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Abstract: Indoor radon represents a known hazard to public health, namely, its relationship with lung cancer. The 
adoption of data analytics tools for indoor radon human exposure risk assessment is crucial for building 
management decision-making and is a fundamental requirement for the implementation of remediation 
measures. This work presents the implementation of a data warehouse and an OLAP cube as components of 
a more comprehensive IoT-based system, which has been developed for continuous indoor radon gas 
management in public buildings. The proposed data warehouse consists of a three-tier data storage structure 
to store historical measurements. Although the adopted approach has been tested with a small number of IoT 
sensors, the operation of the data warehouse and OLAP server assures that the system is viable and highly 
scalable. The increase in the number of active IoT sensors deployed in new buildings, cities, and districts will 
increase the richness of the data, which will help to foster even better models. 

1 INTRODUCTION 

Radon is a naturally occurring and chemically inert 
radioactive gas that is produced from the natural 
decay of uranium (238U) which can be found in rocks 
and soil. Radon has no color, smell, or taste. It 
accumulates in enclosed spaces as it easily escapes 
from the ground into the indoor air. When the most 
stable isotope of radon (222Rn) decays, it emits alpha 
particles, beta particles, and gamma rays (Darby et 
al., 2005). Due to its radioactive nature, it represents 
the second cause of lung cancer after smoking 
worldwide  (WHO, 2017). Radon enters the body 
mainly through inhalation and it is in the lungs that its 
decay can cause damage in lung tissues. Radon and 
its decay products have been classified as 
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carcinogenic since 1988 by the International Agency 
for Research on Cancer (IARC) (Gaskin et al., 2018). 
A study has shown that the risk of contracting lung 
cancer increases by 16% for every increase of 100 
Bq.m-3 in radon concentration (Darby et al., 2005). 
Worldwide, inhalation of radon contributes to more 
than 40% of the annual dose of all ionizing radiation 
(APA, 2010). Since Radon is a hazardous air 
pollutant, when high concentrations are reached 
inside buildings, European Commission issued in 
1990 the recommendation 90/142/Euratom to 
propose concentration limit values of 400 Bq.m-3 for 
old dwellings and 200 Bq.m-3 for new dwellings (The 
Commission of the European Communities, 2001). 
The Directive 2013/59/EURATOM, issued in 2013, 
forcing all member states to prepare a plan to limit 
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exposition to radon gas and sets a concentration limit 
of 300 Bq.m-3 (European Commission, 2014). 
Portugal transposed this directive into national law 
effectively since April 3, 2019, through Decree-Law 
No. 108/2018 (Curado et al., 2019).  

Given the existing risk and the legislation in force, 
it is important to develop methodologies to evaluate 
and quantify the effective accumulated dose for the 
occupants of a building during a given period to 
implement remediation measures if necessary. Radon 
assessment campaigns can also be used to understand 
which factors, (internal and external), may impact 
indoor radon concentration. This has been the case in 
several studies conducted in the northern region of 
Portugal, which is a high-risk area (Curado et al., 
2017). In the study, the authors used handheld meters 
to analyze the indoor radon concentration in three 
houses during two distinct year seasons. The results 
showed that human occupation along with passive 
ventilation strategies directly affected radon 
concentration. Similar results were also found in 
another study  conducted in nine public buildings in 
the Alto Minho region (Curado & Lopes, 2016). 
However, while measurement campaigns are useful 
to assess the problem, they cannot implement real-
time mitigation measures. To implement real-time 
mitigation is necessary to have systems that are 
continuously measuring radon concentration inside 
buildings. Since society is also increasingly 
concerned with energy-saving and energy efficiency, 
these systems can integrate other indoor air quality 
parameters and information on building occupancy to 
dynamically adapt remediation measures that will 
keep the balance between radon concentration and 
thermal comfort. When a building is occupied, radon 
levels should be at an acceptable level keeping 
atmospheric conditions within a comfortable range, 
but outside occupancy intervals energy savings can be 
maximized without adversely affecting radon levels 
in periods of occupancy. 

