
A Pipeline-oriented Processing Approach to Continuous and Long-term
Web Scraping

Stefan Huber a, Fabio Knoll b and Mario Döller c

University of Applied Sciences Kufstein, Andreas Hofer-Straße 7, 6330 Kufstein, Austria

Keywords: Web Scraping, Data Pipelines, Fault-tolerant Execution.

Abstract: Web scraping is a widely-used technique to extract unstructured data from different websites and transform it
into a unified and structured form. Due to the nature of the WWW, long-term and continuous web scraping
is a volatile and error-prone endeavor. The setup of a reliable extraction procedure comes along with various
challenges. In this paper, a system design and implementation for a pipeline-oriented approach to web scraping
is proposed. The main goal of the proposal is to establish a fault-tolerant execution of web scraping tasks
with proper error handling strategies set in place. As errors are prevalent in web scraping, logging and error
replication procedures are part of the processing pipeline. These mechanisms allow for effectively adapting
web scraper implementations to evolving website targets. An implementation of the system was evaluated in a
real-world case study, where thousands of web pages were scraped and processed on a daily basis. The results
indicated that the system allows for effectively operating reliable and long-term web scraping endeavors.

1 INTRODUCTION

Knowledge workers typically spend a substantial part
of their working time with searching and processing
information published on the WWW. As new infor-
mation is published frequently, clerks have to regu-
larly monitor all relevant sources and extract impor-
tant information as daily routines. These routines
are cumbersome, time-consuming and potentially de-
crease work productivity. Furthermore, the increasing
amount of data is overwhelming for manual process-
ing and important information might be missed.

A widely-used technique to automatically ex-
tract unstructured data from the WWW and trans-
form it into a unified and structured form is web
scraping (Saurkar et al., 2018). A web scraper is
a program, which is specifically targeted to extract
data from certain web pages, by making use of the
HTML-structure, CSS-selectors, XPATH-expressions
and regular expressions (Khder, 2021). Web scrap-
ers are commonly built by employing specific tools,
such as Scrapy or BeatifulSoup (Mitchell, 2018). The
drawback of these approaches is, its static behavior in
case of changes in the structure of targeted web pages.

a https://orcid.org/0000-0001-7229-9740
b https://orcid.org/0000-0002-9368-8056
c https://orcid.org/0000-0002-9716-564X

As websites are not primarily built to being
scraped, implementing a web scraper comes along
with several challenges and is considered an iterative
and lengthy process (Landers et al., 2016). Typically,
aspects such as pagination, dynamic content or access
barriers are common obstacles (Meschenmoser et al.,
2016) which need to be handled. Especially, due to
networking issues or adaptations in the website struc-
ture, failures in the extraction process, should be ex-
pected in continuous and long-term web scraping.

State of the art pipeline-oriented data process-
ing architectures, such as stream processing (Noghabi
et al., 2017; Lin et al., 2016) or ETL-pipelines (Simit-
sis et al., 2010) offer desirable execution attributes,
which would enhance the reliability of web scrap-
ing tasks. Inspired by these findings, in this paper,
a pipeline-oriented system design for web scraping is
presented and also evaluated on a real-world use case.

The paper start with an overview of challenges in
web scraping in Section 2. Section 3 derives require-
ments for a reliable web scraping system. Section 4
describes the proposed software design and Section 5
introduces a case study for evaluating the proposed
architecture in a real-world use case. In Section 6 the
approach is reflected in the form of a discussion. The
paper is ended by an overview of related work in Sec-
tion 7 and conclusions in Section 8.

Huber, S., Knoll, F. and Döller, M.
A Pipeline-oriented Processing Approach to Continuous and Long-term Web Scraping.
DOI: 10.5220/0011275100003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 441-448
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

441



2 CHALLENGES FOR RELIABLE
WEB SCRAPING

A web scraper is typically targeted to extract data
from a specific web page structure (Dongo et al.,
2020). Therefore, a sample set of web pages, from
a distinct source, are selected to form a test dataset
(Landers et al., 2016) for the implementation. For
the extraction procedure it is required, that prospec-
tive web pages, generally conform to the structure of
the web pages in the test dataset.

Studies on the evolution of the WWW have shown
that from a content perspective web pages undergo
changes at a rather rapid turnover rate (Ntoulas et al.,
2004). Additionally, from a structural perspective, the
rate of change, when considering the markup (Fetterly
et al., 2004; Adar et al., 2009), is also rather frequent.
Therefore, when considering long-term and continu-
ous web scraping endeavors, the real or current state
of a web page may not reflect the structure in the used
testbed dataset.

