a means of quantifying the severity of common weaknesses and vulnerabilities found in software. However, these scoring systems rely on predefined notions of risk, use fixed equations to compute numerical scores, and do not provide users with the flexibility to fine-tune such equations or factor in new variables altogether. Furthermore, official scores and rankings are updated infrequently, making them less valuable in a rapidly evolving cybersecurity landscape. In this paper, we present the Mason Vulnerability Scoring Framework, a comprehensive and customizable framework for scoring vulnerabilities and ranking common weaknesses that gives users significant control over the scoring and ranking process.

1 INTRODUCTION

Over the years, different organizations, including NIST (Mell et al., 2006) and MITRE (Christey, 2008), have tried to establish software vulnerability scoring systems, metrics, and best practices as critical tools to help security administrators make informed decisions about vulnerability prioritization, remediation, and mitigation (Black et al., 2018). Some of the tools that were developed were intended to serve as checklists for security administrators during security audits and compliance procedures. However, all these solutions rely on predefined notions of risk and impact, use predefined and fixed equations to compute numerical scores, and do not provide users with the flexibility to fine-tune the equations or factor in new variables altogether. For these tools to be effective in supporting security-related decisions, administrators should be given the opportunity to tailor the scoring and ranking processes to the specific needs of the environment in which they operate, and have up-to-date information about the current vulnerability landscape.

MITRE and OWASP have tried to address these gaps by establishing the Mason Vulnerability Scoring Framework (MVSF), a framework that allows users to generate custom rankings by tuning several parameters used to calculate vulnerability and weakness scores. The framework publishes monthly rankings of Common Weaknesses Enumeration (CWE) categories based on a standard parameter configuration, but can also generate monthly, weekly, or even daily rankings on demand. We addressed these gaps by establishing the Mason Vulnerability Scoring Framework (MVSF), a framework that allows users to generate custom rankings by tuning several parameters used to calculate vulnerability and weakness scores. The framework publishes monthly rankings of Common Weaknesses Enumeration (CWE) categories based on a standard parameter configuration, but can also generate monthly, weekly, or even daily rankings on demand. We addressed these gaps by establishing the Mason Vulnerability Scoring Framework (MVSF), a framework that allows users to generate custom rankings by tuning several parameters used to calculate vulnerability and weakness scores. The framework publishes monthly rankings of Common Weaknesses Enumeration (CWE) categories based on a standard parameter configuration, but can also generate monthly, weekly, or even daily rankings on demand.

1 The live NVD Dashboard can be accessed at https://nvd.nist.gov/general/nvd-dashboard.
mand, based on a user’s needs. This work builds upon and expand our previous work on vulnerability metrics (Iganibo et al., 2021), and aggregates vulnerability-level metrics to compute weakness-level scores and enable ranking of common weaknesses. The framework has been implemented as a web-based application and has been made available to the general public.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 describes the vulnerability-level metrics used as a foundation for the work presented here and the proposed common weakness score. Then, Section 4 describes the architecture of the framework and provides details about its four main components. Finally, Section 6 compares MVSF against MITRE’s and OWASP’s solutions, and Section 7 provides concluding remarks and a roadmap for future work.

2 RELATED WORK

Scoring software vulnerabilities and ranking different vulnerability categories are not novel concepts. The National Vulnerability Database (NVD) is the U.S. government repository of vulnerability information that is maintained by the National Institute of Standards and Technology (NIST). NVD is built upon and fully synchronized with MITRE’s Common Vulnerabilities and Exposures (CVE) List, and augments it with severity scores, and impact ratings based on the Common Vulnerability Scoring System.

Common Weakness Enumeration (CWE) is a system that provides a structured list of clearly defined software and hardware weaknesses. MITRE’s Common Weakness Scoring System (CWSS) provides a mechanism for prioritizing software weaknesses that are present within software applications in a consistent and flexible manner. MITRE publishes annual rankings of the Common Weakness Enumeration Top 25 Most Dangerous Software Weaknesses (CWE Top 25), which is intended to be a demonstrative list of the most common and impactful issues experienced over the previous two calendar years. To create this list, MITRE leverages CVE data from NVD as well as the CVSS scores associated with each CVE record. Each weakness is scored based on prevalence and severity. Similarly, the Open Web Application Security Project (OWASP) releases its Top 10 Web Application Security Risks list yearly. A limitation of this ranking is that there is no published quantitative approach backing it, making this ranking subjective and difficult to replicate by users.

