
The Weakest Link: On Breaking the Association between Usernames and
Passwords in Authentication Systems

Eva Anastasiadi1,2, Elias Athanasopoulos3 and Evangelos Markatos1,2

1Computer Science Department, University of Crete, Greece
2Institute of Computer Science, Foundation for Research and Technology Hellas, Greece

3Computer Science Department, University of Cyprus, Cyprus

Keywords: Authentication, Passwords, Database Leaks.

Abstract: Over the last decade, we have seen a significant number of data breaches affecting hundreds of millions of
users. Leaked password files / Databases that contain passwords in plaintext allow attackers to get immediate
access to the credentials of all the accounts stored in those files. Nowadays most systems keep passwords in a
hashed salted form, but using brute force techniques attackers are still able to crack a large percentage of those
passwords. In this work, we present a novel approach to protect users’ credentials from such leaks. We propose
a new architecture for the password file that makes use of multiple servers. The approach is able to defend
even against attackers that manage to compromise all servers - as long as they do not do it at the same time.
Our prototype implementation and preliminary evaluation in the authentication system of WordPress suggests
that this approach is not only easy to incorporate into existing systems, but it also has minimal overhead.

1 INTRODUCTION

User authentication is necessary in all modern sys-
tems and platforms that include personalization or
store any form of private data. Getting access to such
systems is very attractive to attackers, who systemat-
ically target the authentication system of web appli-
cations and other system services. Most systems use
passwords to authenticate users. Traditional systems
require username-password pairs for authentication,
while others use them as basis and add supplemen-
tary techniques, such as mobile authenticators, to en-
hance security (multifactor authentication). Even sin-
gle sign on schemes require a proper authentication
from a main authority, that commonly makes use of
passwords too. It is clear that, if attackers manage to
leak usernames and passwords, all of those authenti-
cation schemes lose an important security factor.

There have been several cases where attack-
ers successfully managed to steal password files or
Databases even in some of the most popular compa-
nies (Thomas et al., 2017). Although it seems that
most systems do not keep passwords in plaintext,
which would turn all user accounts into easy targets,
this is far from true. Indeed, in March 2019, Facebook
revealed that they kept a log file containing 200 to 600
million plaintext passwords, accessible by more than
2000 developers (Krebs, 2019).

On the positive side, keeping passwords in plain-

text is a diminishing practice. Indeed, most systems
today keep password hashes. Since these hashes are
produced by one-way hash functions, attackers can
not easily retrieve the plaintext passwords. Mounting
a dictionary attack might however reveal some of the
passwords. To reduce the effectiveness of dictionary
attacks, several authentication servers use slow hash
functions and “salts” (Provos and Mazieres, 1999;
Morris and Thompson, 2002). Although these ap-
proaches delay dictionary attacks, attackers are still
able to find the passwords as long as they are willing
to invest a lot of computing capacity (Shi et al., 2012).

To reduce the usefulness of leaked password files/
Databases, recent methodologies divide the respon-
sibility of the authentication among multiple servers.
This way, no single server has all the information re-
quired for a successful authentication and attackers
need to compromise all servers to get a user’s cre-
dentials. Since that is not likely, such methodologies
protect from password file leaks. However, most of
these approaches assume additional storage, complex
systems and encryption mechanisms, or they require
more user actions, which can be discouraging. This
paper also proposes using two servers:

• The Authentication Server (AS for short), which
stores the usernames but not the passwords.

• The Password Server (PS for short), which stores
the passwords, but not the usernames.

560
Anastasiadi, E., Athanasopoulos, E. and Markatos, E.
The Weakest Link: On Breaking the Association between Usernames and Passwords in Authentication Systems.
DOI: 10.5220/0011276900003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 560-567
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Contrary to previous approaches, our system is
able to defend against attackers even if both servers
are compromised - as long as this does not happen at
the same time. Our contributions are the following:

• We propose a novel approach that protects against
password file leaks by storing usernames and
passwords into two different servers.

• We show that our approach is able to protect from
such leaks even if both servers are compromised,
as long as they are not concurrently compromised.

• We demonstrate that our approach can be easily
integrated in existing systems by implementing it
using the WordPress authentication system.

• We evaluate the performance of our prototype im-
plementation and show that the performance over-
head is minimal.