Deviations of the current web page structure with
respect to the testbed structure could lead to failures
in the extraction process. These type of failures we
termed representational issues. In addition, as web
scrapers are operating over the Internet, failures due
to networking issues, need to be considered for a
reliable extraction procedure. Table 1 summarizes
the types of issues and the corresponding mitigation
strategies. The rest of this section describes the issues
in more detail.

We classified structural deviations from the expec-
tation as either major or minor. A major structural
change would typically result after a redesign of the
website. Such changes are rather seldom and most
likely would require a complete rewrite of the web
scraper. Minor structural changes on the other hand
could happen more often, especially on popular web-
sites. These changes result from adding new features
(e.g., user comments) to a website or by restructured
parts of a website (e.g., based on the results of A/B
testing). As the basic structure of the website stays
the same, such changes would only require an adap-
tation of the web scraper.

The information presented inside web pages is
typically created by humans. Depending on the val-
idation capabilities of the input systems, some entry
fields might be omitted (e.g., a missing e-mail ad-
dress) or provided with idiosyncratic formatting (e.g.,
date or phone number formatting) by content editors.
This may lead to missing or ill-formatted data. A web
scraper could integrate a certain tolerance for pars-
ing ill-formatted inputs. For missing data, also default
values could be used. As unpredictable formatting is-

sues could arise over time, a continuous adaptation of
the scraper might be necessary. In case of a lower
importance of a specific data input, an ill-formatted
value might even be ignored by the web scraper.

Finally, as web scrapers are operating over the
Internet various network issues may occur. For in-
stance, these can be internal or external network out-
ages, temporary unavailability, SSL connection er-
rors, blockages of various causes, website mainte-
nance or network timeouts due to congestion. A web-
site could even be moved to another location or in-
troduce an authentication mechanism. On an abstract
level, we distinguished networking issues into tempo-
rary and non-temporary. The former type could po-
tentially be resolved either by a delayed retry or by a
high timeout threshold (Liu and Menczer, 2011). The
later type would require adaptation of the web scraper
implementation.

3 REQUIREMENTS FOR
RELIABLE WEB SCRAPING

In consideration of the challenges introduced in the
previous section, several requirements have been de-
rived, which must be fulfilled in order to achieve a
reliable web scraping system.

3.1 Fault-tolerance

The system should be tolerant to errors, which occur
within the execution of a web scraping task. An error
must not lead to the termination of the entire program
flow, but only skip the web scraping task in which the
error occurred. For instance, a formatting issue on a
single web page that leads to a parsing error should
not affect the scraping procedure of the whole web-
site.

3.2 Error-handling Strategies

For a web scraping system, which is daily operating
on thousands of web pages, errors should be expected.
The system should be able to identify and classify er-
rors. Based on the error type, different error-handling
or mitigation strategies could be executed. E.g., a
temporary networking issue, due to a maintenance
downtime of a website, should be detectable as a type
of error by the system. A correctly configured web-
server returns an HTTP 503 status code in such a sit-
uation. An error-handling strategy, in such a case,
could be a retry of the web scraping task after a cer-
tain timeout.

ICSOFT 2022 - 17th International Conference on Software Technologies

442



Table 1: Types of web scraping issues and mitigation strategies.

web scraping issue mitigation strategy
representational issue major structural issue web scraper rewrite

minor structural issue web scraper adaptation
ill-formatting issue tolerance, ignore or adapt

networking issue temporal delayed retry or timeout threshold adaptation
non-temporal web scraper adaptation

3.3 Monitoring and Logging

The system should include an effective monitoring
procedure, which would on the one hand allow to
check the successfully executed web scraping tasks
and on the other hand logs tasks which resulted in an
error. Moreover, in the case of an error a correspond-
ing error context should be stored. This data would
consist of the web page, if it was accessible, and cor-
responding contextual meta data, such as the access
time, HTTP headers and status codes. The error con-
text, which produced the error, should be stored in a
form that can be used as input to a test case for the
specific web scraper implementation. This would al-
low the maintainers of the system to replicate the error
and adjust the web scraping task. Also, an analysis of
the error could result in adapting the error-handling
strategies of the system. A new type of error could
result in the identification of a new mitigation strat-
egy. As a whole, the monitoring data should be us-
able to continuously improve the system and adapt to
changes in the web scraping targets.