Thus, the RnMonitor project (Online Monitoring 
Infrastructure and Active Mitigation Strategies for 
Indoor Radon Gas in Public Buildings in Nothern 
Region of Portugal) developed a system capable of 
online monitoring and actively mitigate radon 
concentration (Martins et al., 2020). The 
methodology described by Martins et al. corresponds 
to one of the RnMonitor platform modules that 
aggregates and displays the data collected in a set of 
critical buildings selected after an assessment 
campaign, during the first stage of the RnMonitor 
project execution. As there was no commercially 
available sensor to support the project requirements, 
an IoT-based multi-parameter sensor was developed 

for online monitoring of radon gas and other indoor 
air quality parameters. The measurements taken 
inside each compartment are transmitted hourly via 
radio communications to a local server. The proposed 
architecture uses a time-series InfluxDB database that 
records short-term measurements. Furthermore, it 
was implemented a data warehouse capable of storing 
long-term measurements and providing advanced 
analysis capabilities was yet to be implemented. 

This paper presents the development and 
implementation of a multidimensional data 
warehouse that enables the RnMonitor platform not 
only to store long-term measurements but also to 
offer the possibility of using OLAP cubes to explore 
the data in a multidimensional way. Moreover, this 
work also presents the modelling and implementation 
of the ETL process for the creation of a data 
warehouse. It was coupled an OLAP server that will 
make use of the data warehouse. This document is 
structured as follows: Section 2 presents continuous 
monitoring systems for radon or air quality; section 3 
presents the methodology to develop de data 
warehouse; results are presented and discussed in 
section 4; and, in section 5, conclusions are 
summarized. 

2 RELATED WORKS 

Over the years, several techniques have been 
developed for the measurement of radon 
concentration in air. Some of the best known are 
activated charcoal detectors, alpha-track detectors, 
and continuous radon detectors. Many campaigns are 
done with activated carbon detectors because they are 
easy to use and do not require electrical power during 
a collection campaign that lasts from two days to 
about a week. During the sampling period, the radon 
gas is absorbed by the activated charcoal following 
Van Der Wall’s basic principle. The radon 
concentration is later determined in the laboratory by 
counting the gamma-ray emissions of lead (214Pb) and 
bismuth (214Bi), which are decay products of radon. 
Andreas C. George (1984) describes the use of this 
type of detector for the measurement of radon 
concentration. 

Martín Sánchez et al. (2012) used an activated 
charcoal canister to identify 130 workplaces to 
perform a long-term study in Extremadura (Spain). 
The authors used this type of device since the 
exposure time required was only two days. Although 
these detectors are affordable and easy to install, they 
can only determine the average concentration. When 
it is necessary to measure the radon evolution over 
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time, the use of portable electronic sensors is an 
advantage. In addition to being able to collect data 
over longer periods, some devices allow one to 
download the measurements for analysis. Using 13 
portable radon monitor Airthings Corentium Plus in 
13 rooms of a school in Viana do Castelo, Azevedo et 
al. (2020) & (2021), analyzed the evolution of radon 
concentration in the rooms over 41 days.  

These equipment do not allow for active 
mitigation as the measurements are not processed in 
real-time by the device or sent to a cloud server for 
viewing, alerting, or activating a mitigation system. 
Zheng et al. (2016) developed a system for air quality 
monitoring using IoT techniques and Low Power 
Wide-Area (LPWA) wireless technology to transmit 
the data to the cloud where it is processed. Although 
this air quality monitoring system does not include 
radon measurement, the data transmission technology 
is interesting because it can cover a wide area. It was 
with this aim that a system that combines the use of IoT 
technologies and Low Power Wide-Area (LPWA) 
network communications has been developed (Sérgio 
I. Lopes et al., 2019). This continuous monitoring 
system, which the authors have called RnMonitor, 
makes use of IoT technologies and uses a license-free 
sub-gigahertz bidirectional LoRa communication to 
send the measurements. In a test using three 
LoRaWAN Gateways, the authors successfully 
covered the center of Viana do Castelo city with signal 
always below -100 dB while LoRa has an input 
sensibility of -148 dB (Sergio I. Lopes et al., 2019). 
The reader should notice that the development of the 
data warehouse presented in this paper is part of the 
RnMonitor platform. On the client-side, RnMonitor 
offers a front-end application that allows you to view 
the measurement sites with cartography-based 
navigation and a dashboard that makes use of Grafana 
to visualize the measurements over the last 24 hours, 1 
week or 3 months. Additionally, Pereira et al.  (2020) 
developed the RnProbe which is an IoT Edge device 
capable of measuring radon concentration, 
temperature, relative humidity, atmospheric pressure, 
and CO2. 