2 RELATED WORK

One of the most well-known methods to detect pass-
word leaks using two servers was the Honeywords
approach, proposed in 2013 on the ACM SIGSAC
conference (Juels and Rivest, 2013). This approach
suggests that multiple decoy passwords, the “Honey-
words”, are stored alongside the real password of each
user. The system requires a second server, the Hon-
eychecker, storing an index for each user record, that
indicates the user’s real password. Although this is an
innovative approach, the key issue here is to find an
algorithm to generate “realistic” honeywords.

Many approaches have been proposed on that mat-
ter, but most were found inefficient. In IJREAM
2016, it was proposed to produce the decoy passwords
by modifying the real one(K. Naik, 2016). Unfortu-
nately this does not provide protection for users that
include easy to guess patterns (i.e. birth dates). Later
it was proposed that, instead of the real password,
the hash should be modified (Shi and Sun, 2021).
However, similar hashes might have a very different
plaintext password origin. If the attacker manages
to crack a hash, then a given decoy password might
look nothing like a real password. In 2021 (Dionys-
iou et al., 2021) a representation learning technique is
proposed. It uses a Dataset of user passwords to gen-
erate the decoy passwords. On the downside, it re-
quires a large amount of training data and ML infras-
tructure to produce realistic Honeywords. An analy-
sis on the multiple aspects of Howneywords was pre-
sented in the NDSS symposium and reveals that all
studied approaches in that paper fail to provide the
expected level of protection (Wang et al., 2017).

Inspired by Honeywords, the Amnesia mechanism
(Wang and Reiter, 2021) proposed using probability
theory and only one server. Amnesia is on most occa-
sions able to recognize the correct password among
all the honeywords by tracking some indicators of
what users usually enter in order to authenticate, with-
out letting an attacker be aware of which is the cor-
rect user password. However, under specific circum-
stances, Amnesia allows attackers to login with decoy
passwords, and it still requires storage capacity and
realistic Honeyword generation.

In also 2013, SAuth paper (Kontaxis et al., 2013)
proposed involving multiple services in the authenti-
cation process. Each service separately authenticates
users using its own method and if they all agree on
the users’ identity they grant access to the requested
service. Unfortunately, users need to remember their
credentials to several services when authenticating,
which might lead them to password reuse. Besides
that, it is unsafe to rely on other systems due to the
inability to control their security and availability.

In the spirit of dividing the responsibility of the
authentication among different devices, Pythia-PRF
service (Everspaugh et al., 2015) suggests using an
external trusted server as a crypto-service that stores
a specific key to encrypt users’ passwords. Several
other techniques also suggest keeping the password
file entries encrypted, so that attackers need to find the
key to be able to read them. Other approaches do not
require additional server, but rely on a trusted hard-
ware device (USB stick, PUF, etc) which is respon-
sible for storing the encryption keys (Cvrcek, 2014;
Mohammadinodoushan et al., 2019; Assiri et al.,
2020). Unfortunately, such practices may fail if the
hardware device used by the server is lost or broken.

In this paper, we explore a non encryption based
approach. The main reason for this choice is that
in order for encryption to be effective, it needs very
careful key management. If, for example, the key is
stolen, then it is not clear how effective would be the
encryption on providing protection to the users. To
make matters worse, if the key is lost, then data might
become unusable.

Much like Honeywords, our approach makes use
of two servers, but it is inspired by a different idea.
In all cases studied so far, the password file contains
one line for each user. This line has the username and
the salted, hashed, or encrypted password. That way,
once the attackers manage to crack a password, they
are immediately aware of the password owner. In our
approach we keep usernames and password in differ-
ent servers, breaking this association. The details will
be discussed in the following paragraphs, but let us
first define the threat actors that we are going to face.

The Weakest Link: On Breaking the Association between Usernames and Passwords in Authentication Systems

561

3 THREAT MODEL

As we mentioned, the AS (Authentication Server)
stores the user names, while the PS (Password Server)
stores the passwords. In this paper we assume two
threat models:

• Threat Model 1: The attacker is able to read the
permanent storage of any of the servers, but not
both. This model has been widely adopted (Juels
and Rivest, 2013; Kontaxis et al., 2013).

• Threat Model 2: The attacker can read the per-
manent storage of both servers but not concur-
rently. Consequently, the attacker can read the
usernames (from the AS) and find information
about passwords (from the PS), but these discov-
eries can not occur at the same time.