4 SYSTEM DESIGN

The system design was derived from the previously
introduced requirements and is depicted in Fig. 1.
This section describes design principles and compo-
nents of the system.

4.1 Job Granularity

A web scraping task for an entire website is divided
into several fine-granular job implementations. The
granularity of a job implementation is guided by the
ability of error detection and maintainability. An anal-
ogy could be derived from end-to-end testing of web-
applications. The page object design pattern (Leotta
et al., 2013) is an empirically validated concept for
maintainable end-to-end test suites, as such test suites
face similar issues as web scrapers regarding struc-
tural changes of websites.

A popular and frequently used design pattern in
web development is the master-detail pattern (Molina

et al., 2002). For a website that implements this pat-
tern, one job could be developed for scraping the links
to the detail pages from the master page and another
job could be developed for scraping the data from
the individual detail pages. Additional complexities,
such as downloading and extracting data from linked
and related documents, could be also implemented by
encapsulating each sub-task in its own corresponding
job implementation.

A fine-granular division of an entire web scraping
task into jobs has several advantages. It ensures pre-
cise root cause identification of an error, since it is evi-
dent in which part of the task the error has occurred. It
enables the desired property of fault-tolerance. In the
case of a scraping error on a single web page (e.g., due
to a format parsing issue), only a single job fails and
not the entire scraping task for the website. Also, in
consideration of the development workflow of a large
web scraping endeavor, each job can be developed
and tested in isolation.

4.2 Event-driven Workflow

Jobs are implemented loosely coupled with no direct
dependencies to other jobs. A job triggers a generic
event after its execution. The corresponding process-
ing result of the job is attached as payload to the event
and processed by the Pipeline Flow Manager compo-
nent of the system.

This components couples the different jobs as an
event-driven workflow. Based on the job events, cor-
responding successor jobs are selected and started.
The selection of successor jobs is based on the pay-
load of the preceding job.

The flow logic of the jobs is defined based on
the event-condition-action (ECA) metaphor (Kappel
et al., 2000). This approach allows for adapting and
extending the execution pipeline without modifying
existing job implementations.

4.3 Parallelization

The job execution is handled in the form of a FIFO
job queue. Worker processes on the corresponding
machine take open jobs from the queue for process-

A Pipeline-oriented Processing Approach to Continuous and Long-term Web Scraping

443



Figure 1: Overview of the system design.

ing. As jobs are loosely-coupled, worker processes
can operate in parallel. The processing time of the en-
tire pipeline can be regulated by the amount of work-
ers in place. Depending on the workload of the web
scraping endeavor, jobs can be distributed on different
machines.

4.4 Error Handling

To keep the job implementations lightweight and to
avoid the repetition of implementing similar error
handling procedures in different jobs, the entire error
handling logic is organized in the separate Pipeline
Exception Manager component. An error inside a
web scraping job should raise an exception based on
a defined exception hierarchy. The handling of a
specific exception happens then by an error handling
strategy selected in the Pipeline Exception Manager.

Similar to the Pipeline Flow Manager, a config-
uration in the form of ECA-rules allows the system
to select a corresponding error handling strategy. De-
pending on the type of error, either an automatic or
a manual recovery can be carried out. An automatic
recovery will create a new job corresponding to the
exception and will dispatch this job via the Pipeline
Flow Manager.

A generic form of a error handling strategy is a
delayed retry of the same job, which raised the ex-
ception. This strategy could be employed to handle
temporary issues. Also, more sophisticated strategies
are conceivable, which e.g. adapt the inputs to a cer-
tain job or select an alternative job, which might be
able to handle the task more appropriately.

For more severe issues, which cannot be resolved
autonomously, the system will notify a correspond-
ing user. Serious errors can often only be handled by
system administrators or developers, whereas more
harmless errors can also be solved by clerks working
with the system. Ideally, there is a defined hierarchy
in the organization for handling errors. For the case
study in Section 5.1, such an organizational setting is
described.

As additional metadata to a raised exception a
PipelineExceptionContext is attached. This con-
text is specific for each exception type and provides
data for debugging and reproducing the error. E.g.,
for a specific scraping job which produced an error,
the entire web page is stored as part of the error con-
text. The stored website can be used to generate in-
put for corresponding test cases to adapt or extend the
web scraper job implementation.