In the literature review, we did not find any online 
radon monitoring work combining the use of a data 
warehouse and OLAP. García-Tobar (2020) used an 
assessment campaign of two dwellings of a 
residential building in Madrid to build two OLAP 
cubes from the data. In other research domains, it is 
possible to find online monitoring systems that 
implement data warehouses. Soares et al. (2018) 
developed a data warehouse to store the water 
consumption of the municipality of Esposende in 
Nothern Portugal and thus monitor and analyze the 

water consumption to reduce water losses and 
improve water consumption management. Tshering 
et al. (2021) has created an IoT-based platform, using 
Apache Hadoop and Apache Kylin analytics engine, 
for continuous air quality monitoring to measure air 
pollution using a PM2.5 particulate sensor. 

3 SYSTEM IMPLEMENTATION 

The proposed system allows the record of 
measurements in a multidimensional data warehouse 
and the use of OLAP cubes to explore the data using 
MDX queries. The data warehouse thus created 
allows keeping the historical data and pre-calculated 
measurements beyond the 2 years limit of the 
InfluxDB time series database. 

3.1 RnMonitor Data Source 

The data warehouse has two data sources provided by 
the RnMonitor platform: the application database 
(AppDB) and the time series database (TSDB). The 
data contained in these two databases can be accessed 
through a RESTful API providing several endpoints. 
The endpoints are protected using JSON Web Tokens 
(JWT) that must be sent in the header of each request 
made by the user. 

The AppDB database is an open-source 
document-oriented NoSQL database MongoDB. 
Unlike relational databases, that store information in 
columns and rows, this type of database stores 
separate documents within a collection. The TSDB 
database is also an open-source database widely used 
in real-time monitoring applications, designed to be 
able to handle a high volume of queries and writes per 
second. Figure 1 shows the data model of the two 
databases of the RnMonitor platform. 

The raw measurement data generated by the 
sensors are stored in the TSDB database in the 
“Measurements” table. There are ten attributes 
"fieldn" which correspond to the various air quality 
parameters measured where "n" corresponds to the 
"field_id" of the table “Field”, a table that contains 
information about each of the parameters. Currently, 
the parameters analyzed are radon, temperature, CO2, 
atmospheric pressure, and relative humidity. 

In the AppDB database, one of the main tables is 
the table "Polygon", which can have four different 
types: compartment, building, county, and district. 
This table contains a parent-child relationship 
through an attribute indicating the parent polygon. 
Note that a compartment has always a building as a 
parent, a building has always a county as a parent and 
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Figure 1: RnMonitor Databases model. 

a county has always a district as a parent. The only 
polygon that has no parent is the so-called district 
because it is the highest order polygon. The 
“MeasurementSet” table is used to record the 
location of each of the sensors, as the same sensor 
may be used to take measurements in one room inside 
a building and later be removed to take measurements 
in a room inside another building in a different 
county. The sensor has no GPS locator, so its current 
location is only possible by looking at the 
"MeasurementSet" table.  

The table "OccupationProfile" allows the 
creation of different occupation profiles for the same 
room or building for different users. This can be used 
to calculate the accumulated radon exposure dose for 
different workers depending on the time they spend 
in the compartment. The "Notification" and “User” 
tables, although implemented, do not contain useful 
information for the implementation of the data 
warehouse. 

3.2 Data Warehouse 

The data warehouse was implemented considering 
the AppDB and TSBD data models and the data 
analysis goals. The data warehouse model uses a star 
schema for easier understanding and faster queries. 
The model shown in Figure 2 is composed of three-
dimensional tables and a fact table and two support 

tables. The "Dim_Polygon" dimension is the most 
important dimensional table. This table contains a 
parent-child relationship, where each polygon 
references its parent polygon through a foreign key 
that corresponds to the id of the parent polygon. 