The main motivation behind those models is that
the servers are probably implemented on top of differ-
ent computers, running different Operating Systems
and software. The AS is a customer-facing server,
running a general-purpose OS, while the PS com-
municates only with AS and can be equipped with
a stripped-down OS. Thus, vulnerabilities that might
lead to exposure of data stored in one server’s disk are
probably not present in the other server.

In addition, regarding the second model, circum-
stances that lead to server data leaks are short-lived
and rather unlikely. The attacker may be able to
exploit a vulnerability and leak information at some
point, but this vulnerability will sooner or later be dis-
covered and fixed. Materializing for both servers at
very close time intervals is very unlikely, especially
after assuming that they have different configurations.

Much like most of the previous work, we as-
sume that the attackers do not have access to the
main memory of the servers. Indeed, if attackers had
such access, they would be able to see the plaintext
username-password pairs of the users who were try-
ing to log in or register at that time. In that case, at-
tackers would not need to steal the password file and
reverse engineer the hashed passwords.

We also take as granted that the communication
between the clients and the AS uses some form of
encryption much like the one used in HTTPS. Sim-
ilarly, the AS - PS messages are sent using a secure
channel. That way, usernames and passwords are pro-
tected from eavesdroppers on the network.

4 DESIGN

We will now describe the general architecture and de-
sign of our system, when used by traditional systems.

4.1 Breaking the Username-password
Link

Traditional systems use a password file or Database,
where both usernames and (hashed salted) passwords
are stored. If the file is leaked, through a combi-
nation of dictionary and brute-force approaches, the
attacker will eventually manage to crack some pass-
words. Once that happens, the attacker will immedi-
ately know the owner of each password, because the
information is stored in the same line/record of the
server. In this paper, we break this obvious associa-
tion, by storing usernames and passwords in different
servers. If the attacker manages to get a copy of the
file stored in the AS, she will be able to have a list of
all user names, but no information about their pass-
words, and vice versa.

4.2 What Will Each Server Store?

As we mentioned, the main idea of our system re-
quires the AS storing the usernames and the PS hold-
ing the password-related information. Although this
can confuse the attacker who will not be able to asso-
ciate usernames and passwords after getting a copy of
the one server’s disk, we still have to explain

How do we know which username corre-
sponds to which password?

Figure 2 shows the contents of the AS and the PS. We
can see that next to each username there is a “token”.
We can imagine the token as a “pointer” which con-
nects the user name with its password. Indeed, we see
that token1 is next to username1 in the AS, and next
to password1 in the PS. This means that those creden-
tials belong to the same user, since there are both con-
nected with the same token.1 Similarly, password2
connects to username2 via token2, etc.

In this way, both AS and PS have a common point
of reference (i.e. the token) for the same user. They
can use that for their communication during authen-
tication. An attacker with access to only one of the
two servers does not know the pieces of information
stored in the other server. This attacker is therefore
unable to use the token to find the missing part of the
credentials.

An important factor for this approach to be ef-
fective is that the PS is responsible for only storing
and checking a user’s password. If the PS held addi-
tional entries related to the person’s identity, such as
the email addresses, that could be a strong hint for an

1For the purposes of this description, we omit the details
about hashes and salts. Once the connection using tokens is
made clear, we will add how salts and hashes get used.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

562

1) username, password

AS

PS

2) token, password

3) Valid / Invalid password

4) Allow / Deny access

User

Figure 1: Message flow during user authentication between the User, the AS and the PS.

username1, token1

username2, token2

username3, token3

token1, password1

token2, password2

token3, password3

AS PS

... ...

... ...

Figure 2: Contents overview for the AS and the PS.

attacker accessing the PS in guessing the correspond-
ing username. Therefore, we keep this information in
the AS. Of course, the PS must be able to receive the
password and a token and decide whether it should
allow or deny access. Consequently, if another pass-
word technique is used and requires storing more in-
formation, such as storing a salt for each entry, then
this information is also kept in the PS.

4.3 User Authentication

Figure 1 shows the steps in the process of user authen-
tication:

1) The AS receives the authentication request from
the user containing the credentials (step 1).

2) The AS searches its Database to find the entry
with the given username. If this entry exists,
it sends the newly received password to the PS
alongside the token (pointer) found in that entry
of the AS (step 2).

