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Abstract: Nowadays, almost all major websites employ CAPTCHAs. This prevents website scraping, fake account
creation as well as DDoS or bruteforce attacks. For anonymity reasons, mainstream CAPTCHAs such as
Google’s reCAPTCHA cannot be used on the darkweb. Due to the evolution of machine learning and com-
puter vision, the CAPTCHA challenges used there, such as the clock CAPTCHA, are usually more arduous
than those found on the clearweb. This paper presents an automated system that uses machine learning to
break clock CAPTCHA challenges with a high success rate. We evaluate our system in a real world setting
against 725 clock challenges from live darkweb marketplaces. Our results show an accuracy of 96.83% while
maintaining low time requirements while analyzing, predicting and submitting the CAPTCHA solution.

1 INTRODUCTION

CAPTCHAs are widely used around the web to pre-
vent an assortment of attacks such as DDoS, web
crawling or creation of fake accounts. Since their in-
ception in 1996 (Guerar et al., 2021) a long range of
technologies have been developed. To attempt break-
ing these, a great deal of computer vision technologies
have been utilized as the majority of CAPTCHAs are
image-based. Accompanying this, machine learning
can now be used as it greatly increases the comput-
ers’ chance to successfully solve such a puzzle.

The advancements of the aforementioned tech-
nologies, and especially of machine learning, have
deprecated many CAPTCHA models. Despite the is-
sues this may present, it also creates an invitation for
creating new, more arduous models, that can distin-
guish a human from a machine. There is an ongoing
arms race, where one side is trying to create resilient
CAPTCHAs, while the other side is trying to break
them. This is also the case on the darkweb.

The CAPTCHAs found on the darkweb differ
from those on the clearweb since the desire to re-
main anonymous restricts which models can be used.
Newer CAPTCHAs, such as reCAPTCHA, require a
connection to Google services to check information
about the client, and is therefore not a viable choice
for darkweb sites. This has in turn increased the effort
put into making different types of CAPTCHAs to be
utilized on the darkweb (Georgoulias et al., 2021).

Using machine learning to develop a model that
can successfully solve CAPTCHA challenges re-
quires a labelled data set containing examples of
the CAPTCHA and corresponding answers. Such
supervised machine learning approaches cannot be
trained without proper labelled data. To fulfill this re-
quirement the CAPTCHA could be downloaded and
the answer manually filled in, however this could
take a lot of time depending on the amount of data
needed. Therefore having access to the source code
of the CAPTCHA can automate its generation. How-
ever, in most cases, especially on the darkweb, the
CAPTCHA code generation is proprietary and has to
be reverse engineered. Furthermore when utilizing
machine learning models, the model produced can be
limited to solve only one type of CAPTCHA. A small
modification to the CAPTCHA algorithm might ren-
der the machine learning model highly ineffective.

A predominant darkweb CAPTCHA scheme is the
so-called clock CAPTCHA (Georgoulias et al., 2021)
(see Figure 1). The challenge is to correctly submit
the time of an analogue clock that contains several
misleading geometric shapes in under 60 seconds.
The clock comes in different variations, however the
general idea is the same. To this day, no method of
breaking the clock scheme has been developed and
disclosed. The main goal of this work is to break the
basic version of the clock CAPTCHA scheme along
with one variation, utilizing machine learning. To
achieve this goal we use the deep learning architecture
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ResNet50 to create a model which is able to predict
the time of the clock CAPTCHA given an image of it.
In addition, a web scraper is built providing the abil-
ity to automatically solve a challenge using the trained
model in real time on a Tor hidden service. We limit
ourselves and do not further expand our work on ad-
ditional clock variations, since it would prove to be a
never ending task, due to the highly dynamic nature
of the darkweb.

One major challenge when attempting to automate
data collection from platforms on the darkweb, is by-
passing the Distributing Denial of Service (DDoS)
protection mechanisms. Darkweb marketplaces and
vendor shops utilize CAPTCHAs with the goal of tak-
ing away the automation capabilities of web crawlers
(Soska and Christin, 2015). In essence, these mecha-
nisms are put in place to force individuals into man-
ually providing responses to challenges. This can
be a time-consuming task, especially when attempt-
ing to deploy crawlers in multiple platforms simul-
taneously, making the entire process of data collec-
tion challenging. Successfully bypassing these mech-
anisms in an automated manner, provides ease and
speed to the process, making research efforts more ef-
fective. Hence, we note that our work is only intended
for assisting researchers and the developed system is
available to researchers upon request, due to ethical
considerations (see Section 2).