5 EVALUATION

The proposed system was evaluated in a real-world
case study (Section 5.1). Implementation details
(Section 5.2) and results on the error handling (Sec-
tion 5.3) are described in this section.

5.1 Case Study

The case study was developed with a company op-
erating in the construction business within the EU.
The company is regularly participating in bidding
procedures for new projects. Within the EU, public
institutions must select suppliers in the form of an
open competitive bidding procedure if the procure-
ment value exceeds a certain threshold.

Particularly in the construction sector, for smaller
projects, municipalities or companies also use a
bidding procedures to select appropriate suppliers.
Therefore, tenders are published by companies and
governments on different platforms and in different
formats on the WWW to advertise for potential bid-
ders.

A common platform for the publication of tenders
is TED1. However, many states, cities or municipali-
ties offer their own portals for publishing such tenders
and within the various platforms tenders are published
in highly heterogeneous formats.

1https://ted.europa.eu

ICSOFT 2022 - 17th International Conference on Software Technologies

444



Figure 2: Overview of job processing pipeline of the case study.

Clerks working in the sales department of the
company screen sources on the WWW as a daily
routine. From the search interfaces of the portals,
they collect relevant tenders for the different depart-
ments in the company. The corresponding data is ex-
tracted and entered into a company internal informa-
tion system. This is a rather cumbersome and time-
consuming endeavor for the clerks.

To automatize the whole process of collecting,
extracting, classifying and storing tenders from the
WWW, an implementation of the proposed system
design was set in place. An overview of the respec-
tive processing pipeline is given in Fig. 2. In addition
to the web scraping jobs, also two machine learning
based jobs for doublet detection and tender classifica-
tion are part of the pipeline, this paper only focuses
on web scraping aspects. A terminal job, which ex-
ports positively classified tenders into the company’s
information system, is also part of the pipeline.

Within the case study, tenders from 16 different
web portals are continuously scraped. This results
in up to 2000 web pages which are scraped and pro-
cessed on a daily basis.

5.2 Implementation Details

The pipeline for the case study was implemented in
the programming language PHP using the Laravel2

web framework. The framework offers a lightweight
and flexible queue and job implementation, which fa-
cilitates the basis for the proposed pipeline-oriented
system design.

Among the websites to be scraped for the case
study, many implemented the master-detail design
pattern, which resulted in consistent pipeline struc-
tures. For each master page, a corresponding master
job was developed. The master job extracts primar-
ily the links to the detail pages. Similarly, a separate
job was developed for the detail pages, which then
extracts detailed data about the tenders.

2https://laravel.com

The structure of the various web pages varied
widely, ranging from unstructured and rather poorly
organized HTML pages to well-structured XML or
JSON files. Some websites are also implemented
with JavaScript rendered content and reloaded parts of
the web page dynamically. Therefore such web page
were rendered inside the headless web browser engine
Puppeteer3 before starting the extraction procedure.

5.3 Error Handling Strategies

Within the case study automatic and manual proce-
dures for error handling were set in place. In addition
to the actual error handling procedures, an organiza-
tional structure in the form of hierarchical roles was
established. The roles clerk, administrator and devel-
oper were defined.

As an automatic error handling procedure a de-
layed retry was used for jobs, which failed due to net-
work issues. A job is retried twice, firstly with a delay
of one hour and secondly with a delay of five hours. If
the second retry failed, the failure is notified to an ad-
ministrator, which tries to analyze and fix the problem
or escalate the issue to a developer.

Furthermore, for other types of errors, such as any
kind of representational or unclassified errors, an or-
ganizational procedure is defined. On a daily basis,
the exceptions for each website are counted and if
the exceptions are below a defined threshold, which
is configured for each website, the exceptions are no-
tified to clerks. The clerks can check the web pages,
which produced the error, and either extract the data
manually or ignore the web page. The web pages are
also logged and can be analyzed by the developer at a
later stage.

If the exception count is above a certain threshold,
an administrator is notified. A high amount of excep-
tions for a certain website indicates a systematic error.
The administrator can analyze the problem and either
trigger a manual retry or escalate the problem to the

3https://pptr.dev/

A Pipeline-oriented Processing Approach to Continuous and Long-term Web Scraping

445



developer. A developer could do a deeper analysis
of the problem, based on the stored error context and
could integrate necessary changes to adapt the imple-
mentation.

