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Abstract: Cryptography has been extensively used in Android applications to guarantee secure communications, conceal
critical data from reverse engineering, or ensure mobile users’ privacy. Various system-based and third-party
libraries for Android provide cryptographic functionalities, and previous works mainly explored the misuse of
cryptographic API in benign applications. However, the role of cryptographic API has not yet been explored
in Android malware. This paper performs a comprehensive, longitudinal analysis of cryptographic API in
Android malware. In particular, we analyzed 603937 Android applications (half of them malicious, half benign)
released between 2012 and 2020, gathering more than 1 million cryptographic API expressions. Our results
reveal intriguing trends and insights on how and why cryptography is employed in Android malware. For
instance, we point out the widespread use of weak hash functions and the late transition from insecure DES to
AES. Additionally, we show that cryptography-related characteristics can help to improve the performance of
learning-based systems in detecting malicious applications.

1 INTRODUCTION

The Android operating system has spread worldwide
during the last decade, reaching almost 3 billion users
in 2021 (BusinessOfApps, 2022). At the same time,
security threats against Android have multiplied, as
recent reports showed (McAfee Labs, 2019).

Most Android applications employ cryptographic
primitives to conceal critical information and securely
carry out communication with internal components,
applications, and web services. At the same time, it
is natural to imagine that malware authors may lever-
age cryptography in a plethora of artful ways to serve
their malevolent objectives. For instance, cryptogra-
phy equips attackers with the ability to fingerprint the
parameters of an infected device, encrypt users’ media
files, establish a secure connection with a command-
and-control server, or manage ransom payments car-
ried out by victims infected by, e.g., ransomware.

Previous research conveyed a significant effort in
analyzing cryptography in benign applications. The fo-
cus was mainly related to the misuse of cryptographic
application programming interface (API) in benign An-
droid applications, i.e., on finding and eliminating vul-
nerabilities in the employed crypto-routines that may
allow attackers to obtain sensitive information (Egele

et al., 2013; Muslukhov et al., 2018; Chatzikonstanti-
nou et al., 2016; Shuai et al., 2014).

To the best of our knowledge, however, no study
explored how cryptography is currently employed in
malicious applications. In this paper, we answer two
important research questions related to cryptography
and Android malware:

1. RQ.1: Are there significant differences in how
cryptography is employed in benign and malicious
applications?

2. RQ.2: Can information about cryptography im-
prove Android malware detection?

We believe that answering these questions will
shed more light on the mechanisms of Android mal-
ware, providing new insights for its analysis, charac-
terization, and detection. In this paper, we propose
two main contributions. First, we deliver a compre-
hensive comparison of how cryptography is employed
in 603937 malicious and benign applications released
in the last decade. Such a comparison is carried out
with an open-source1, scalable approach that inspects
(among others) the usage of hash functions, symmetric

1The code is acessible from github.com/adamjanovsky/
AndroidMalwareCrypto.
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and public-key encryption, PRNGs, etc. In total, we
inspect over 106 of cryptographic API expressions.

Second, we show that cryptographic features can
be used to augment the performances of state-of-the-
art malware detectors, demonstrating their discrim-
inant power in distinguishing malicious and benign
applications. We also employ techniques inherited
from the interpretation of learning models to point out
possible connections between cryptographic API and
malicious actions.

The attained results show many intriguing and sur-
prising trends. For example, in contrast to benign
applications, malware authors do not typically resort
to strong cryptography to perform their actions. We
show that malware often favors the use of cryptograph-
ically defeated primitives, e.g., weak hash functions
MD5 (Wang and Yu, 2005) or SHA-1 (Stevens et al.,
2017), or symmetric encryption scheme DES (Biham
and Shamir, 1991). These insights can also be es-
pecially useful to learning-based models, which can
leverage these cryptographic trends to improve the de-
tection rate of malware. We believe that the results
presented in this work can constitute a seminal step to
foster additional research on the relationship between
cryptography and Android malware.

The paper is organized as follows: In Section 2,
we describe the methodology of our analysis. In Sec-
tion 3, we answer the first research question. Section 4
discusses cryptographic API in relation to malware
detection. The limitations of our study are discussed
in Section 5. Section 6 describes the related work and
Section 7 closes the paper with the conclusions.

We also deliver an extended technical report for
this paper on arXiv2.

2 METHODOLOGY

This section describes the methodology we employed
to extract and analyze the cryptographic API embed-
ded in Android applications. We start by formalizing
the problem, properly defining its domain and vari-
ous constraints. We then show how we implemented
this formalism in practice by discussing our developed
analysis framework. Our findings are based on the
static analysis of the Java source code obtained by the
decompilation of the Android executables.