In this paper we show that: i) It is possible to
develop a machine learning model to correctly solve
the clock CAPTCHA with 96.83% accuracy; ii) the
developed model can be utilized by a web scraper
to access services using the clock CAPTCHA, in a
timely manner; iii) the developed model can easily be
adapted to incorporate modified versions of the clock
while maintaining high accuracy.

2 ETHICAL ISSUES

In this section we want to address the ethical issues
associated with this paper. Our work is not intended
to be used in takedown attempts against the platforms
implementing the showcased CAPTCHAs, since lit-
erature characterizes them as a non-violent alternative
to street drug trafficking (Martin and Christin, 2016).
Instead, our goal is to illustrate that solving the clock
CAPTCHA can be automated, and then utilized by a
web crawler to further automate data harvesting for
research purposes.

With regard to the site access, the marketplaces
that were part of our study are both publicly available
and free to access. Furthermore, we want to point out
that we did not in any way hinder the operation of any

of these platforms, or the experience of their users. In
order to complete our experiments, we only used site
mechanisms that are available to all users, and in a
manner that did not consume any additional resources
from the marketplaces’ side. Lastly, our research did
not involve any kind of user private data, hence there
is no risk of exposing the identity or private informa-
tion of any individuals.

3 BACKGROUND AND RELATED
WORK

Even though CAPTCHAs on the clearweb and the
darkweb have inherent differences, the methods for
breaking CAPTCHAs are the same in both domains.
Such methods, can be categorized in the following
three categories: machine learning methods, non ma-
chine learning methods and hybrid methods.

3.1 Machine Learning Methods

The development of deep learning has resulted in
great advances in CAPTCHA breaking. Challenges
previously deemed impossible for computers to solve
(e.g. advanced image recognition) are now solvable.

(Noury and Rezaei, 2020) showed a method for
breaking text-based CAPTCHAs of a fixed length us-
ing convolutional neural networks, achieving up to
98.94% accuracy. Similarly, a deep learning method
for breaking text-based CAPTCHAs are described by
(Tang et al., 2018), where convolutional layers are
combined with max-pooling layers.

When it comes to breaking image-based
CAPTCHAs, sophisticated deep learning meth-
ods are necessary. Mittal et al. (Mittal et al., 2018)
describe a method for breaking a CAPTCHA using
the Inception V3 image recognition model, achieving
a mean accuracy of 91% in real time.

Another example of using deep learning to break
an image based CAPTCHA, is by (Hossen and Hei,
2021) using the neural-network ResNet18 architec-
ture. The authors utilize a pre-trained instance of
the model, that is trained using the ImageNet1 data
set. This minimizes the required training needed for
the specific challenge. The focus of Hossen and Hei
was to provide a low-cost method for breaking the
CAPTCHA system, and they only required 143 min-
utes of training. They achieved an accuracy of 88% on
the test set. Additionally, they achieved an accuracy
of 95.93%, when providing the model with real-world
examples of challenges.

1https://www.image-net.org/
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3.2 Non Machine Learning Methods

While it is not widespread to apply non machine
learning methods for breaking CAPTCHAs, there
have been attempts using optical character recog-
nition (OCR). (Csuka and Gaastra, 2018) propose
a method using the OCR engine Tesseract (Smith,
2007) for breaking text-based CAPTCHAs on the
darkweb. They describe the performance of this
method as inferior to the applied machine learning
method in terms of success rate, but it does operate
faster and provides immediacy compared to the ma-
chine learning method.

According to (Weng et al., 2019) another non ma-
chine learning method for malicious activity, is using
underground CAPTCHA solving services. These ser-
vices consists of large amount of human labor solving
CAPTCHAs in exchange for money.

3.3 Hybrid Methods

Any information the computer is able to retrieve
or extract on the CAPTCHA challenge at hand im-
proves the accuracy of the computers decision. A
method used by (Sivakorn et al., 2016) aimed at
breaking Google’s widely used reCAPTCHA (Shet,
2014) utilised both deep learning methods and
Google’s own reverse image search engine. The chal-
lenge presented by reCAPTCHA is an image-based
CAPTCHA, as described in Section 3.4 of this paper.
The solution to breaking this, presented by (Sivakorn
et al., 2016), consists of modules, that each assigns
labels to an image. Most of the modules are deep
learning based, but one of the modules is the Google
reverse image search engine. The tags and labels pro-
vided by each module are then compared, and a deci-
sion for each image in the challenge is made.