3) The PS searches for the entry with the same token
in the password Database. If this token exists, it
checks whether the given password matches the
one stored. Then, the PS responds back to the
AS with the suitable message: i.e. “accept” if the
passwords match, “reject” otherwise (step 3).

4) The AS allows/denies the user depending on the
response it received on step 3 above (step 4).

As mentioned, we used gRPC to enable the TLS-
protected communication needed between AS and PS.

4.4 Registration

There are several popular system techniques for in-
teraction with a new user during registration. The
simplest registration model consists in collecting both
username and password by just asking the user to
provide those values. Other approaches, as the one
used in the default authentication of WordPress, first
verify the email of the user. Additionally, systems
can enforce their password policies during registra-
tion so that users are not allowed to use very common
and easy-to-guess passwords. However, this has to
be done sparingly because of the trade-off between
usability and security (Sahar, 2013), which can turn
strong security policies into weak security.

Independently from the variations in the registra-
tion process, the system must finally have a pair con-
sisting of the new user’s username and password and
then make sure that those credentials get stored in the
appropriate positions. A high-level overview of the
registration process contains the following steps:

1. AS receives the username - password pair from
the user.

2. AS generates a random string (the token).

3. AS stores the given username alongside this token
in its Database.

4. AS sends the password and token to the PS.

5. PS stores this pair in the password file / Database.

4.5 Password Change

Having covered the initialization phase, we will now
describe what happens when users forget their pass-
words. If users forget their passwords, the AS first
needs to establish their identity. This usually happens

The Weakest Link: On Breaking the Association between Usernames and Passwords in Authentication Systems

563

Alice, old_Alice_token

Bob, old_Bob_token

David, old_David_token old_Alice_token, passA

old_Bob_token, passB

old_David_token, passD

AS PS

... ...

... ...

Alice, new_Alice_token

Bob, new_Bob_token

David, new_David_token new_Alice_token, passA

new_Bob_token, passB

new_David_token, passD

AS PS

... ...

... ...

Figure 3: User fields stored in AS and PS before (left half of the figure) and after (right half of the figure) a token update.

by sending a token to the user’s mobile phone or email
address. The actual way with which this establish-
ment happens is beyond the scope of the paper. In all
cases, once the system verifies the identity of the user
who made the request, it prompts the user for the new
one. The steps that follow this procedure are similar
to the registration phase.

4.6 Token Update

So far, the description of our approach covered
Thread Model 1: i.e. the attacker managed to leak
the data of one server only. Now let us try to ad-
dress the second model: The attacker is able to leak
the data from both servers but not at very close time
intervals. To achieve this, we capitalize on the use
of tokens. Up to this point, we seem to have im-
plied that token1 is an entity that remains static and
does not change. Actually, this is not the case. To be
able to defend against Threat Model 2 we frequently
change the token. For example, although the initial
information might be “(username1, token1) (token1,
password1)”, after a token update, it will be “(user-
name1, token2) (token2, password1)”. After another
token update occurs, this information will change to
“(username1, token3) (token3, password1)”.

To explain it further, let us consider the following
chronological sequence of events:

1. Mallory, an attacker, got access to the Database of
the AS, by either an attack or a Database leakage.
The last snapshot of the AS contents she was able
to get is shown in the first Database of figure 3.
Mallory did not have access to the PS at that time.

2. A token update resulted to the change of the to-
kens and, therefore, the servers’ contents. The
Databases now contain the information shown on
the right half of Figure 3.

3. Mallory now manages to leak the Database of
the PS. She has the contents of the first and the
last (fourth) Database shown in Figure 3 avail-
able. However, although she is aware of all the
stored usernames and passwords, she is unable to
make the connections and construct the username-
password pairs. Indeed, in the eyes of Mallory,

Alice might own any of the passwords existing in
the PS (passD, passB, passA, ...), because all of
the tokens seem unfamiliar for her.

It is easy to imagine that the result would be the same
if an attacker first leaked the Database of the PS and
then, after the token update, the Database of the AS.
Concluding, we saw how systems can get protected
from an attacker with the ability to leak information
from both servers at different time intervals. This at-
tacker is able to know the usernames and password-
related fields of all the registered users but, thanks
to the token update, is unable to join them and get
a user’s credentials without starting testing the pass-
words found in the PS online. Such an attack would
probably trigger an Intrusion Detection Mechanism
from the first few online guesses.