2.1 Problem Formalization

We organize the problem formalization in two parts:
part one treats the definition of the crypto-routines of

2https://arxiv.org/abs/2205.05573.

interest for our analysis, part two describes the process
of locating those routines in the application source
code.
I. Definition of Crypto-routines. Given a set of An-
droid applications, we denote the set of all possible
functions F contained in their source code as:

F= U∪S∪T= C∪Cc,

Where U represents the set of functions defined by the
user, S is the set of system-related functions contained
in the Android SDK, and T is the set of functions be-
longing to third-party libraries. Given a set of known
crypto-related functions C, our goal is to study the in-
tersection of C and S, denoted as Fcs. In other words,
Fcs is the set of cryptography-related functions that are
defined in the system package (in Android represented
by JCA functions). Notably, in this analysis, we dis-
card custom cryptographic functions that users or third
parties may implement. Automatic detection of such
functions would be a complex task in the context of
a large-scale analysis, which may lead to false posi-
tives (or negatives) without further manual inspection.
In our study, we solely aim to answer what functions
from Fcs the malware authors favor.

From the cryptographical perspective, the func-
tions contained in Fcs can be divided into the fol-
lowing categories: (i) Hash functions. Cryptographic
hash functions such as MD5, SHA-1, or SHA-2; (ii)
Symmetric encryption. Symmetric cipher primitives
such as AES, DES, or RC4; (iii) Public-key encryp-
tion. Asymmetric primitives, in Android represented
by the RSA cryptosystem; (iv) Digital signature al-
gorithms. Primitives that empower digital signatures,
e.g., ECDSA; (v) MAC algorithms. Primitives that
construct Message Authentication Codes, also called
MACs; (vi) PRNG. Functions to run pseudo-random
number generators (PRNG); (vii) Key agreement proto-
cols. Algorithms for key exchange, in JCA represented
by Diffie-Hellman protocol; (viii) Others. Functions
that do not fall into any of the previous categories.
II. Locating Cryptographic API. All functions in
Fcs are available through two Java packages in An-
droid API: javax.crypto and java.security. Our
research aims to reveal which cryptographic functions
have been chosen and directly employed by the au-
thors. Notably, Android applications typically contain
third-party packages that invoke crypto functions. We
aim to exclude those packages from our analysis as the
application authors did not contribute to them.

Thus, for each Android sample, we are interested
in extracting the cryptographic API Fa ⊆ Fcs that is
invoked from user-defined functions U. To obtain the
functions belonging to Fa, we perform two steps: (i)
We automatically detect the classes that belong to third-
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party or system libraries, and we exclude them from
the set of classes that should be explored. By doing so,
we establish the list of user-implemented functions U;
(ii) We extract all references to crypto-related functions
Fcs that are invoked directly from U.

The first step is motivated by the discovery (Wang
et al., 2015) that more than 60% of Android APK3

code (on average) originates from third-party packages.
To study user-authored code, it is therefore critical to
differentiate, with reasonable certainty, whether a class
belongs to a third-party library or not. This task can
be extremely challenging and was extensively studied,
e.g., by (Wang et al., 2015; Ma et al., 2016b; Backes
et al., 2016). It does not suffice to merely search for the
import clauses in the decompiled source code since
the non-system packages could be renamed. This sce-
nario is especially frequent in malicious applications,
as the authors aim to defend against any forensics. In-
spired by the systematic review of third-party package
detectors (Zhan et al., 2020), we opted to tackle this
with LibRadar, a popular third-party libraries detec-
tion tool that utilizes clustering and complex signatures
to recognize such libraries (Ma et al., 2016b). In this
review, LibRadar achieves the highest precision and
second-highest recall while it takes approx. 5 seconds
to evaluate an APK on average. The runner-up requires
over 80 seconds per APK, which would be unsuitable
for large-scale analysis. LibRadar was trained on a
large dataset of Android applications and can reliably
fingerprint more than 29000 third-party libraries, not
relying on package names. Consequently, LibRadar
can identify obfuscated packages. Using LibRadar4,
we filter the identified third-party packages of an APK
from subsequent cryptographic API analysis.

2.2 Crypto API Extraction Pipeline

Our system generates a comprehensive report of the
embedded cryptographic API, given an application
dataset. As an input, configuration files for the to-be-
conducted experiment are taken. Apart from other
choices, the files contain a list of APKs that can be
loaded from a disk or downloaded from the Internet.

The APKs are then processed in parallel, and each
sample traverses the following pipeline:

1. Pre-processor. This module decompiles the APKs

3Android Application Package, an archive that encapsu-
lates the whole Android application.

4Since LibRadar requires large Redis database to
run (preventing parallelization), we actually leveraged its
lightweight version LiteRadar. Prior to doing so, we com-
pared the output of both tools on a small subset to find out
that this decision has a negligible effect on the number of
detected libraries.

to obtain their Java source code. Then, the third-
party packages of the APKs are identified, and the
whole Java source code of the APKs is extracted.

2. Crypto-extractor. This module extracts and an-
alyzes the cryptographic function call sites in the
application source code. Their filtering is achieved
by matching pre-defined regular expressions. Ad-
ditionally, the crypto-extractor also detects both
Java and native third-party cryptographic libraries.