3.4 Darkweb CAPTCHAs

CAPTCHA schemes like Google’s reCAPTCHA can-
not be used on the darkweb, due to anonymity is-
sues. For this reason, more traditional CAPTCHA
scheme types are used. The most prominent
ones being image-based CAPTCHAs and text-based
CAPTCHAs (Georgoulias et al., 2021).

Text-based CAPTCHAs present an image of a
string of random letters, with the goal being for the
user to identify each letter. The images are often
obscured, colored or blurred, to make it harder for
machines to recognize the letters, but still remaining
fairly easy for a human.

Image-based CAPTCHAs work by presenting a
question and a set of images to the user, and then

requiring the user to pick an image/images thereof,
that correspond to the question asked (Alqahtani and
Alsulaiman, 2020). Alternatively, the user might be
presented with a single image and are then required
to answer the question by describing the image or
its contents usually by picking from a set of options.
The images shown are usually in poor quality and/or
have shapes, lines or gibberish text that are easy for
a person to distinguish from but hard for a machine.
Image-based CAPTCHAs are considered to be the
most advanced and secure type of CAPTCHA, as it
is based on image details, which makes it hard for a
machine to solve (Brodić et al., 2016).

(a) Dread
forum clock

(b) Cartel
marketplace clock

(c) Cocorico
marketplace clock

Figure 1: Three variations of the clock CAPTCHA in the
darkweb.

The CAPTCHAs found on the darkweb, although
using these traditional ideas, have been improved
upon, making them more innovative than the ones
found on the clearweb. One of the most predomi-
nant schemes can be found on Figure 1, which illus-
trates different adaptations of the clock CAPTCHA.
To solve the scheme, the correct time must be se-
lected within a certain time frame. The challenge for
machines being to distinguish the patterns and shapes
from the clock’s pointers. This type of image-based
CAPTCHA is widely adopted on darkweb market-
places, with some variations depending on the hidden
service. Two well-known hidden services the Dread
forum and the White House Market have provided
a public GitHub repository with code for what they
call “EndGame V2 - Onion Service DDOS Preven-
tion Front System” 2. This system provides several
services with one of them being the clock CAPTCHA
scheme as seen on Figure 1. Due to this variation
being publicly available, it is one of the more com-
monly used. Other variations can be seen on Figures
1 and 1. The clock found on the Cartel marketplace
differentiates by having a different background with
patterns as well as placing shapes around the center.
The Cocorico marketplace, places the url of the site
horizontally across the middle of the clock, which is
a technique often used on darkweb CAPTCHAs.

2https://github.com/onionltd/EndGame
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4 THREAT MODEL

In this section we discuss the threat model followed in
this paper in terms of the capabilities of the attacker
and the required accuracy of an attack to be consid-
ered practically successful.

4.1 Attacker Capabilities

We assume that the attacker is able to produce labelled
data for the supervised machine learning algorithm.
This assumption comes with the limitation that with-
out labelled data the whole process would require sig-
nificant manual work.

Moreover, we assume that the attacker is able to
both contact the (Tor) hidden service of the target
website and is also able to download an image of
the CAPTCHA clock. Furthermore, on the one hand
the attacker requires high computational power (es-
pecially RAM) to be able to train the residual neu-
ral network that we will be utilizing in this paper.
On the other hand, upon training the model, the at-
tacker is able to run the prediction on a typical com-
puter with no significant computational capabilities.
In that sense, and excluding the training phase, our
threat model follows the work of (Bock et al., 2017).

4.2 Attack Accuracy

The definition of when a CAPTCHA scheme is con-
sidered broken is not simple. The debate for this is
very opinionated and no definitive accuracy threshold
has been agreed upon (Bursztein and Bethard, 2009).

When designing a CAPTCHA scheme the original
design goal states that ”automatic scripts should not
be more successful than 1 in 10000 attempts”, which
equates to an accuracy of 0.01% (Chellapilla et al.,
2005). This is widely regarded as too ambitious, as
random guesses would be able to reach an accuracy
higher than this. Instead, many regard 1% accuracy
to be the threshold, as the accuracy of random guesses
would be within the acceptable margin, and therefore
not able to deem the scheme broken (Bursztein et al.,
2011). Others argue that 5%, or even higher percent-
ages, are more reasonable (Baecher et al., 2010).