Several recent metrics (Mukherjee and Mazumdar, 2018; Wang et al., 2019) use scores from the Common Vulnerability Scoring Systems (CVSS) or the Common Weakness Scoring Systems (CWSS) in isolation or as the dominant factor in determining the severity of a vulnerability. Even the approaches that consider the effect of multiple variables on the over-

2 MVSF can be accessed at https://mvsf.gmu.edu/. The system is password protected, but anyone interested in using the system can request an account following the instructions on the login screen.

3 https://cwe.mitre.org/
4 https://cwe.mitre.org/cwss/
5 https://cwe.mitre.org/top25/
6 https://owasp.org/Top10/
all scores assigned to vulnerabilities cannot be easily extended if one wants to consider additional variables that were not originally taken into account — such as the age of a vulnerability or the set of IDS rules associated with it — and do not allow one to change the relative weights of these variables.

The proposed framework was designed to address all these limitations, by allowing users and administrators to control several aspects of the scoring and ranking process and obtain real-time rankings based on current vulnerability information. To develop comprehensive cyber situational awareness (Jajodia and Albanese, 2017), and in line with more traditional risk analysis approaches, we also distinguish between the likelihood that a vulnerability might be exploited and the impact a successful exploitation would cause. Furthermore, all details have been disclosed to make this process reproducible by others.

3 METRICS

In this section, we first briefly review two vulnerability metrics that we introduced in (Iganibo et al., 2021), namely the exploitation likelihood and the exposure factor and further generalize the definition of exposure factor compared to its original formulation. Then, building upon these metrics, we define a common weakness score that is semantically equivalent to MITRE’s CWE scores, but presents several key advantages compared to current solutions.

3.1 Exploitation Likelihood

The exploitation likelihood of a vulnerability is defined as the probability that an attacker will attempt to exploit that vulnerability when certain preconditions are met. In our analysis, we identified three main factors that influence the likelihood that an attacker will exploit a given vulnerability \(v \): (i) the vulnerability’s exploitability score as determined by CVSS, \(\text{Exploitability}(v) \); (ii) the amount of time elapsed since the vulnerability was made public, \(t(v) \); and (iii) the number of known IDS rules associated with the vulnerability, \(|IDS_k(v)| \). Thus, the likelihood of \(v \) is defined by Equation 1, where \(\alpha \), \(\beta \), and \(\gamma \) are tunable parameters.

\[
\rho(v) = \left(1 - e^{-\alpha \cdot \sqrt{t(v)}} \right) \cdot \left(1 - e^{-\beta \cdot \text{Exploitability}(v)} \right) \cdot e^{\gamma \cdot |IDS_k(v)|} \tag{1}
\]

Intuitively, if a vulnerability has been known for a long time, it is likely that more exploits have been developed by the hacker community, making that vulnerability easier to exploit. On the other hand, the existence of know IDS rules associated with a vulnerability may discourage an attacker from exploiting that vulnerability in favor of less detectable exploits.

The reader can refer to (Iganibo et al., 2021) for a more detailed discussion about the rationale for this choice of variables. We argue that these may not be the only variables influencing the likelihood, and we have designed this metric to be easily extended to include any additional variables that administrators deem appropriate. Additionally, by considering multiple variables, we avoid relying on a single data source, which might be incomplete or occasionally unavailable. For instance, as we mentioned earlier, at any point in time, there might be hundreds or thousands of vulnerabilities that have been reported to NVD but have not been analyzed yet, therefore they do not yet have assigned CVSS scores. In such scenarios, Equation 1 allows us to ignore the effect of a variable and assess or compare vulnerabilities based on any other available data.

Each variable contributes to the overall likelihood as a multiplicative factor between 0 and 1 that is formulated to account for diminishing returns. A factor corresponding to a variable \(x \) that contributes to increasing the likelihood is of the form \(1 - e^{-cx} \) where \(f(x) \) is a monotonically increasing function\(^7\) of \(x \) and \(c \) is a constant parameter. Similarly, a factor corresponding to a variable \(x \) that contributes to decreasing the likelihood is of the form \(e^{-cx} \).