3. Evaluator. This module stores, organizes, and ag-
gregates the information retrieved by the analyzed
APKs to a JSON record.

The evaluator outputs a report of the cryptographic
usage for each APK. We designed the system in a
modular fashion so that one can alter its inner workings
to extract further valuable insights from the APKs.

2.3 Dataset

To gain an all-around view of the cryptographic API
landscape in Android applications, we leverage the
Androzoo dataset (Allix et al., 2016). Currently, An-
drozoo is the largest available dataset of Android ap-
plications, containing more than 15 million of APKs.
We sampled 302039 benign applications and 301898
malicious applications from Androzoo released in the
years 2012-2020. We strived for uniform distribution
of samples in the studied timeline. Yet, for years 2018,
2020 we could only collect a limited number of ma-
licious samples – 19305 and 10039, respectively. To
speed up the computation, we only gathered APKs
smaller than 20MB (approximately 89% of malicious
APKs in the Androzoo fulfill this criterion).

To accurately discriminate malicious files, we con-
sider an APK as malicious if it was flagged malicious
by at least five antivirus scanners from the VirusTo-
tal service5, which should reliably eliminate benign
files deemed malicious, as reported by Salem (Salem,
2020). Our samples are predominantly originating
from 3 distinct sources: Google Play (60%), Anzhi
(19%), and Appchina (13%). Note that the samples
were deduplicated on a per-market basis (Allix et al.,
2016) to avoid over-counting.

2.4 Cryptography and Machine
Learning

Statistics about cryptographic usage are undoubtedly
helpful in pointing out differences between benign and
malicious applications. Another intriguing question to

5virustotal.com. The number of VirusTotal positive flags
is already contained in the Androzoo dataset.
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explore is whether such statistics can be useful to rec-
ognize malicious samples from benign ones effectively.
To answer this question, we propose three methods
that employ machine learning techniques, described in
the following.

2.4.1 Cryptographic Learning Model

The first technique consists of defining a learning-
based system whose structure is inspired by other pop-
ular detection systems (Daniel et al., 2014; Chen et al.,
2016; Maiorca et al., 2017). In particular, the pro-
posed system performs the following steps: (i) it takes
as an input an Android application and extracts its
cryptographic API usage with the pipeline described
in Section 2.2; (ii) it encodes this statistics into a vector
of features; (iii) it trains a machine-learning classifier
to predict a benign/malicious label.

The feature vector includes features that can be
categorized into three sets:

• Set A: flags indicating the use of third-party cryp-
tographic libraries (both Java and native).

• Set B: frequencies of specific cryptographic API
constructors and imports of crypto-related classes,
e.g., number of DES constructors in a sample.

• Set C: aggregated statistics of call sites and
imports related to categories of cryptographic
primitives: hash functions, symmetric encryption
schemes, and so forth. For example: how many
distinct hash functions a sample uses.

By joining these sets, we obtain 300 potentially
informative features. These features are further fil-
tered with a feature selection algorithm. The dataset
with candidate features is split in a 9:1 ratio into train-
ing/test sets. Then, we apply two feature selection
methods to drop uninformative features. First, we ex-
amine all possible pairs of features. If a pair exhibits
Pearson’s correlation coefficient higher than 0.95, we
drop a random feature of such a pair. Second, we re-
move the features that are deemed uninformative by
Boruta (Kursa et al., 2010). Boruta is a supervised
algorithm that iteratively replicates features, randomly
permutates their values, trains a random forest, and
removes redundant features based on the z-score. The
feature selection process yields 189 features that are
used for learning.

To choose the best family of models for discrimi-
nating between malicious and benign samples on our
dataset, we experimented with naive Bayes, logistic
regression, support vector machines with linear kernel,
random forest, gradient boosted decision trees, and
multilayer perceptron. We tuned the classifiers’ hy-
perparameters using 10-fold cross-validation on the

training dataset, optimizing for the F1 score. Subse-
quent evaluation yielded a random forest (which works
as a majority-voting ensemble of decision trees trained
on different subsets of the data) as the best-performing
classifier (w.r.t. F1 score). We do not report the entire
analysis here for brevity, and we stick to the random
forest in the rest of the paper.

2.4.2 Explaining the Learning Model

To further advance the understanding of cryptographic
API in Android detection, we explain the predictions
of the just described cryptographic classifier. To do
so, we follow the techniques of explainable machine
learning, a field that attempts to understand why a clas-
sifier makes certain decisions. We study both global
and local importances of the features extracted by the
classifier, in a similar fashion to what has been pro-
posed in previous work (Melis et al., 2018; Melis et al.,
2022). A global analysis evaluates the impact of the
features averaged over the whole dataset, while local
analysis evaluates the impact of the features on specific
samples.