For attackers aiming at breaking CAPTCHAs, the
accuracy goal is usually a lot higher. (Hossen and
Hei, 2021) present an accuracy goal of above 50%,
aiming at developing a low-cost attack against the
hCaptcha system. (Aboufadel et al., 2005) state that a
CAPTCHA is considered broken if a computer algo-
rithm can solve the scheme 4 out of 5 times on aver-
age, implying an accuracy goal of above 80%.

In reality, the viable accuracy is dependent on the

amount of resources the attacker possesses and the
cost of the attack (Bock et al., 2017). An attacker
with many resources, that would be able to attack
the CAPTCHA scheme tens or hundreds of thousands
times, might only need an accuracy of 1% for the at-
tack to be worthwhile. Similarly, an attacker with lim-
ited resources might need an accuracy of above 50%
to even consider the attack.

Furthermore, many darkweb sites implement a
lockout function, that blacklists the user if the
CAPTCHA scheme has been failed three times. This
obstacle demands a certain level of accuracy of the at-
tack, for it to be viable to use in automation, i.e., with
a web scraper.

Based on the aforementioned previous work and
the fact that in most darkweb marketplaces and fo-
rums one can try to solve a CAPTCHA at least twice
before being blacklisted we expect an accuracy higher
than 80% to be more than satisfactory. For a 80%
model success rate and the user having 2 attempts
to successfully solve the CAPTCHA, the probability
P of a crawler providing the correct solution at least
once is calculated at 96% :

P(SucceedAtLeastOnce) = 1−P(FailBothAttempts)
= 1−1stFail ∗2ndFail
= 1−20%∗20%
= 96%

5 SYSTEM OVERVIEW

Our automated CAPTCHA breaking system solves
the darkweb clock scheme using machine learning.
The system can be reduced into three main steps: i)
model setup, ii) model training and iii) model usage.
2. The first two steps take place on an AI cloud, where

Figure 2: Architectural overview of the entire CAPTCHA
breaking system.

the model is set up and trained with the generated pic-
tures. The AI Cloud is a separate system, which is uti-
lized due to the computational resources it provides.
The model is then downloaded and saved to a local
computer. On the local computer the model is used
by the scraper, which connects to a Tor site, that uses
the clock CAPTCHA. The scraper downloads the im-
age from the CAPTCHA and predicts the answer to it,
using the model from the AI Cloud. The architectural
overview of the system is visualized in Figure The
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system depends on two different programming envi-
ronments. The image generation is C++ code, based
on the Lua code found in the EndGame repository,
and the machine learning training and web scraper
is created in Python. The aforementioned individual
steps are elaborated in the following sections.

6 ResNet50 VS THE DARKWEB
CLOCK CAPTCHA

In this section we go over the details that surround
setting up, training, and using the model.

6.1 Setting up the Model

We divide the model assembly into 3 distinct proce-
dures: the data generation, preprocessing, and the use
of ResNet50.

6.1.1 Data Generation

In order to obtain labeled data, the code for the clock
CAPTCHA was extracted from the EndGame code
base mentioned in Section 3.4 and rewritten into a
C++ program with additional functionality. The pro-
gram is able to generate PNG clock images along with
a text file containing the time shown on each of the
generated clocks. The program has the ability to gen-
erate both the clock from the code base, and the clock
found on the Cartel marketplace, as seen on Figure
1. The program takes two arguments, where the first
argument is the number of iterations. One iteration
will generate 720 images for each of the two clock
types. Hereof the number 720 stems from the fact
that an analogue clock is divided into 12 hours and 60
minutes, amounting to 12 ∗ 60 = 720 different clock
hand positions. The program will generate an image
for each of these possibilities. The second argument
should be either 0, 1 or 2, and will determine if the
program should generate the Dread forum clock (0),
the Cartel marketplace clock (1), or both (2).

6.1.2 Preprocessing

In order for the model to be able to train on the gen-
erated data, it is first necessary to preprocess the im-
ages. First, the images are loaded along with the cor-
responding labels. We decided to retain as much in-
formation as possible from the images, and therefore
kept all 3 RGB channels in the picture instead of con-
verting them to e.g., greyscale. The size of the image
is then re-scaled to ensure that it is 190x190 pixels,
as that is the size used in most cases in the darkweb.

The images are then normalized, changing the pixel
intensity range values from 0 − 255 to 0 − 1. This
makes it easier for the model to converge, and limits
the amount of zero-gradients during training.