This formulation provides several practical advantages: (i) the resulting likelihood is normalized between 0 and 1; (ii) accounting for the effect of additional independent variables is straightforward; and (iii) ignoring the effect of a variable simply entails setting the constant \(c \) such that the corresponding factor evaluates to 1 (i.e., \(c = +\infty \) for factors increasing the likelihood and \(c = 0 \) for factors decreasing the likelihood).

In summary, this formulation allows administrators to easily add or remove variables in Equation 1 and control the relative weight of each variable by tuning the corresponding parameter. Note that, based on the mathematical formulation of each multiplicative factor, the tunable parameters allow us to control how quickly each factor converges to 1. Once a factor converges to 1, variables corresponding to the other factors gain more discriminating power.

\(^7\)In most cases, \(f(x) \) can be simply defined as the linear function \(f(x) = x \), but we use \(f(x) = \sqrt{x} \) for the time since publication and \(f(x) = |x| \) for the set of IDS rules.
3.2 Exposure Factor

The *exposure factor* of a vulnerability represents the relative damage that would result from its exploitation. In our analysis, we identified two main factors that influence the exposure factor of a given vulnerability v: (i) the vulnerability’s impact score as determined by CVSS, $\text{Impact}(v)$; and (ii) the number of deployed IDS rules associated with the vulnerability, $\text{IDS}_d(v)$. Thus, the exposure factor of v is defined by Equation 2, where λ and δ are tunable parameters.

$$ef(v) = \frac{1 - e^{-\lambda \cdot \text{Impact}(v)}}{e^{\delta \cdot \text{IDS}_d(v)}} \quad (2)$$

The set of deployed IDS rules can be determined by analyzing local IDS rules files. Intuitively, deployed IDS rules can mitigate the impact of a successful exploit by allowing timely detection and response. The reader can refer again to (Iganibo et al., 2021) for a more detailed discussion about the rationale for this choice of variables. As for the likelihood metric, we argue that these may not be the only variables influencing the exposure factor, and we have designed this metric to be easily extended to include any additional variables that administrators deem appropriate.

The formulation of Equation 2 is more general than the original formulation in (Iganibo et al., 2021), which was simply normalizing the CVSS impact score, instead of using it in a multiplicative factor of the form $1 - e^{-\lambda \cdot \text{Impact}(v)}$. This more generic formulation allows us to easily and intuitively extend the exposure factor metric with additional variables, similarly to what we described for the likelihood metric.

3.3 Common Weakness Score

As mentioned in Section 2, CWE provides a structured list of clearly defined software and hardware weaknesses, and MITRE’s Common Weakness Scoring System (CWSS) provides a mechanism for prioritizing weaknesses in a consistent and flexible manner. CWSS is organized into three metric groups: Base Finding, Attack Surface, and Environmental. Each group includes multiple metrics that are used to compute a CWSS score for a weakness. However, we focus our attention on the method MITRE uses to rank the most dangerous weaknesses, and refer the reader to its documentation for further details on CWSS.

Equation 3 defines the set of CVEs mapped to each CWE, and Equation 4 defines the number of times each CWE is mapped to a CVE entry.

$$C(CWE_i) = \{\text{CVE}_j \in \text{NVD}, \text{CVE}_j \rightarrow \text{CWE}_i\} \quad (3)$$

$$\text{Freqs} = \{|C(CWE_i)|, \text{CWE}_i \in \text{NVD}\} \quad (4)$$

Then, Equations 5 and 6 respectively compute a frequency and a severity score for each CWE, where the severity is based on the average CVSS score of all CVEs in that CWE category. Frequency and severity scores are both normalized between 0 and 1.

$$\text{Fr}(CWE_i) = \frac{|C(CWE_i)| - \min(\text{Freqs})}{\max(\text{Freqs}) - \min(\text{Freqs})} \quad (5)$$

$$\text{Sv}(CWE_i) = \frac{\text{avg}_{\text{CVE}_i}(\text{CVSS}) - \min(\text{CVSS})}{\max(\text{CVSS}) - \min(\text{CVSS})} \quad (6)$$

Finally, Equation 7 defines the overall score that MITRE assigns to a CWE as the product of its frequency and severity scores, normalized between 0 and 100.