4.7 Adding Honeypots

Assuming that Mallory manages to compromise both
the AS and the PS she will have a set of usernames
and a set of passwords. Although she will not be
aware of the connection between them, she will be
aware that all the usernames and passwords in her
possession are real ones.

To confuse the attacker, we add several “fake” user
names in the AS and several “fake” passwords in the
PS (many more than the ones created by the actual
users). To generate fake usernames and passwords
we can use several techniques that have been studied
for Honeytoken / Honeyword generation (Bercovitch
et al., 2011; Dionysiou et al., 2021).

These fake usernames and passwords are stored
alongside tokens that do not match with any pass-
word, or username respectively. If the attacker uses
any of these usernames or passwords, the system will
have the ability to immediately detect this abuse as
their associated tokens will not match with anything.
By adding several fake usernames and passwords we
can, with high probability, make sure that if Mallory
launches an online attack and tries to use any user-
name or password she has leaked she will get detected
from the first few tries.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

564

5 IMPLEMENTATION

We adjusted the basic WordPress authentication sys-
tem to use our design, performing some necessary
changes when needed, but keeping the original user
interface for all the authentication-related procedures.
The implementation described below shows a prac-
tical use of our method providing a supplementary
security mechanism to an already existing authenti-
cation infrastructure. We present an overview of the
default WordPress authentication system and, at the
same time, we mention the required changes to make
this authentication system follow our design.

We should note that this approach can be com-
bined with other authentication techniques, such as
MFA and SSO. For example, if we added biometric
characteristics as an additional authentication factor
(2FA), the scheme would work in the same way, but
it would also require the biometrics to match with the
ones provided by the user. However, we present the
traditional systems’ method to make it more clear and
easy to measure.

5.1 Server Roles

The default WordPress system uses only one server.
All of the system’s procedures take place there, and
all the data are stored in its Database. However, our
approach uses an additional server. In order to make
minimal changes to the system, we decided that this
unique server is the AS in our design and that the PS
is another server whose sole responsibility is to per-
form actions related only to users’ passwords. Every
functionality that does not involve the user password
or the hash of this password is performed by the AS
exclusively. Therefore, there are no further modifica-
tions needed for those processes.

5.2 Database Contents

The default mechanism of WordPress has a Database
that stores several tables. All those tables are now
stored in the AS without any changes, except from the
User table that needs some modifications. The fields
of the User Table used to include an ID, a username,
an email, an activation code, some metadata, the salt,
and the hash of the “salted” password. The activation
code field was used to identify the user while register-
ing or changing the password (we will discuss those
procedures in detail).

In our modification, PS holds the password-
related information (the salt and the hash of the salted
password), plus the random token that connects each
entry with the one in the AS corresponding to the

same user. AS also now needs to hold the token, but
discards the hash and the salt. Therefore, we can find
the new configuration in figure 4.2

username

email

metadata

activation code

token

AS user table PS password table

token

salt

hash (password, salt)

Figure 4: Fields stored in the AS and the PS for the Word-
Press implementation.

The hash function we used is the PBKDF2 HMAC
SHA-512 with 120,000 iterations (OWASP, 2021).
This choice was decided based on its extensive use
and effectiveness against brute force attacks. How-
ever, as we mentioned, a wide variety of password
storing approaches could be used.

5.3 Server Communication

In our implementation, all the message and data trans-
fers between the user, the AS and the PS need to
take place using secure communication channels. We
have kept all the default communication procedures
between the user and the AS intact. We only have to
ensure that information exchanged between AS and
PS can be read by only those servers. To do that, we
used the gRPC protocol with TLS-protected connec-
tions. The functionalities requiring such communica-
tion are described in the remaining paragraphs of the
section.

5.4 Register a New User

When users try to register in the WordPress system,
they first submit a username and an email address. An
activation code is generated by the AS and is being
sent to the given email address, in the form of a con-
firmation link. By visiting this link, users can provide
a password of their choice.

Until a password is provided, the system has to
store the email, the username and the activation code
of the new user. In order to do that, the AS generates
a random string, which is used as a (dummy) pass-
word. Consequently, the registration can then proceed
as described in the 4.4 section. A main difference is
that instead of storing the plaintext password, the PS

2If the WordPress system required more factors to au-
thenticate the user, let us for simplicity imagine that the
data related to that scheme would also be stored in the AS,
and the AS would also check for this metric before or after
checking the password using our scheme.