6.1.3 Using ResNet50

To solve the clock CAPTCHA we use a residual neu-
ral network. The challenge lies withing accurately de-
termining the time on the clock, which has 720 pos-
sible solutions. Therefore, the type of deep learning
problem is a multi-class classification problem with
720 classes, with one class per possible time on the
clock. Provided a CAPTCHA challenge, the classifier
generates 720 probabilities, each giving how likely
the corresponding class is for the provided challenge.
With this list of probabilities, it is then possible to ex-
tract the highest one to find the classifiers best guess
for a solution to the challenge.

The architecture we have chosen to use is the
ResNet50 architecture. This architecture consists of
an initial convolutional layer followed by a max pool-
ing layer, 48 convolutional layers divided into resid-
ual building blocks with 3 layers in each, aw well
as an average pooling layer. Moreover, we added a
dropout layer with a rate of 0.7, that randomly sets in-
puts to 0, with a frequency of the rate at each step3.
This aids in avoiding over-fitting the model, essen-
tially dropping some information randomly during
training. In addition, a final dense layer is added,
mapping the output of the final layer to the number
of possible classes, in our case 720, using softmax ac-
tivation.

The entire implementation of our deep learning
model is implemented in Python using the Keras
API 4. Keras provides both an untrained and trained
version of the ResNet50 architecture. We utilized the
untrained architecture and performed the necessary
alterations of it to suit our challenge.

6.2 Training the Model

Training of a deep residual network is a complex and
resource heavy task, which can take a long time. The
model used in this paper builds upon the ResNet ar-
chitecture, and is trained on an AI Cloud with opti-
mized hardware for this specific task. The node which
training has been performed on contains 96 ’Intel(R)
Xeon(R) Platinum 8168 CPU @2.70GHZ’ CPUs, has
128GB RAM allocated and utilizes two ’Tesla V100-
SXM3-32GB’ GPUs to parallelize the training. Being

3https://keras.io/api/layers/regularization layers/
dropout/

4https://keras.io/
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able to utilize hardware this powerful cut the other-
wise long training phase very short.

While training the deep learning model, we found
that a batch size of 64 gave the best results. In order to
optimally utilize the GPUs available to us for training,
the batch size is scaled up according to the number of
GPUs, giving each GPU the intended batch size to
work with. The same is done for the learning rate.

The dataset used consists of 72,000 samples, and
is split into 80% for training and 20% for testing. The
training set is split up further, using 20% as the vali-
dation set. The reasoning behind this, is with access
to the publicly available source code used for gen-
erating the CAPTCHA challenge we are attacking,
we solved the challenge of data collection by being
able to generate our own labelled data automatically.
This allowed for the generation of perfectly balanced
datasets of any size, that are identical to the data the
model would be faced with in the evaluation and test-
ing phase. Furthermore the whole dataset is shuffled
before being split up into training and test sets, to en-
sure that every class is represented in each of the sets.

The metrics the model is judged by is the loss and
the accuracy. The loss is sparse categorical cross en-
tropy loss, a function used to calculate the loss of the
predictions made by the model in its current state,
compared to the true labels. The loss is used to indi-
cate to the model, how well it predicted in the current
iteration of training. The categorical cross entropy for
n number of predictions, is defined as:

Loss =−
n

∑
i=1

yi · log ŷi (1)

where yi is the actual label, and ŷi is the prediction
made by the model. The accuracy is standard classi-
fication accuracy, i.e., the number of accurate predic-
tions divided by the total number of predictions. The
reasoning behind using standard classification accu-
racy is that the dataset which the model builds upon is
equally distributed among all possible classifications.

Three different models have been trained on the
AI Cloud. Initially our focus was the model with the
most generic type of the clock, as seen on Figure 1.
The first edition of the model was only trained on
the Endgame variation of the clock. The results from
the Dread forum clock showed a high accuracy and
low loss (see Table 1). However, when tested against
the clock variations illustrated on Figures 1 and 1, the
model was unsuccessful. At that point it was obvious
that the slightest changes in the clock resulted in the
performance of the model deteriorating drastically. To
combat this, but to also test the adaptability of the
model training approach to modified versions of the
clock, clocks like the one found on the Cartel market-

place had to be generated. After analyzing the proper-
ties of the specific clock variation, and modifying the
clock generation code, we were able to successfully
generate these as well. Hence, we decided to build a
combined model for two clock types which is trained
on a equally distributed amount of both clocks at a 1:1
ratio, 36,000 samples of each. The training was set to
200 epochs, with early stopping if the validation loss
reaches a lower value than 0.05, using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate of
0.0001. Training on the generic clock alone lasted
for 708 seconds, reaching 11 epochs. Training on
the Cartel marketplace clock lasted for 301 seconds,
reaching 4 epochs. Training on the combined model
lasted for 759 seconds, reaching 12 epochs. The re-
sults of the training can be seen in Table 1.