To interpret the classifier’s predictions, we used
Shapley additive explanations (SHAP) (Lundberg and
Lee, 2017) that are successfully used outside of com-
puter science. SHAP can consistently explain both
local predictions and global feature importance by
measuring each feature’s contribution to the predic-
tion. This method uses Shapley values (Shapley, 1953)
from coalitional game theory. Each player is a feature
or a coalition of features, and the game (payout) is
the prediction. Shapley values are considered opti-
mal because they satisfy the properties of efficiency,
symmetry, dummy, and additivity.

2.4.3 Classifier Enhancing

The third approach consists of taking a well-
established malware classifier for Android as a base-
line and measuring its performance when enhanced
with features related exclusively to cryptographic API.
To this end, we chose R-PackDroid (Maiorca et al.,
2017), an available learning-based classifier (trained
on random forests) based on static features, and we
expand its feature set by adding the cryptographic fea-
tures described above. There are multiple reasons for
which this system was chosen as a baseline: (i) It was
initially designed to detect ransomware; (ii) It harvests
a relatively small number of features; (iii) It features a
high detection rate (the original paper documents over
97% F1 score).

Considering the characteristics described above, it
would normally be challenging to improve the already
strong performance of the system by adding more fea-
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tures. To keep some space for improvement when
enhancing the classifier with cryptographic features,
we decreased the number of R-PackDroid features
from 211 to 10 in a controlled manner, leading to an
F1 score of 76%. To measure the effect of crypto-
graphic API features on the model, we replicated the
following procedure 1000 times: (i) We sample 10
random features from R-PackDroid6; (ii) We build
a random forest classifier and measure its F1 score;
(iii) We enhance the 10 R-PackDroid features with
all 189 cryptographic API features chosen by feature
selection; (iv) We use the expanded feature set to build
another random forest classifier and measure its per-
formance gain over the baseline classifier.

With the three strategies described above, we un-
veil the role of cryptographic API for malware detec-
tion, as will be shown in Section 4.

3 TRENDS IN CRYPTOGRAPHY

In this section, we answer RQ.1: Are there significant
differences in how cryptography is employed in be-
nign and malicious applications? We report the most
significant statistics we obtained with the API extrac-
tion methodology presented in Section 2.2. First, we
discuss the general prevalence of cryptographic API
that can be extracted with static analysis by discussing
the effects of obfuscation, the incidence of third-party
packages, and the overall differences between benign
and malicious applications. Then, we provide a more
detailed focus on the distribution of cryptographic API
in malicious applications.

3.1 General API Distribution

3.1.1 Application Obfuscation

The first interesting trend of this study is a decreasing
ratio of malicious applications for which we detect
usage of cryptographic API, as depicted in Figure 1.
However, such a ratio is not visible for benign applica-
tions. We conjecture that this drop does not represent
a genuine decrease in usage of cryptographic function-
ality in time but rather a consequence of increasing
ratio of obfuscated malicious applications. To confirm
this hypothesis, we randomly sampled 4444 malicious
applications from 2018-2020 that allegedly contain
no cryptographic API or third-party libraries. We dis-
sected them using commercial dynamic analysis tool
apklab7 and searched for clues of obfuscation. We

6The tuples were sampled in advance to avoid repetition.
7Kindly provided by Avast, available at http://apklab.io.

identified that 98% applications use some form of An-
droid packer, with jiagu being most popular. Each
packed application also uses reflection API and dy-
namic library loading, tools that prevent static analysis
from registering cryptographic API call sites. We also
report that 83% of applications use some form of en-
cryption API (AES being the most prevalent, followed
by RSA), often to decrypt application resources. Such
reduced prevalence of crypto API constitutes a limita-
tion of our study, further discussed in Section 5.

3.1.2 Third-party Packages and Crypto Libraries

Another closely related trend is the dropping ratio of
third-party packages captured by LiteRadar in ma-
licious applications. Before 2018, we documented a
high ratio of malware employing third-party packages
(86%). Starting with 2018, this ratio quickly drops
as depicted in Figure 1. Similar to obfuscation, this
drop is not evident in benign applications. Overall,
LiteRadar was able to identify at least one third-party
package in 94.6% of analyzed goodware with little
variance between years (see Figure 1). On average,
8 packages were identified in benign APKs. This un-
derpins the importance of robust third-party package
detection. In contrast to prior work that did not con-
sider third-party package filtering, we discarded over 4
million third-party packages with at least 44 thousand
unique package names from the analysis.

Apart from Android API, cryptographic functions
can also be delivered by third-party libraries, typically
adopted to integrate functionality missing in system-
based libraries. With expert knowledge, we identi-
fied 13 Java and 10 native third-party cryptographic
libraries for which we searched in the samples (see
paper artifacts for the full list). We identified only
796 benign and 198 malicious applications that im-
port third-party cryptographic libraries. Of the studied
libraries, sqlcipher was most popular in goodware
(found in 622 samples), and keyczar was most pop-
ular in malware (found in 124 samples). The ratio
of these applications has been stable throughout the
studied timeline. As for the native libraries, not a sin-
gle call to a native cryptographic library was detected
in the malicious dataset, and merely 91 imports of
OpenSSL occurred in the benign dataset.