$$S_{\text{MITRE}}(CWE_i) = \text{Fr}(CWE_i) \cdot \text{Sv}(CWE_i) \cdot 100 \quad (7)$$

In summary, MITRE scores each weakness based on its prevalence – which is a function of the number of vulnerabilities mapped to that weakness – and severity – which is assumed to be the average severity of the vulnerabilities mapped to that weakness. To compute our own score for common weaknesses, we follow a similar approach, but, instead of relying solely on CVSS scores, we define the severity score of a CWE based on the vulnerability-level metrics described in Sections 3.1 and 3.2. This allows users and administrators to control the ranking by fine-tuning the underlying vulnerability metrics. Additionally, we do not normalize our scores in order to speed up real-time computation of CWE rankings, as normalization has no impact on the rankings other than putting scores on a different scale.

We define the severity of a weakness CWE_i as the product of the average likelihood $\rho(CWE_i)$ of vulnerabilities mapped to CWE_i and the average exposure factor $ef(CWE_i)$ of such vulnerabilities.

$$S_{\text{MYSF}}(CWE_i) = \rho(CWE_i) \cdot ef(CWE_i) \quad (8)$$

where $\rho(CWE_i)$ and $ef(CWE_i)$ are defined by Equations 9 and 10 respectively.

$$\rho(CWE_i) = \frac{\text{avg}_{v \in C(CWE_i)} \rho(v)}{v \in C(CWE_i)} \quad (9)$$

$$ef(CWE_i) = \frac{\text{avg}_{v \in C(CWE_i)} ef(v)}{v \in C(CWE_i)} \quad (10)$$

Finally, we can define the proposed common weakness score through Equation 11, where the frequency $Fr(CWE_i)$ in Equation 7 is replaced by
\[
S_{MVSF}(CWE_i) = |C(CWE_i)| \cdot \text{avg}_{v \in C(CWE_i)} \left(1 - e^{-\alpha \sqrt{t(v)}} \right) \cdot \left(1 - e^{-\beta \cdot \text{Exploitability}(v)} \right)
\]

\[
e^{-\gamma \cdot |IDS_k(v)|} \cdot \frac{1 - e^{-\delta \cdot \text{impact}(v)}}{e^{-|IDS_k(v)|}}
\]

Figure 2: MVSF Common Weakness Score.

\[|C(CWE_i)| \text{ and the average severity } Sv(CWE_i) \text{ is replaced by } S_{MVSF}(CWE_i).\]

\[
S_{MVSF}(CWE_i) = |C(CWE_i)| \cdot S_{MVSF}(CWE_i) \quad (11)
\]

Combining Equations 1, 2, 9, 10, and 11, we can expand \(S_{MVSF}(CWE_i)\) as shown in Figure 2.

4 SYSTEM ARCHITECTURE

Having described our technical approach to scoring and ranking, we now discuss MVSF’s architecture, which is comprised of a data ingestion module, a metrics computation module, a ranking module, and a graphical user interface. This high-level architecture is shown in Figure 3, which also shows the data sources used by the system. The individual modules are discussed in detail in the following subsections.

The data ingestion, metrics computation, and ranking modules form the backend of the system and are application-independent. The backend has been implemented as a set of containerized services, and the graphical user interface has been implemented as a web-based application, which has been made available to the general public. As part of our future work, we plan to make APIs available for third-party applications to access MVSF-generated scores and rankings in a programmatic way.

4.1 Data Ingestion Module

MVSF currently ingests vulnerability information from the National Vulnerabilities Database (NVD) and Intrusion Detection System (IDS) rules from public repositories and local rule files, but can be easily extended to ingest any additional vulnerability-specific data.

The data ingestion module periodically fetches data from NVD data feeds, and stores it in an internal database. Data fetched from NVD includes the CVE-ID, description, CVSS exploitability and impact scores, and CWE mappings for each known vulnerability.

Additionally, the data ingestion module periodically fetches IDS rules from public repositories managed by the major providers of intrusion detection systems (e.g., Snort\(^{10}\) and Suricata\(^{11}\)), and searches for rules that are explicitly mapped to CVE entries. As discussed in (Iganibo et al., 2021), the existence of IDS rules for detecting attempts to exploit a given CVE may deter attackers from targeting that CVE and incentivize them to opt for less detectable exploits. Thus, we consider the number \(|IDS_k(v)|\) of known IDS rules as one of the variables influencing the exploitation likelihood of a vulnerability \(v\).