Table 1: Overview of the performance of the different mod-
els on the test set.

Model Accuracy Loss
Dread Forum Clock 0.992 0.029
Cartel Marketplace Clock 0.996 0.025
Combined 0.988 0.048

6.3 Using the Model

To use the model a web scraper was developed ca-
pable of navigating to a given list of URLs either
via direct input or via reading the URLs from a text
file. The scraper loads the machine learning model
and utilizes Selenium 5 to open a web browser and
navigate to the site. The browser chosen in this case
was Google Chrome which does not support Tor na-
tively however does support utilizing a proxy to con-
nect with. A Tor proxy was therefore set up on the
default 9050 port. After connecting the webdriver
which selenium operates by, the browser navigates
to the site requested. As most of these sites con-
tain a queuing system to avoid DDoS attacks, it waits
until the clock CAPTCHA appears on screen before
continuing. Once this happens the scraper finds the
clock image, downloads it, resizes it to 190x190 pix-
els, passes it into the model and awaits its response.
Finally, the scraper passes the response to the site and
clicks the submit button. If the prediction is accu-
rate, the CAPTCHA is bypassed successfully. If the
model produces an incorrect result, the site generates
a new clock challenge and the procedure is repeated.
Should this result also be incorrect, the scraper exits
the site, since after the third incorrect submission the
Tor identity of the scraper will be banned from the
site. The scraper automatically detects whether or not
it was successful by checking if the CAPTCHA exists

5https://www.selenium.dev/

SECRYPT 2022 - 19th International Conference on Security and Cryptography

362



after clicking the submit button. If not, it assumes it
has successfully bypassed the CAPTCHA mechanism
and navigated to the home page of the site.

The trained model, along with its weights is
loaded by the scraper using the Keras API. A function
in the Python script used to make predictions, is then
able to make a prediction for a single image, and re-
turn the numerical label as a tuple, in an hour/minute
format. It then utilizes a dictionary loaded from a
JSON file, containing the mapping of numerical la-
bels to actual labels, to convert the values.

To test the model we utilize the scraper on 9 pop-
ular darkweb websites, that either contain the Cartel
marketplace or the Dread Forum CAPTCHA clock
variation. Each website is visited 20 times, however
visits that experience connection errors are being ex-
cluded from the final data set. The time measurements
are taken purely on the runtime of each metric, while
ignoring any time used on waiting in the DDoS queue,
connecting to the site, etc.

7 RESULTS AND DISCUSSION

To perform the evaluation of our deep learning model
we will be using the SKLearn Metrics module 6,
which provides a function to write out a classification
report. It provides the metrics precision, recall and
F1-score for each class in the data set, and an aver-
age for each metric across all classes. For each class,

Table 2: ResNet50 model performance test set.

Precision Recall F1-score Support
0:0 1.00 1.00 1.00 20
0:1 1.00 1.00 1.00 20
0:2 1.00 1.00 1.00 20
...
...
11:58 1.00 0.90 0.95 20
11:59 1.00 1.00 1.00 20
Accuracy 0.99 14400
Macro avg 0.99 0.99 0.99 14400
Weighted avg 0.99 0.99 0.99 14400

a true positive is correctly labelling the image as the
given class, and a false positive is labelling the image
as the given class even though it is not. A true neg-
ative is correctly not labelling the image as the given
class, and a false negative is incorrectly not labelling
the image as the given class.

The evaluation of our model will be performed on
a new labelled test data set consisting of 14,400 im-
ages, with a combination of two different variations of

6https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.classification report.html

the clock CAPTCHA. This test data set was balanced
with 10 instances of each possible class for both vari-
ations of the clocks. The evaluation was performed
on a standard computer with an Intel i5-4210U (1.70
GHz) CPU and 8GB of RAM, and the Ubuntu 20.04.3
LTS operating system.

The time required for this computer to load the
model, load all of the 14,400 challenges and provide
a solution was 41 minutes and 44 seconds. This is
an average of 0.17 seconds for each prediction on a
standard computer. As shown in Table 2, our model
achieves an accuracy of 99% on the test data set,
and an average precision, recall and F1-score of 99%
across all classes.