From these results, it is possible to observe that
third-party cryptographic libraries are not widely used
in Android applications. This aspect demonstrates that
attackers often resort to standard crypto functionali-
ties provided by system libraries (that can use various
backends, e.g., BouncyCastle).
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Figure 1: Time evolution of important dataset characteristics. The y-axis show the percentage of APKs exhibiting given
feature, whereas the x-axis represents the time in years. In subplot (a) we see the ratio of APKs in which we detected any
cryptographic API. Subplot (b) shows APKs for which we detect any third-party package. These are the main artifacts of
increasing obfuscation. Subplots (c), (d) document the usage of AES vs. DES in benign, and malicious samples respectively.
AES has been the most prevailing cipher suite in benign applications since 2012. On the contrary, DES was more popular in
malware in previous years, only in 2015 being outran by AES.

3.1.3 Crypto API in Goodware and Malware

We now describe the general prevalence of crypto-
graphic API in the dataset presented in Section 2.3 by
showing the differences between malicious and benign
applications and comparing our results with two stud-
ies conducted on benign datasets. For this comparison,
we employed: (i) A dataset collected in 2012 as a part
of the study CryptoLint (Egele et al., 2013) that we
refer to as CryptoLint-B12; (ii) A dataset collected
in 2016 as a part of Binsight study (Muslukhov et al.,
2018) that we refer to as Binsight-B16. To avoid tem-
poral data drift, we cast four subsets of our dataset:
Androzoo-B12, Androzoo-M12, Androzoo-B16, and
Androzoo-M16, limited to malicious (M), and benign
(B) samples from years 2012 (12), and 2016 (16). As
explained in Section 2, our goal is to analyze only cryp-
tographic APIs contained in user-defined code. From
this respect, both (Egele et al., 2013; Muslukhov et al.,
2018) employ weaker methodologies to filter third-
party libraries, relying on whitelisting and package
names. Conversely, our approach of LiteRadar filter-
ing captures the code written by the application authors
more reliably. The numbers drawn from the Androzoo
datasets serve as conservative estimates, with the real
number of cryptographic API call sites even higher.
The overall comparison with benign datasets is de-
picted in Table 1. It can be seen that the malicious
datasets have a dramatically higher density of crypto-
graphic API call sites than their benign counterparts.
CryptoLint-Anndrozoo Comparison. The
CryptoLint-B12 dataset resulted from scanning
145095 samples for the presence of cryptographic
API (and its misuse). The study concluded that
15134 (10.4%) of APKs contain some cryptographic
call sites. However, the subsequent BinSight study
attributed 79.5% of these call sites to the ignored
third-party packages, showing that the original
CryptoLint study suffered from overcounting.

In contrast, we report that 27.4% of Androzoo-B12
contains cryptographic API call sites and nearly twice
as much malware from Androzoo-M12 (53.1%), too.
This highlights the extensive use of cryptographic API
in malicious applications compared to the benign land-
scape. A closer examination of symmetric ciphers in
Table 2 also reveals considerable differences between
malicious and benign datasets. AES dominates benign
datasets with 58.9% in CryptoLint-B12 and 52.4% in
Andozoo-B12. The situation is strikingly different in
the malicious dataset. In Androzoo-M12, the most
popular primitive is DES with 56% of call sites, fol-
lowed by AES (12.1%) and 3DES (0.9%).
BinSight-Androzoo Comparison. The BinSight pa-
per aimed to answer what proportion of cryptographic
API misuse can be attributed to third-party packages.
The authors identified 638 distinct third-party pack-
ages in 115683 unique samples in BinSight-B16, re-
lying on the package name as an identifier. The au-
thors attributed at least 90.7% of the call sites to third-
party packages, underlying the need for their robust
detection. Even after we discarded 9870 third-party
packages from Androzoo-M16, the malicious dataset
still contains much more cryptographic API in the
user-authored codebase. Again, the relations between
Androzoo-M16 and BinSight-B16 are depicted in Ta-
ble 1. Interestingly, in 2016, AES was dominant in
Androzoo-M16 as well with 45.1% of call sites, fol-
lowed by DES (22.8%). We depict the time evolution
of AES vs. DES in Androzoo dataset in Figure 1,
showing that it was only in 2015 when AES outran
DES in malicious applications.

3.2 Crypto API Categories in Malware

Apart from the comparison to benign applications, we
also report a broad view of the distribution of cryp-
tographic API in malicious applications, concentrat-
ing on the years 2012-2018, for which we dispose of
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Table 1: Comparison of cryptographic API spread in benign vs. malicious datasets. The last column normalizes by the size of
the datasets, allowing for direct comparison.