The data ingestion module also processes local rule files and looks for rules that are not only explicitly mapped to CVE entries but also currently used by the IDS. Intrusion detection systems typically come with a predefined set of rules, but not all of them are necessarily enabled, and users have the ability to enable or disable rules based on their specific needs and the characteristics of the environment in which they are deployed.

As discussed in (Iganibo et al., 2021), attackers have no knowledge about which specific rules are in use in a given system, but deployed rules can help mitigate the consequences of an exploit, as timely detection may help defenders take appropriate mitigation actions early on. Thus, we consider the number \(|IDS_k(v)|\) of deployed IDS rules as one of the variables influencing the exposure factor of a vulnerability \(v\). Deployed rules may include a subset of known rules and custom rules developed by the system’s administrators. As the set of deployed IDS rules differs across IDS installations, when administrators provide copies of local rule files as input, the resulting rankings are customized and different for different users\(^{12}\).

The ability to generate custom rankings is what sets our approach apart, and the use of deployed IDS rules is just one example of how users can control the scoring process and customize the rankings by providing system-specific information.

\(^{10}\)https://www.snort.org/

\(^{11}\)https://suricata.io/

\(^{12}\)While our formal model and the backend system both allow us to factor in deployed IDS rules, the graphical user interface does not have yet an option to submit local rules files as inputs.
4.2 Metric Computation Module

The metric computation module implements a suite of algorithms to compute all the metrics discussed in Section 3. As a reminder, MVSF generates and publishes official monthly rankings of all CWEs using predefined values for all the tunable parameters, and allows the user to generate rankings on demand, based on custom values of the parameters. Thus, the algorithms in this module can be triggered by either the data ingestion module or the ranking module.

Every time the data ingestion module fetches new data, these algorithms are executed to compute (i) the likelihood and exposure factor of any newly discovered vulnerability; (ii) updated scores for any vulnerability for which new information has become available (e.g., updated CVSS scores, new IDS rules); and (iii) updated common weakness scores. When their execution is triggered by the data ingestion module, these algorithms use predefined values for all the tunable parameters. Results of these computations are stored in the internal database, as they form the basis for the generation of official CWE rankings.

Execution of these algorithms is also triggered when a user requests CWE rankings with custom parameters. In this case, the results are not cached, as caching CVE and CWE scores for all possible values of the parameters would be unfeasible. However, we plan to collect and analyze usage data, and define effective caching strategies to reduce the need to compute CVE and CWE scores in real time. For instance, it is reasonable to assume that once a user has chosen values of the parameters that are suitable for their environment, they will request future rankings based on the same set of parameters. If such hypothesis is verified, then scores could be cached on a per-user basis, and an offline cache refresh could be triggered by the data ingestion module, so that up-to-date custom scores would be readily available to users when they need them.

4.3 Ranking Module

The ranking module generates ranked lists of CWEs both periodically and on demand. The module includes a process that, on the first day of every month, automatically generates a ranking of all CWEs based on data from the previous 24-month period, using predefined and fixed values of the parameters. This process is extremely efficient because, by the time it is executed, all the vulnerability-level scores have already been computed by the metrics computation module, triggered by the data ingestion module every time new data is fetched. Once computed, a monthly ranking is saved to the database and becomes a historical ranking, thus it is not updated even if the data used for its computation is updated later.

When a user requests a custom ranking, with non-standard values of the parameters, the ranking module needs to invoke algorithms in the metrics computation module to compute CVE and CWE scores based on the provided values of the parameters. This process is slower because we cannot predict what values of the parameters a user will choose, thus we cannot precompute the scores offline. However, as discussed in the previous section, it may be possible to define...

5 USER INTERFACE

The framework’s graphical user interface has been implemented as a web-based application that can be accessed at https://mvsf.gmu.edu/. The system is currently password protected, but anyone interested can request an account following the instructions on the login screen. In the following, we describe the different functionalities offered by the web application.