5.4 Web Scraping Results

For demonstrating the operation of the system a typi-
cal 5 week period from June 2021 to July 2021 is doc-
umented and respective results are displayed in Fig. 3,
Fig. 4 and Fig. 5. An administrator would monitor the
system with similar diagrams.

The daily amount of successfully scraped web
pages is displayed in Fig. 3. The largest amount
of successful scrapings typically happens on Fridays.
On weekends only a few tenders are published, which
results in a low amount of scraped web pages. Fig. 4
gives an overview of the amount of daily scraping er-
rors. In the following list, notable incidents are sum-
marized:

• At the beginning of Fig. 4 a higher error count
was observable. This was caused by a redesign of
a target website. The web scraper needed to be
largely rewritten, which took several days of iter-
ative implementation and testing work. This re-
sulted in a higher amount of successfully scraped
web pages after the rewrite of the web scraper, as
unsuccessfully scraped tenders from the past have
been caught up with the updated job implementa-
tion.

• On 07/13 a new type of tender was published on
one of the websites. The new type had a different
formatting for the tender title on the web page.
More than 20 tenders could not be successfully
scraped based on this formatting change. The im-
plementation of the web scraping job could be
adapted promptly by a developer and this type of
error was solved.

• For most days several errors with unsystematic
causes happen. Primarily, the errors originate
from ill-formatted or missing data. Such errors
often fall into the unclassified error category. If
there is any pattern detectable in such errors a
developer could adapt the respective implementa-
tion. Also a few networking errors did arise, such
as network timeouts or page not found errors dur-
ing the observed period.

The distribution of the different error types is dis-
played in Fig. 5. The majority of errors belong to the
class of representational errors. These result from in-
puts to web scrapers, which don’t comply with the ex-
pected representation. Within the 5 week period, net-
work errors occurred only at a rather low frequency.

All errors which let a web scraper fail in an unex-
pected way are declared as unclassified errors. These
types of errors require an investigation by the devel-
opers.

6 DISCUSSION

The proposed system was implemented and used
within a real-world use case. It was demonstrated
that the system is capable of coping with chal-
lenges that typically arise in continuous and long-term
web scraping endeavors. Specifically, the pipeline-
oriented approach and the fine-grained encapsulation
of sub-tasks into jobs has many merits for the domain
of web scraping.

The system design is based on the assumption that
scraping errors will happen continuously, as the web
scraping targets are evolving. The proposed system
includes proper logging and replication facilities to
enable maintainers of the system to effectively adapt
web scraper implementations to changes in the web
scraping target.

In addition to the technical aspects it is important
to have an organizational structure defined to handle
errors in the web scraping process, which cannot be
solved automatically by the system. For the use case,
it turned out beneficiary to also involve non-technical
clerks. For low-severity and seldom issues, such as an
ill-formatted date, a clerk could manually extract the
data and fix the issue quickly. The requirement for
such an approach is, that the exact web page which
produced the error can be pinpointed to the clerk,
which the system’s logging facility is capable of.

Some web pages require the execution of
JavaScript to be rendered properly. For web scrap-
ing this requires rendering the web page using a head-
less browser. A headless browser can be configured to
block the download of content, which is not required
for the scraping task. This lowers the overhead for the
server and speeds up the scraping process and should
be considered a good practice for web scraping.

The code for web scraper implementations tend to
get rather complex in terms of execution flows and
conditional branching. Encapsulating each type of
web page into it’s own job implementation turned out
to be helpful to keep the code units manageable and
free of unintended side-effects.

For the web scrapers which were implemented in
the case study, the code complexity particularly in-
creased, when text anchors were required for iden-
tifying the relevant parts to extract. Depending on
the structure of web pages CSS-selectors or XPATH-
expressions are sometimes not capable of identifying

ICSOFT 2022 - 17th International Conference on Software Technologies

446



Figure 3: Scraped web pages. Figure 4: Error count. Figure 5: Error types.

the part of interest for extraction. Text anchors also
turned out to be rather unreliable, especially for con-
tinuous and long-term usage. Therefore as another
good practice the avoidance of text anchors should
be a high priority, although for some subtle scraping
tasks, text anchors are necessary.