Dataset #APKs #User-def. call sites #User-def. call sites/10k samples
CryptoLint-B12 145095 20967 1445
BinSight-B16 115683 78163 7006
Androzoo-B12 39838 81698 20507
Androzoo-B16 37493 124705 33260
Androzoo-M12 39767 125225 31489
Androzoo-M16 39325 208625 53051

Table 2: Distribution of symmetric ciphers in benign and malicious datasets with AES dominating all but Androzoo-M12.

Dataset AES DES 3DES RC4 Blowfish Unknown
CryptoLint-B12 58.9% 19.0% 8.8% 0.4% 1.9% 10.9%
BinSight-B16 64.4% 14.3% 1.1% 2.1% 0.9% 17.2%
Androzoo-B12 52.4% 16.9% 3.8% 0% 0.0% 26.8%
Androzoo-B16 59.0% 12.2% 2.0% 0.1% 0.0% 26.8%
Androzoo-M12 12.1% 56.0% 0.9% 0.0% 0.0% 31.0%
Androzoo-M16 45.1% 22.8% 2.1% 0.0% 0.0% 30.0%

representative samples not clouded with high ratio of
obfuscated applications.

Table 3 illustrates that the majority of call sites
from this period can be attributed to hash functions
(66%) and symmetric encryption (26%), which leaves
the rest of the categories rarely used. Nevertheless,
we comment on our findings in all categories, observ-
ing the time evolution trends and showing the most
prevailing primitives. We could not attribute 21% of
the identified constructors to the exact cryptographic
primitive (partial obfuscation) during our experiments.
We still manage to pinpoint their presence and even
their category, as the system-based API calls are chal-
lenging to obfuscate entirely.
Hash Functions. The hash functions are by far the
most popular category of cryptographic API in mali-
cious applications, as they are present in 40% of all
studied APKs and responsible for 424858 call sites in
our dataset. Interestingly, the majority of the call sites
resort to primitives MD5 or SHA-1 that were already
shown to be broken (Wang and Yu, 2005; Stevens et al.,
2017). Specifically, MD5 can be attributed to more
than 80% of these call sites and does not lose any of
its popularity in time. This may suggest that MD5 is
either not meant to provide secure integrity protection
for the authors or that the developers are unaware of its
weakness. The time evolution of SHA-1 and SHA-256
points to the former case. Indeed, the overall dominant
SHA-1 (almost 16% of call sites) is gradually decreas-
ing over time in favor of the more secure SHA-256 (3%
overall). In 2018, SHA-256 was present in more APKs
(708) than SHA-1 (528). This phenomenon can mean
that, when secure integrity protection is needed, more
secure SHA-256 is nowadays being selected instead

of SHA-1. Still, MD5 is preferred by the malware
creators for other use cases. Apart from the hash func-
tions mentioned above, only SHA-512 and SHA-384
are represented in the dataset, but these are responsible
for less than 1000 call sites in total.
Symmetric Encryption. A large portion of the sym-
metric encryption API landscape was already de-
scribed in Section 3.1.3, but some important aspects
were yet omitted. Overall, our dataset contains 165994
symmetric encryption call sites distributed in approx-
imately 20% of APKs. A large portion of the call
sites (26%) is obfuscated. Besides AES and DES, only
3DES is used in more than 1000 APKs. We also re-
port that the concept of password-based encryption is
applied merely in 837 APKs. A closer look at the en-
cryption modes offers an interesting perspective. Our
observations confirm that the authors favor the default
constructors ("AES" and "DES") compared to construc-
tors that specify encryption mode and padding (e.g.,
"AES/CBC/PKCS5PADDING"). The default constructors
fall back into the ECB mode with PKCS#7 padding,
which is (under most circumstances) considered inse-
cure (Menezes et al., 1996).
Public-key Encryption. The only asymmetric encryp-
tion scheme appearing in the Android API is RSA. The
RSA encryption occurs in approximately 1.55% of all
APKs in our dataset. Until 2013, RSA appeared very
rarely, but then it peaked within two years to almost
1800 APKs in 2015.
Digital Signature Algorithms. Surprisingly, digital
signature algorithms occupy 4.5% of the malicious
APKs and are present in 17505 call sites. Considering
possible applications of digital signature primitives in
malware, this constitutes a rather large number. De-
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Table 3: Popularity distribution of cryptographic API cat-
egories. The ratio of APKs for symmetric encryption and
RSA is approximate, since one cannot differentiate the ob-
fuscated constructors of these two categories. Note that ap-
proximately 1% of APKs contain cryptographic API outside
of these categories.

Category #call sites %obfusc. %APK
Hash functions 424858 16.8% 39.7%
Symmetric enc. 165994 25.9% 19.4%
Public-key enc. 13262 25.9% 1.5%
Digital sig. alg. 17505 81.4% 4.5%
MAC 11661 46.4% 3.0%
PRNGs 10381 6.6% 2.9%
Key agreement 87 29.9% 0%
Sum 646018 21.5% 44.6%

spite the highest obfuscation rate among categories
(81.43%), the SHA1withRSA primitive is responsible
for almost 80% of the unobfuscated call sites. As in
the case of the hash functions, SHA256withRSA is on
the rise in time, first appearing in 2015 and steadily in-
creasing the fraction of APKs it appears in ever since.
Still, in 2018 it is less than four times probable to
appear compared to SHA1withRSA.