The Weakest Link: On Breaking the Association between Usernames and Passwords in Authentication Systems

565

generates a salt and then stores the hash of the salted
password and the salt. Also, AS stores the activation
code, the metadata and the email additionally to the
fields mentioned in 4.4.

When the user follows the activation link and sub-
mits the password, the activation code is erased from
the user table and the ”Change user’s password” pro-
cedure is followed. The ”dummy” password is then
considered as the old one, and gets replaced with the
user’s input.

5.5 Change User’s Password

In order to change password, users follow the same
procedure with registering. The only difference is
that, instead of a completely new entry, servers have
to search for the old user’s entry and replace the salt,
the hash and the token. To be able to identify the
user’s entry, the PS receives the password, the new
and the old token.

5.6 Login User

The WordPress system follows the exact same steps
with the ones mentioned in section 4.3. Figure 5 vi-
sually represents this process.

1) receive (username, password) pair

2) find the token used for the user

 with that username (if it existis)

3) token, password

4) Find the entry with this token

5) Compute the hash of the

 given password with the salt

 (salt is found in the PS entry)

7) (in)correct password

8) send Allow or Deny user's access

AS PS

6) Check if the result matches

 the hash found in that entry)

Figure 5: Steps needed to authenticate user (WordPress
modification).

The only difference with section 4.3 is that in-
stead of comparing the password with the one stored
in the PS, now the PS has to first combine the salt
stored in its Database with the one provided by the
AS and compute the hash. Then, it can compare the
two hashes and send the allow/deny access response.

5.7 Update Password Tokens

Token updates get invoked hourly, and run as a back-
ground process. We should however note that tokens

Table 1: Average overhead of basic authentication opera-
tions (in seconds). We use the PBKDF2 HMAC SHA-512
hash function with 120,000 iterations and we test it on 100
users.

Time per
operation (sec)

Vanilla
WordPress Our approach

Login 0.0338 0.1679
Register 0.0705 0.1879
Change

Password 0.0366 0.1598

can be updated more frequently as needed, depend-
ing on the system, but we leave studying the optimal
frequencies with a more realistic implementation for
future work. The process examines one entry of the
AS at a time, finds the old token, and generates a new
one. It sends the old and the new token to the PS
which responds indicating whether the token update
was successful. In that case, AS also renews the corre-
sponding token. In order to avoid race conditions that
might occur during an update and an authentication
request we use synchronization techniques (such as
locks). Finally, to make the probability of collisions
exponentially small (two users concurrently using the
same token) we let tokens be long random integers.

6 MEASUREMENTS

We will now analyze the time overhead of our ap-
proach. In this work, we provide a preliminary eval-
uation of our implementation. Our goal is showing
a simple prototype that, using very basic tools, per-
forms authentication-related tasks efficiently. For the
AS’s storage we use a Database (following the Word-
Press default implementation), while for the PS we
use a simple text file handled by Python code. The
measurements were taken using two Dell worksta-
tions (one for each server), connected and commu-
nicating with one another using 100 Mb/s Internet.

Table 1 presents the results of our measurements,
after testing the first column’s scenarios for 100 user
accounts. We measure three authentication opera-
tions: (i) login, (ii) register, and (iii) change password.
Each operation is performed for 100 users, in a sys-
tem with 150 already registered users. We report the
average time needed per user for each procedure. We
see that a simple “login” operation lasts 0.1679 sec-
onds, which is practically unnoticeable for most users.
The rest of the operations (i.e. “register” and “change
password”) similarly last 0.18 and 0.15 seconds.

Concluding, our approach introduces some over-
head for the server communication compared to the
“Vanilla WordPress”, but still requires less than 0.2

SECRYPT 2022 - 19th International Conference on Security and Cryptography

566

seconds for each operation.
We leave an optimized commercial implementa-

tion for future work. With such an implementation
we could study how this approach serves large-scale
systems and measure the performance degradation as
the number of users increases (hundreds, thousands,
millions of users). Also, it would be interesting to
study how the overhead that this approach introduces
affects the user experience, and what is the trade-off
with the extra security layer that is offered.