7.1 Clocks in the Wild

The scraper was programmed with the functionality to
run in both a sequential and a parallel mode. The par-
allel mode utilizes a thread-pool allowing the scraper
to run on several sites at once. Nevertheless, due to
the fact that threads share resources, the time to solve
a CAPTCHA on a site is increased quite drastically.

7.1.1 Sequential Mode

In the sequential mode, the scraper performed very
well in both finding the CAPTCHA and inserting the
result as indicated in Figure 3. The scraper utilized
the combined model as described in Section 6.2 as
the initial Dread forum model was unable to bypass
the clock found on the Cartel marketplace (see Fig-
ure 1). As seen in Figure 3, the time spent by the
scraper to find and download the image is about 0.05
seconds on average. The prediction itself averages at
0.12 seconds, and inserting the answer that the model
predicted takes 0.3 seconds, all in all resulting in a
scraper which can solve a clock CAPTCHA scheme
on a site in approximately 0.5 seconds on average.

Figure 3: Average runtime of the scraper in seconds, per site
and in sequential mode. The presented data were calculated
only from successful connections.
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7.1.2 Parallel Mode

In parallel mode, discovering the CAPTCHA image
and acquiring it took an average of 0.6 seconds, while
the prediction from the model averaged at 2.6 sec-
onds. Lastly, the result submission was executed in
approximately 3.6 seconds, contributing towards an
average total of 6.9 seconds, for the entire process
(see Figure 4). The parallel mode does also require
more computational resources, since Selenium opens
a new browser instance for each URL to scrape, while
the sequential mode opens a new tab in the same
browser instance. Hence, choosing the optimal mode
depends on the use case (e.g. commencing crawling
on one platform at a time, or several at the same time).

Figure 4: Average runtime of the scraper in seconds, per site
and in parallel mode. The presented data were calculated
only from successful connections.

7.1.3 Mode Comparison

Running the scraper in sequential mode on all 9 mar-
ketplaces is calculated at a total average of 4.5 sec-
onds, for all of the CAPTCHA challenges to be suc-
cessfully solved. In parallel mode, this number goes
up to 6.9 seconds and is equal to the average presented
on Figure 4, since in the specific mode this number
is already calculated with all of the CAPTCHAs be-
ing solved simultaneously. We consider these two av-
erages to be important since they provide an estima-
tion of the time a user would need to run the scraper
one platform at a time or on several platforms concur-
rently, without the identity of the platforms being a
factor. Furthermore, the disparity between the two re-
sults, is attributed to the aforementioned need for ad-
ditional computational resources that the scraper re-
quires when operating in parallel mode.

7.1.4 Scraper Evaluation

We tested our system by performing a total of 702
marketplace visits, both in parallel and sequential

mode. As shown on Table 3, the scraper had to per-
form an extra attempt to solve the challenge in 23 oc-
casions. This translates into the scraper being able to
solve the CAPTCHAs from the 679 remaining mar-
ketplace visits, on the first try. The resulting number
of challenges solved amounts to a total of 725, with an
overall accuracy of 96.83% (702 out of 725). Lastly,
in all of the 702 visits, regardless of whether it took
one or two attempts, the scraper managed to provide
automated access to the platform via bypassing the
CAPTCHA mechanism in 100% of the cases.

The results described above were achieved on a
computer with an Intel(R) Core(TM) i7-6500U CPU
@ 2.50GHz and 8GB of RAM running the Parrot
Linux operating system version 5.0.

Table 3: Performance of the scraper.

CAPTCHAs Retries Accuracy Site Visits Success Rate

725 23 96.83% 702 100%

8 CONCLUSION

In this work, we present a high performance attack
on the clock CAPTCHA found on multiple darkweb
marketplaces and forums, utilizing a deep residual
machine learning model, trained with a self generated
dataset, on a high performance AI Cloud. The result
is a model achieving an F1-score of 0.99 on 14,400
separately generated clock instances. Combining this
model with a web scraper, we successfully tested our
system against 725 CAPTCHA challenges, which be-
long to two different variations of the darkweb clock
CAPTCHA, with a 96.83% accuracy.

One limitation of this paper, is that our model is
over-fitted, fitting too closely to the training set and
thus does not perform well on unseen data. The cause
of this issue stems from the fact that the dataset is
uniform in terms of the clock image itself. The model
places great importance on the features of these spe-
cific clocks, hence modifying the target CAPTCHAs
results in a weaker performance of the model. How-
ever, we do illustrate that adapting the training data to
different variations of the clock, which we can easily
generate by modifying our data generation program,
is an effective solution to the over-fitting problem.
This gives our automated CAPTCHA solving system
great adaptability for future changes.