While multiple schemes supporting elliptic curves
over RSA or DSA are offered in the API, these are
explicitly specified only in 19 APKs in total, with the
first use appearing in 2014.
MAC Algorithms. The situation with MAC algo-
rithms is similar to that of digital signatures algorithms.
The MAC systems are responsible for 11661 call sites
and are present in 3% of APKs. Still, a large portion
(46.4%) of the call sites are obfuscated. Nevertheless,
only two functions are called in more than 1% of the
call sites – HMACSHA1 and HMACSHA256. The former
is heavily dominant throughout the studied timeline,
being responsible for 70% of the MAC call sites.
PRNGs. The functionality of PRNGs is utilized in
nearly 3% of the APKs, being responsible for 10381
call sites. A relatively small fraction of the call sites
(6.6%) are obfuscated, and virtually all unobfuscated
call sites (over 90%) can be attributed to SHA1PRNG.
Key Agreement Protocols. The key agreement API’s
functionality consists purely of the Diffie-Hellman
protocol (DH) for key exchange. Concerning the DH
protocol parameters, we can only differentiate between
the use of DH over finite fields or elliptic curves. The
key agreement API appears only in 53 APKs over
the nine years, occupying 87 call sites in total. 36 of
the APKs use elliptic curves, whereas 20 APKs use
obfuscated calls. Interestingly, only a single APK was
detected to be explicitly using DH over finite fields.
The dominant use of elliptic curves over finite fields
is in contrast with the situation in digital signature
algorithms.

Worth noting, we did not thoroughly explore how
cryptographic primitives were employed in the context
of the applications (e.g., to send SMS, encrypt data, et
cetera). This analysis is extremely complex due to the
variety of application contexts, and it is hardly feasible
with static analysis. However, to give readers possible
directions about the motivations for using cryptogra-
phy in malware, we manually inspected a small subset
of samples during our study. For the categories defined
in Section 2.1 we documented the following use-cases:
(i) Hash functions are generally used to fingerprint the
attributes of a device (IMEI, Android version, etc.), to
hash whole file or string, or to construct home-brew
MACs or signature primitives; (ii) Public-key encryp-
tion was witnessed to provide hybrid encryption, or
to construct digital signature algorithms from its basic
blocks; (iii) Symmetric encryption is used to encrypt
files, as well as strings, and to obfuscate expressions
directly in the source code. We also witnessed the use
of PRNG to generate random keys (often with static
seeds) or to provide nonces for more complex sce-
narios; (iv) Both key agreement protocols and digital
signature algorithms were found to empower more
complex network protocols, e.g., SASL (Simple Au-
thentication and Security Layer (Isode Limited and
OpenLDAP Foundation, 2006)); (v) We report no sur-
prising use-cases for MAC primitives that serve their
original purpose of data authentication.

4 MACHINE LEARNING AND
CRYPTOGRAPHIC API

In this section, we answer RQ.2: Can information
about cryptography improve Android malware detec-
tion? To do so, we analyze the outcome of the experi-
ments outlined in Section 2.4.

4.0.1 Cryptography-based Learning Model

We trained a random forest model based only on
cryptography-related features described in Section 2.4
and compared its performance to R-PackDroid. To
obtain a valid comparison, we replicated the ex-
perimental setup of the original R-PackDroid pa-
per (Maiorca et al., 2017), taking 10 thousand appli-
cations divided 50:50 into benign/malicious, and split
50:50 into training/test set. Our classifier achieved
62.4% F1 score on the malicious samples (see also
Table 4), showing that cryptographic information is
discriminant enough to separate malicious from benign
samples. Even though that R-PackDroid performs sig-
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Figure 2: A representation of 10 most influential features (their |SHAP| values are high, averaged over all samples). These
represent the spots in cryptographic API with the largest difference in usage between malicious and benign samples. The x-axis
shows the average effect on the model output in either direction. The model outputs values from 0 (benign) to 1 (malicious).

nificantly better than our system8, our classifier was
able to correctly identify 88/180 malicious samples
that were misclassified as benign by R-PackDroid
(with all 211 features). This shows that cryptographic
API can assist the classification of samples that would
otherwise fly under the radar of existing classifiers.

4.0.2 Explanations of Decisions

In Figure 2, we present the 10 most influential fea-
tures of the cryptographic-API classifier, based on the
SHAP values calculated for the whole dataset (global
explanation) according to the methodology from Sec-
tion 2.4. Note that the model outputs values from 0
(benign) to 1 (malicious), and the expected value of the
model on a balanced dataset is hence 0.5. The SHAP
value of a feature thus represents a deviation from this
expected value after inspecting a particular feature.