7 CONCLUSION

In this paper, we proposed a new decentralized design
for user authentication that protects against password
file leaks. To demonstrate the applicability of our ap-
proach, we embed it to the WordPress authentication
system, showing that it can be easily integrated to ex-
isting systems. Future studies with a commercial im-
plementation could measure the scalability and paral-
lelization of the approach, the trade-off with the user
experience, and factors that affect performance and
security of the system (token update frequency, etc).

ACKNOWLEDGEMENTS

This work has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 830929 (Cy-
berSec4Europe) and from Marie Skłodowska-Curie
grant agreement No. 101007673 (RESPECT). This
work reflects only the author’s view. The Commis-
sion is not responsible for any use that may be made
of the information it contains.

REFERENCES

Assiri, S., Cambou, B., Booher, D. D., and Mohammadin-
odoushan, M. (2020). Software implementation of a
sram puf-based password manager. In Science and In-
formation Conference, pages 361–379. Springer.

Bercovitch, M., Renford, M., Hasson, L., Shabtai, A.,
Rokach, L., and Elovici, Y. (2011). Honeygen: An
automated honeytokens generator. pages 131–136.

Cvrcek, D. (2014). Hardware scrambling-no more pass-
word leaks.

Dionysiou, A., Vassiliades, V., and Athanasopoulos, E.
(2021). Honeygen: Generating honeywords using rep-
resentation learning. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications
Security, ASIA CCS ’21, page 265–279, New York,
NY, USA. Association for Computing Machinery.

Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., and Ris-
tenpart, T. (2015). The pythia prf service. IACR Cryp-
tology ePrint Archive, 2015:644.

Juels, A. and Rivest, R. L. (2013). Honeywords: Making
password-cracking detectable. In Proceedings of the
2013 ACM SIGSAC conference on Computer & com-
munications security, pages 145–160, Berlin, Ger-
many. ACM.

K. Naik, V. Bhosale, V. D. S. (2016). Generating honey-
words from real passwords with decoy mechanism.
International Journal for Research in Engineering
Application & Management (IJREAM), 02.

Kontaxis, G., Athanasopoulos, E., Portokalidis, G., and
Keromytis, A. D. (2013). Sauth: Protecting user ac-
counts from password database leaks. In Proceedings
of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 187–198, Berlin,
Germany. ACM.

Krebs, B. (2019). Facebook stored hundreds of mil-
lions of user passwords in plain text for years.
https://krebsonsecurity.com/2019/03/facebook-
stored-hundreds-of-millions-of-user-passwords-in-
plain-text-for-years/.

Mohammadinodoushan, M., Cambou, B., Philabaum, C.,
Hely, D., and Booher, D. D. (2019). Implementation
of password management system using ternary ad-
dressable puf generator. In 2019 16th Annual IEEE In-
ternational Conference on Sensing, Communication,
and Networking (SECON), pages 1–8. IEEE.

Morris, R. and Thompson, K. (2002). Password security: A
case history. Communications of the ACM, 22.

OWASP (2021). Password storage cheat sheet.
Provos, N. and Mazieres, D. (1999). A future-adaptable

password scheme. In USENIX Annual Technical Con-
ference, FREENIX Track, pages 81–91, Monterey,
California, USA. USENIX Association.

Sahar, F. (2013). Tradeoffs between Usability and Secu-
rity. IACSIT International Journal of Engineering and
Technology, 5(4).

Shi, C. and Sun, H. (2021). HoneyHash: Honeyword Gen-
eration Based on Transformed Hashes, pages 161–
173. Springer International Publishing, Virtual.

Shi, Z., Yang, C., and Wu, Q. (2012). Scalable md5 crypt
cracker on petascale supercomputer. Advanced Mate-
rials Research, 532-533:1080–1084.

Thomas, K., Li, F., Zand, A., Barrett, J., Ranieri, J., In-
vernizzi, L., Markov, Y., Comanescu, O., Eranti, V.,
Moscicki, A., et al. (2017). Data breaches, phishing,
or malware? understanding the risks of stolen cre-
dentials. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications secu-
rity, pages 1421–1434, Dallas, USA. ACM.

Wang, D., Cheng, H., Wang, P., Yan, J., and Huang, X.
(2017). A security analysis of honeywords.

Wang, K. C. and Reiter, M. K. (2021). Using amnesia to
detect credential database breaches. In 30th USENIX
Security Symposium (USENIX Security 21).

The Weakest Link: On Breaking the Association between Usernames and Passwords in Authentication Systems

567