5.1 Homepage

The Homepage displays the most recent monthly ranking of the top 150 CWEs, based on data from the previous 24-month period, and it is automatically updated on the first day of every month. Figure 4 shows how the Homepage appeared in March 2022, after the ranking for the 24-month period ending on February 28, 2022 was computed. For each ranked CWE, the system is showing (i) its rank, (ii) its CWE ID with a link to the official entry maintained by MITRE, (iii) a brief description, (iv) its MVSF score, and (v) the change in rank compared to the previous month.

5.2 Historical Rankings

The Historical Rankings view shows the last 12 monthly rankings calculated by the ranking module and saved to the database. As mentioned before, once these monthly rankings are computed, they are never updated as they are intended to capture a snapshot of the vulnerability landscape at a given point in time. For instance, if the CVSS Exploitability and Impact scores of a vulnerability published in February 2022 are updated in NVD on March 2, 2022, the ranking computed on March 1, 2022 for the 24-month period ending in February 2022 will not be updated to reflect this change. In principle, the Historical Rankings have the same objective of MITRE’s Top 25 yearly rankings, but they are published more frequently – monthly vs. yearly – and include more CWEs – 150 vs. 25.

Figure 5 shows the Historical Rankings view as of March 2022. By default, this view shows the last 12 monthly rankings, but the user can navigate through time by using the Previous and Next buttons. This view also shows the change in rank of each CWE compared to 12 months before. Being able to identify trends enables users to learn, predict, plan, and build their security measures (Aigner et al., 2007). To help achieve this level of security awareness, the Historical Rankings view includes a feature that allows a user to highlight trends in the rank of CWEs. When hovering over a CWE ID, the interface highlights that CWE through the entire 12-month period to visually show the trend. Also, the checkboxes on the left side of the table can be used to make the highlight permanent, allowing the visualization of multiple CWE trends simultaneously. The checkbox at the top of the table allows the user to clear the selection of highlighted CWEs and reset to the original view. For instance, the screenshot in Figure 5 shows that the rank of CWE-79 did not change in the last 12 months, whereas CWE-
5.3 Live Rankings

The Live Rankings view shows the same type of information as the Historical Rankings view, but in this case each monthly ranking reflects changes to the data that occurred after the corresponding historical ranking was computed. For instance, when MVSF computed and published the monthly ranking for February 2022, the rank of CWE-125 had not changed over the previous 12 months. However, as shown in Figure 6, the live ranking for February 2022, as of March 25, 2022, indicates that, based on new information that became available after the historical ranking was computed on March 1, CWE-125 is down one position in the ranking.

Additionally, the live monthly rankings are computed based on the values of the tunable parameters selected by the user, which are clearly indicated in the header section of the Live Rankings view, along with information about the update frequency and the last update. The user can change the value of the parameters by clicking on the gear icon in the header. Similar to the historical rankings, these rankings are computed based on data from the previous 24-month period.

The ability of a user to examine the CVEs that make up a CWE is also critical to understanding the nature of a weakness and how it would affect their systems. To this aim, the Live Rankings view includes a feature that allows the user to access the list of CVEs that are mapped to a CWE, sorted by their severity under the MVSF scoring system (the severity of a vulnerability v is $p(v) \cdot ef(v)$). Selecting a CWE in the Live Rankings view triggers the visualization of an information panel which contains several key statistics, a link to the official MITRE entry for that CWE, and a button to access the CWE Composition panel shown in Figure 7. This panel shows all the CVEs mapped to the selected CWE in decreasing order of severity and color-coded based on the level of severity. For each vulnerability, values of all the key vulnerability-level metrics are also shown.

5.4 Custom Rankings

The Custom Rankings functionality is used to create fully-customized rankings. Instead of returning a collection of monthly rankings like the Historical Rankings and Live Rankings views, this process returns a single ranking, based on data in an arbitrary time-frame specified by the user, as opposed to the standard 24-month period, and based on the parameter values specified by the user. Figure 8 shows the entry form for specifying the settings to be used in the generation of a custom ranking.

As discussed earlier, MVSF considers different variables in the computation of scores. In order to provide better insights into how CWE scores are calculated, the web application gives access to the sub-scores of each CVE in both the Custom Rankings and Live Rankings views. The list of sub-scores includes: number of CVEs, average CVSS Exploitability score, average Days Since Published, average CVSS Impact score, average Exposure Factor, and average Ex-
5.5 CVE Search

The CVE Search functionality allows the user to retrieve information that MVSF has ingested for each CVE, along with the vulnerability metrics computed by MVSF. Figure 9 shows the results of searching the database for CVE-1999-0199.