The fact table “fact_measurement” contains 
three calculated measures: “radon_kpi_pt” which 
corresponds to the value of radon/300 being 300 
Bq.m-3 the radon limit in the Portuguese legislation; 
“radon_kpi_oms/100” being 100 Bq.m-3 the limit 
value advised by the WHO; “thi_value” which 
corresponds to the Temperature-Humidity Index 
(THI) value. This last attribute corresponds to the THI 
index, which represents the combination of 
temperature and humidity to measure the degree of 
thermal comfort experienced by an individual 
indoors. This index, developed originally by Thom 
(1959), combines the wet and dry bulb temperatures 
on a scale to mimic the thermal sensation of the 
human being. The Nieuwolt's (1977) modified THI 
correlates air temperature and relative humidity, 
allowing a more straightforward approach to rapidly 
assess indoor thermal discomfort based on the 
measurement of hygrothermal parameters. The 
Nieuwolts THI is defined by the following formula: 

THI = 0.8×T+(T×RH)/500 

where T corresponds to indoor air temperature and 
RH to the indoor relative humidity.  
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Figure 2: Data Warehouse Model. 

The “Closure” table allows keeping the transitive 
closures of the parent-child relationships of 
“Dim_polygon”. The hierarchy between parent and 
child is kept by the distance attribute that determines 
the distance between parent and child tuples. This 
table is necessary to the hierarchy definition in OLAP 
cube schemas when implemented on Mondrian 
OLAP Server. The table “thi_occupation” is used to 
normalize the non-quantitative attributes by 
removing them from the fact table and creating a table 
to register the different combinations. The 
combinations of the thi_occupation are defined in 
Table 1.  

Table 1: Thi_occupation table content. 

_id thi_description thi_lower thi_uppert Is_occupied
1 Too cold 0 8 false 
2 Too cold 0 8 true 
3 Need for heating 8 21 false 
4 Need for heating 8 21 true 
5 Comfortable 21 24 false 
6 Comfortable 21 24 true 
7 Need for ventilation 24 26 false 
8 Need for ventilation 24 26 true 
9 Too hot 26 99 false 
10 Too hot 26 99 true 
11 No THI data 0 0 false 
12 No THI data 0 0 true 

The range values for THI are defined by “thi_lower” 
and “thi_upper.” For each “thi_description” that 
corresponds to a different THI interval, we have two 

possibilities for the compartment occupation 
represented by the “is_occupied” column. 

3.3 ETL Process 

The ETL process allows the creation of the data 
warehouse by extracting data from the two databases 
of the RnMonitor platform, manipulating and 
transforming the data, before loading it into the 
respective dimensional and fact tables of the data 
warehouse. The ETL process is executed once a day, 
thus loading the measurements performed in the 
previous 24 hours. The use of a data warehouse will 
allow a better understanding of radon behavior and 
discover patterns through advanced analysis 
techniques. That is why a daily update of the 
measurements is sufficient since mitigation actions 
can be triggered by the RnMonitor platform based on 
the online radon readings loaded in the TSDB 
database. 

The ETL process was developed using Pentaho 
Data Integration (PDI) through the Spoon graphical 
interface. The transformations download data from 
both RnMonitor databases through several RESTful 
API endpoints. The ETL process is triggered by a 
single job that has the function of cascading several 
transformations. The execution of a transformation 
always depends on the conclusion of the previous 
one. There are two different ETL process execution 
flows. The first flow represented in the Figure 3 
corresponds to the initial process. It is executed only 
once and serves to create the data  
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Figure 3: Initial ETL execution flow. 

 

Figure 4: Update ETL execution flow. 

warehouse and the various tables that compose it. It is 
during this phase that all the dimensional tables are 
populated and all the measurements that can be obtained 
from the TSDB are loaded. The second flow represented in 
Figure 4 corresponds to the update process. This process 
flow is the one executed daily. In case of any change in the 
polygons data, the “dim_polygon” dimension is updated 
using a Kimball slowly changing dimension of type 2. The 
closure table is recreated whenever the “dim_polygon” 
dimension has new polygons. During this execution flow 
the fact table “fact_measurements” is loaded with the new 
measurements since the last update even if the system was 
down for several days. 

3.4 OLAP 

Online Analytical Processing (OLAP) is a technology 
that is part of many Businesses Intelligence (BI) 
applications and allows for complex analytical 
calculations. Aggregations, merging, and grouping in 
a relational database are not efficient. These 
operations are faster using OLAP since the data can 
be pre-calculated and pre-aggregated. Our solution 
provides an OLAP server to explore the cubes using 
MDX queries, and for that, we have used Mondrian 
as our OLAP Server. The data cube granularity is 
determined by combining the levels corresponding to 
each cube axis. We can change the level of granularity 
to a finer one or coarser one, producing a different 
cube measure value.  