7 RELATED WORK

Web scraping is employed in many use cases to col-
lect and aggregate data from various sources from the
WWW. In a case study for gathering biomedical data,
the authors of (Glez-Peña et al., 2014) demonstrated
the usefulness of web scraping to extract data from
different sources. Also in the works of (Bonifacio
et al., 2015) and (Kunang et al., 2018) it was demon-
strated how the application of web scraping for gath-
ering climate and weather data from different sources
could increase the productivity of researchers in the
field. Another example of the effectiveness of web
scraping was demonstrated by the Vigi4Med (Audeh
et al., 2017) tool. The tool scrapes forum discus-
sions from more than 22 different medical websites.
The resulting data is used as a complementary source
to study adverse drug reactions. Although all pre-
sented approaches successfully employed web scrap-
ing in a specific context, the described implementa-
tions follow a rather ad-hoc approach. Issues which
may arise in a long-term and continuous application
of web scraping have not been addressed by the im-
plementations.

Establishing a pipeline-oriented data processing
system involves various challenges in the area of data
cleansing, data collection and data analytics (Pervaiz
et al., 2019), also challenges concerning infrastruc-
ture, organizational barriers and data quality are
prevalent (Munappy et al., 2020). However, desirable
properties such as fault-tolerance, auditability or
error handling and mitigation strategies emerge from
the application of the pipeline paradigm. Especially,
in the context of long-term and reliable web scraping,
such properties are inevitable.

The concept of event-driven pipeline processing
has been successfully employed in the domain of
computer vision workflows by the EPypes architec-
ture (Semeniuta and Falkman, 2019). The architec-
ture makes use of the event-driven paradigm in the
context of distributed environments in order to sup-
port evolving computational graphs without sacrific-
ing developer flexibility.

Triggerflow (López et al., 2020) is another system,
which makes use of event-based control flow in order
to orchestrate serverless workflows. Extensibility and
flexibility are key properties named as advantages of
the Triggerflow architecture.

Also in the domain of classical workflow manage-
ment systems (WfMS) event-driven processing has
been applied in order to adapt according to evolving
needs. In (Goh et al., 2001) ECA-rules have been pro-
posed to modify workflow executions at runtime to
handle deviations in business processes.

8 CONCLUSION

In this paper, a pipeline-oriented system design to the
rather error-prone and volatile endeavor of long-term
and continuous web scraping was envisioned. A web
scraper is typically built based on the assumption that
the web page, which needs to be scraped, conforms
to an expected structure. Due to the fact that websites
are changing rather frequently (Ntoulas et al., 2004;
Fetterly et al., 2004; Adar et al., 2009), web scraper
implementations need to be adapted alongside these
changes.

Our proposed system design is based on the as-
sumption that failures in web scraping are expected.
Fine-granular job implementations and proper log-
ging for reproducing errors allow developers to ef-
fectively adapt implementations to changing scraping
targets. In a real-world case study, we could demon-
strate that our proposed system allows for effectively
operating reliable and long-term web scraping en-
deavors.

A Pipeline-oriented Processing Approach to Continuous and Long-term Web Scraping

447



REFERENCES

Adar, E., Teevan, J., Dumais, S. T., and Elsas, J. L. (2009).
The web changes everything: understanding the dy-
namics of web content. In Proceedings of the Second
ACM International Conference on Web Search and
Data Mining, pages 282–291.

Audeh, B., Beigbeder, M., Zimmermann, A., Jaillon, P., and
Bousquet, C. (2017). Vigi4med scraper: a framework
for web forum structured data extraction and semantic
representation. PloS one, 12(1):e0169658.

Bonifacio, C., Barchyn, T. E., Hugenholtz, C. H., and Kien-
zle, S. W. (2015). Ccdst: A free canadian climate data
scraping tool. Computers & Geosciences, 75:13–16.

Dongo, I., Cadinale, Y., Aguilera, A., Martı́nez, F., Quin-
tero, Y., and Barrios, S. (2020). Web scraping versus
twitter api: A comparison for a credibility analysis. In
Proceedings of the 22nd International Conference on
Information Integration and Web-Based Applications
& Services, iiWAS ’20, page 263–273, New York, NY,
USA. Association for Computing Machinery.

Fetterly, D., Manasse, M., Najork, M., and Wiener, J. L.
(2004). A large-scale study of the evolution of
web pages. Software: Practice and Experience,
34(2):213–237.