Another limitation is that the training of a model
requires a lot of memory. Training on 72,000 images
requires somewhere between 64− 128GB of RAM,
which is not available on a standard computer. This
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requirement of RAM stems from the individual im-
age file size including all RGB channels and the sheer
amount of images we used to train the model.

Lastly, with the goal of further improving our cur-
rent system, we also experimented with the Resnet18
architecture. We trained a new model using the ex-
act same parameters as we did with the Resnet50 ar-
chitecture and evaluated it with the SKLearn Met-
rics module. Our preliminary results suggest that the
model is able to achieve an accuracy of 100%, with
an average precision, recall and F1-score of 100%
across all classes, showing a lot of promise for future
implementations. Since Resnet18 is a significantly
lighter architecture than Resnet50, we will focus on
this model in our future work.
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(2016). The influence of the captcha types to its solv-
ing times. In 2016 39th International Convention
on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pages 1274–
1277.

Bursztein, E. and Bethard, S. (2009). Decaptcha: breaking
75% of ebay audio captchas. In Proceedings of the 3rd
USENIX conference on Offensive technologies, vol-
ume 1, page 8. USENIX Association.

Bursztein, E., Martin, M., and Mitchell, J. (2011). Text-
based captcha strengths and weaknesses. In Proceed-
ings of the 18th ACM conference on Computer and
communications security, pages 125–138.

Chellapilla, K., Larson, K., Simard, P. Y., and Czerwin-
ski, M. (2005). Building segmentation based human-
friendly human interaction proofs (hips). In Interna-
tional Workshop on Human Interactive Proofs, pages
1–26. Springer.

Csuka, K. and Gaastra, D. (2018). Breaking captchas on the
dark web.

Georgoulias, D., Pedersen, J. M., Falch, M., and Vasilo-
manolakis, E. (2021). A qualitative mapping of dark-

web marketplaces. In Symposium on Electronic Crime
Research (eCrime). IEEE.

Guerar, M., Verderame, L., Migliardi, M., Palmieri, F., and
Merlo, A. (2021). Gotta captcha ’em all: A survey
of twenty years of the human-or-computer dilemma.
2021-10-06.

Hossen, M. I. and Hei, X. (2021). A low-cost attack against
the hcaptcha system.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint: 1412.6980.

Martin, J. and Christin, N. (2016). Ethics in cryptomar-
ket research. International Journal of Drug Policy,
35:84–91.

Mittal, S., Kaushik, P., Hashmi, S., and Kumar, K. (2018).
Robust real time breaking of image captchas us-
ing inception v3 model. In 2018 Eleventh Inter-
national Conference on Contemporary Computing
(IC3), pages 1–5.

Noury, Z. and Rezaei, M. (2020). Deep-captcha: a deep
learning based CAPTCHA solver for vulnerability as-
sessment. CoRR, abs/2006.08296.

Shet, V. (2014). Are you a robot? introducing ”no captcha
recaptcha”. https://security.googleblog.com/2014/12/
are-you-robot-introducing-no-captcha.html.

Sivakorn, S., Polakis, J., and Keromytis, A. D. (2016). I’m
not a human : Breaking the google recaptcha.

Smith, R. (2007). An overview of the tesseract ocr engine.
In Ninth International Conference on Document Anal-
ysis and Recognition (ICDAR 2007), volume 2, pages
629–633.

Soska, K. and Christin, N. (2015). Measuring the lon-
gitudinal evolution of the online anonymous market-
place ecosystem. In 24th USENIX security symposium
(USENIX security 15), pages 33–48.

Tang, M., Gao, H., Zhang, Y., Liu, Y., Zhang, P., and
Wang, P. (2018). Research on deep learning tech-
niques in breaking text-based captchas and designing
image-based captcha. IEEE Transactions on Informa-
tion Forensics and Security, 13(10):2522–2537.

Weng, H., Zhao, B., Ji, S., Chen, J., Wang, T., He, Q.,
and Beyah, R. (2019). Towards understanding the
security of modern image captchas and underground
captcha-solving services. Big Data Mining and Ana-
lytics, 2(2):118–144.

Tick Tock Break the Clock: Breaking CAPTCHAs on the Darkweb

365