We can map members of the lower hierarchy to 
members of the higher hierarchy. With the members 
existing in our dimensional tables, the hierarchies of 
Figure 5 can be implemented on the cube.  

 

Figure 5: Dimension Hierarchies. 

For the Mondrian OLAP server to use the data 
warehouse created, it must use a cube schema file. 
This XML file contains the definition of one or more 
OLAP cubes.  

We can see the graphical representation of the 
cube schema in Figure 6. In this definition, we find 
the three dimensions with their respective hierarchies 
and levels. The dimensions, Time, and Date are 
defined outside the cube to be used in several cubes. 
The cube makes use of these dimensions through 
dimension usage. In “Dim_Polygon” dimension, 
only one hierarchical level is defined. since the 
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relation between the polygons is defined by using a 
“closure” table, as the schema shows. 

 

Figure 6: RnMonitor cube. 

4 DISCUSSION 

The data warehouse was validated by checking that 
the contents of the data warehouse and the data 
available in the two databases of the RnMonitor 
platform, RawData and AppData. The data 
warehouse content is structured according to the 
multidimensional schema. It contains all the records 
of the measurements gathered by the sensors since the 
beginning of the sensors' measurements. By 12 March 
2022, the database contains more than 121,000 radon 
measurement records. The first measurement took 
place on 15 May 2015, and after more than 33 months 
the data warehouse has been updated daily proving 
that it supports long-term data recording (over 24 
months).  

Table 2: Data Warehouse content. 

Total number of measurements 121 735 

Data collection starting date 2019/05/15  

Districts 3 

Counties 10 

Buildings 18 

Compartments 22 

The data warehouse will be used to create tools 
and develop strategies for radon mitigation. Table 2 
show that the available measurements took place in 
22 compartments of 18 different buildings located in 
10 different counties which correspond to 3 different 
districts. 

Table 3 shows the number of records per sensor in 
more detail. Currently, seven active sensors are 
gathering hourly measurements for the RnMonitor 
platform. More details about the implementation of 
the active sensors can be found in Pereira et al.  
(2020). 

Table 3: Measurements by active sensor. 

Sensor Measurements Start Date 

D001 9554 2019-05-15T15:00:00 

D003 22811 2019-05-15T15:00:00 

D004 9545 2019-05-21T21:00:00 

D007 8432 2019-07-05T00:00:00 

D009 18246 2019-05-28T20:00:00 

D0011 10273 2019-11-09T00:00:00 

D0012 16457 2019-11-12T22:00:00 

The validation of the OLAP server aimed to verify 
that the cube schema was functional and to make sure 
that MDX queries returned the expected results. As 
the Mondrian instance provides a graphical interface 
to test MDX queries, this functionality was tested 
using queries that correspond to simple OLAP 
operations. Since we installed the instance on a 
remote server, we ran the test through the browser of 
the Windows operating system computer and 
accessed the URL serving the GUI web page. 
Although the number of sensors that are carrying out 
the measurements is small, the perspective is to 
increase the number of sensors once the validation of 
the operation of the data warehouse and OLAP server 
confirms that the system is viable and has room to 
grow. The increase in the number of active sensors 
and the planned extension to other buildings, cities, 
and even districts will greatly enhance the richness of 
the data. A larger and more diversified data set will 
allow producing better models. 

5 CONCLUSIONS 

The assessment of indoor radon concentration and the 
mitigation of the associated exposure risks in public 
buildings becomes mandatory because European 
directives force member states to act to reduce the 
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indoor exposure risk. The exposure to high radon 
concentrations increases the risk of developing lung 
cancer. This risk increases in areas with a specific 
geological constitution and poorly ventilated 
buildings. These two factors are prevalent in public 
buildings in the center and northern Portugal. In this 
context, the RnMonitor platform was created to 
perform continuous indoor radon monitoring in 
several public buildings in the North of Portugal. This 
paper presents the development of a data warehouse 
capable of storing all the measurements’ history and 
some derived measures, which has been integrated as 
an additional module with the RnMonitor platform. 
The data are loaded to the data warehouse through the 
execution of an ETL process created for this purpose. 
An OLAP server has been coupled to the data 
warehouse to support OLAP cubes and business 
intelligence tools. 
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