Glez-Peña, D., Lourenço, A., López-Fernández, H.,
Reboiro-Jato, M., and Fdez-Riverola, F. (2014). Web
scraping technologies in an api world. Briefings in
bioinformatics, 15(5):788–797.

Goh, A., Koh, Y.-K., and Domazet, D. S. (2001). Eca rule-
based support for workflows. Artificial intelligence in
engineering, 15(1):37–46.

Kappel, G., Rausch-Schott, S., and Retschitzegger, W.
(2000). A framework for workflow management sys-
tems based on objects, rules and roles. ACM Comput-
ing Surveys (CSUR), 32(1es):27–es.

Khder, M. A. (2021). Web scraping or web crawling: State
of art, techniques, approaches and application. Inter-
national Journal of Advances in Soft Computing & Its
Applications, 13(3).

Kunang, Y. N., Purnamasari, S. D., et al. (2018). Web scrap-
ing techniques to collect weather data in south sumat-
era. In 2018 International Conference on Electrical
Engineering and Computer Science (ICECOS), pages
385–390. IEEE.

Landers, R. N., Brusso, R. C., Cavanaugh, K. J., and Coll-
mus, A. B. (2016). A primer on theory-driven web
scraping: Automatic extraction of big data from the
internet for use in psychological research. Psycholog-
ical methods, 21(4):475.

Leotta, M., Clerissi, D., Ricca, F., and Spadaro, C. (2013).
Improving test suites maintainability with the page ob-
ject pattern: An industrial case study. In 2013 IEEE
Sixth International Conference on Software Testing,
Verification and Validation Workshops, pages 108–
113. IEEE.

Lin, W., Qian, Z., Xu, J., Yang, S., Zhou, J., and Zhou, L.
(2016). Streamscope: continuous reliable distributed
processing of big data streams. In 13th {USENIX}

Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 16), pages 439–453.

Liu, B. and Menczer, F. (2011). Web Crawling, pages 311–
362. Springer Berlin Heidelberg, Berlin, Heidelberg.

López, P. G., Arjona, A., Sampé, J., Slominski, A., and Vil-
lard, L. (2020). Triggerflow: trigger-based orchestra-
tion of serverless workflows. In Proceedings of the
14th ACM International Conference on Distributed
and Event-based Systems, pages 3–14.

Meschenmoser, P., Meuschke, N., Hotz, M., and Gipp, B.
(2016). Scraping scientific web repositories: Chal-
lenges and solutions for automated content extraction.
D-Lib Magazine, 22(9/10):15.

Mitchell, R. (2018). Web scraping with Python: Collecting
more data from the modern web. ” O’Reilly Media,
Inc.”.

Molina, P. J., Meliá, S., and Pastor, O. (2002). User inter-
face conceptual patterns. In International Workshop
on Design, Specification, and Verification of Interac-
tive Systems, pages 159–172. Springer.

Munappy, A. R., Bosch, J., and Olsson, H. H. (2020). Data
pipeline management in practice: Challenges and op-
portunities. In International Conference on Product-
Focused Software Process Improvement, pages 168–
184. Springer.

Noghabi, S. A., Paramasivam, K., Pan, Y., Ramesh,
N., Bringhurst, J., Gupta, I., and Campbell, R. H.
(2017). Samza: stateful scalable stream processing
at linkedin. Proceedings of the VLDB Endowment,
10(12):1634–1645.

Ntoulas, A., Cho, J., and Olston, C. (2004). What’s new
on the web? the evolution of the web from a search
engine perspective. In Proceedings of the 13th inter-
national conference on World Wide Web, pages 1–12.

Pervaiz, F., Vashistha, A., and Anderson, R. (2019). Exam-
ining the challenges in development data pipeline. In
Proceedings of the 2nd ACM SIGCAS Conference on
Computing and Sustainable Societies, pages 13–21.

Saurkar, A. V., Pathare, K. G., and Gode, S. A. (2018). An
overview on web scraping techniques and tools. Inter-
national Journal on Future Revolution in Computer
Science & Communication Engineering, 4(4):363–
367.

Semeniuta, O. and Falkman, P. (2019). Epypes: a
framework for building event-driven data processing
pipelines. PeerJ Computer Science, 5:e176.

Simitsis, A., Wilkinson, K., Dayal, U., and Castellanos, M.
(2010). Optimizing etl workflows for fault-tolerance.
In 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), pages 385–396. IEEE.

ICSOFT 2022 - 17th International Conference on Software Technologies

448