6 DISCUSSION

In this section, we briefly compare MVSF against MITRE Top 25 CVEs and OWASP Top 10 and summarize its benefit over these two solutions. MVSF rankings and MITRE CWE rankings serve a similar purpose. However, there are significant differences that deserve attention.

The main difference is the static and non-customizable nature of MITRE CWE rankings. In the ever-changing cyberspace, new vulnerabilities are introduced and discovered very frequently. This changing ecosystem can render such annual rankings obsolete in a short period of time. To adapt to this rate of change, MVSF offers rankings that are updated dynamically through the day as new vulnerability infor-
mation becomes available. To this aim, it is important to consider that MVSF filters CVE information by publication date, whereas MITRE filters CVE information by CVE year. This is a fundamental difference because it enables us to generate rankings based on data from an arbitrary time interval – such as the 24-month moving window used for computing monthly rankings – whereas MITRE can only compute rankings with data from one or more consecutive calendar years.

In addition to the difference in the frequency at which rankings are published and the way we look at raw vulnerability data (CVE year vs. publication date), MVSF and MITRE rankings of CWEs differ for the type of information they factor in the computation of the rankings. While MITRE only considers CVSS scores, MVSF considers a larger set of variables, including system-specific ones, and defines an approach for factoring in additional variables as needed. Last but not least, MITRE’s rankings are limited to the top 25 CWEs, whereas we list the top 150 CWEs.

The Open Web Application Security Project (OWASP) Foundation is another organization that publishes rankings of software security flaws, and their reports are standard awareness documents for developers and web application security engineers. Nonetheless, these rankings have their shortcomings. Internet and network environments are rapidly changing and becoming more dynamic and security mechanisms have to adapt to this rate of change (Fernandes et al., 2014). Just like MITRE’s Top 25 CWEs ranking, OWASP Top 10 rankings fail to keep up with this large rate of change as they are published annually. Similar to MITRE’s rankings, OWASP rankings are static and do not allow any level of customization.

6.1 Evaluation

To validate the quality of our scoring system, we analyzed the correlation between the CWE scores computed through MVSF and those computed by MITRE for the top 40 CWEs13. For this evaluation, the MVSF scores were computed using settings of the parameters that best approximate MITRE’s ranking. Under these conditions, the correlation between MVSF and MITRE scores is 0.962 ($R^2 = 0.926$), as shown in Figure 10. In other words, a CWE ranking that approximates MITRE’s ranking can be generated as a special case of MVSF ranking, but our framework is more general and can adjust rankings based on other inputs not considered by MITRE.

7 CONCLUSIONS

The Mason Vulnerability Scoring Framework (MVSF) is a customizable framework for scoring common vulnerabilities and weaknesses that offers numerous advantages over the static and predefined scoring systems that are available today. MVSF could become an essential resource for security administrators, software developers, or anyone who is interested in mitigating security vulnerabilities found in their systems. We have extensively described the key features of the framework, with respect to both its theoretical foundations and its architecture, and have discussed the current implementation of the system. In these concluding remarks, we want to highlight some current limitations of the framework and discuss the roadmap for future developments.

As mentioned earlier, current limitations of the framework include the incomplete integration with in-

13MITRE publishes the scores for additional 15 weaknesses that scored just outside of the final Top 25.
trusion detection systems (end users do not currently have a way to submit information about deployed IDS rules) and the lack of caching mechanisms for reducing the cost of computing live and custom rankings on demand. In addition to addressing these limitations, we plan to work in three major directions, namely (i) investigating predictive analytics approaches to anticipate future trends in the severity of vulnerabilities and weaknesses; (ii) developing APIs to make the functionality of the framework available for integration with third-party applications; and (iii) integration with vulnerability scanning to enable further customization of the rankings based on the specific vulnerabilities that exist in a given system.

ACKNOWLEDGEMENTS

This work was funded in part by the US Department of Defense under the DARPA ConSec program, in part by the National Science Foundation under award CNS-1822094, and in part by the Commonwealth Cyber Initiative (CCI). Any opinions expressed herein are those of the authors and do not necessarily reflect the views of the U.S. Department of Defense or any other agency of the U.S. Government.

REFERENCES