It is rather interesting to see that the usage of cer-
tain hashing functions is discriminative w.r.t. mali-
ciousness of the samples. More specifically, weak hash
functions (MD5) are especially used in malicious sam-
ples (as also reported by the analysis in Section 3.1),
and they constitute an important indicator of mali-
ciousness. Additionally, the classifier observes the
general number of imported cryptographic functions.
An increasing number of imported functions lead to
an increasing suspicion of maliciousness.

Concerning the local explanation, we present an
example related to the malware with MD5 hash

8Remember that our goal was not to build a better clas-
sifier but to show that it is possible to distinguish between
malicious and benign Android applications only by their
cryptographic API usage.

Table 4: Comparison of performance of malware classifiers
without and with cryptographic API features. The perfor-
mance metrics measure the result of the malicious samples.
Enhancing the limited RPackDroid with cryptographic fea-
tures causes 4.18% increase of precision and 5.61% increase
of recall on the Androzoo dataset, projecting into 4.86% F1
score increase.

Classifier # features F1 score
Cryptographic API 189 62.40%
RPackDroid (full) 211 92.71%

RPackDroid (limited) 10 76.47%
RPackDroid + cryptoAPI 10+189 81.33%

e1001da40929df64443f6d4037aa3a9f. VirusTotal
classifies this sample as a riskware of type SMSpay.
By extracting the local SHAP values (Figure 3), it is
possible to see significant importance of a DES en-
cryption that steers the classifiers’ decision towards
maliciousness. Driven by this explanation, we manu-
ally disassembled the sample and looked for the usage
of DES-related cryptographic API. We found that, in
this case, DES is used to encrypt sensitive information,
such as the phone device id, which is then subsequently
exfiltrated to a remote server. This detail is especially
useful to attract the attention of the analyst towards
malicious operations carried out by the sample. Also,
note that this sample employs name obfuscation, and
the required effort to carry out similar analysis without
such guidance would be higher.

4.0.3 Enhancing Existing Classifier with
Cryptographic API Features

In the original work, R-PackDroid achieved 97%
F1 score distinguishing between three classes (ran-
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Figure 3: Local impact of 10 most influential features w.r.t the models’ prediction on a particular sample. The shown APK is a
malware of SMSpay type. It exfiltrated DES-encrypted data through SMS. Apart from the features, the figure also depicts how
the value of each feature shifts the models’ output from a neutral score 0.5 to the final output 1 that labels the APK as malware.

somware in addition to malware/benign). Leverag-
ing the source code of authors, we achieved 92.71%
F1 score with R-PackDroid on the Androzoo dataset.
Thus, enhancing this classifier would not bring a big
performance gain. Hence, we decreased the number
of features employed by the classifier to 10, reducing
F1 score to 74.47% when averaged over different 10-
tuples of features. We then added the cryptographic
features following the methodology from Section 2.4.

We document an increase of classifiers’ perfor-
mance when enhanced with crypto features. Our re-
sults demonstrate that, while the margin for improve-
ment is not huge, adding cryptographic features signif-
icantly improved both recall (+5.61%), and precision
(+4.18%) of the classifier, which in turn increases the
F1 score by +4.86%. See the summary in Table 4.

5 DISCUSSION AND
LIMITATIONS

Our main goal was to provide a comprehensive
overview of the role of cryptography in the analy-
sis of Android applications and malware detection.
As explained in Section 3.1, we found a significant
amount of obfuscation in recent malicious applications,
which prevented us from providing detailed informa-
tion about their usage of cryptography. We recognize
that this is an inherent limitation of static analysis.
While other static techniques such as program slic-
ing may provide additional insights, we believe that
dynamic analysis is the only reliable way to defeat dy-

namic code loading and other types of packing. How-
ever, it is infeasible to analyze more than half million
of APKs with dynamic analysis. Hence, we believe
that our proposed approach constitutes the right bal-
ance between effectiveness, precision, and analysis
time.

We also point out that possible biases can be
present in the data we analyzed. In particular, we
did not have control over the contents of the Androzoo
dataset. According to the indications provided by the
Androzoo authors (Allix et al., 2016), we can safely
rule out the presence of possible duplicates for appli-
cations coming from the same sources (e.g., the same
stores). We point out that the risk of finding dupli-
cates across stores is significantly lower for malicious
applications than benign ones. Nevertheless, even if
such duplicates were found, their number should not
influence a large-scale analysis.

6 RELATED WORK

Most of the research on cryptographic API in Android
is mainly focused on benign applications where the
ultimate goal is to mitigate its misuse. Several steps
are needed to achieve this, and the respective works
usually treat one or two steps at a time. We can sum-
marize these steps as follows: (i) Inferring the rules of
cryptographic API misuse; (ii) Evaluation of crypto-
graphic API misuse; (ii) Attribution of cryptographic
API misuse; (iv) Automatic cryptographic API repairs.
The following paragraphs discuss the related research
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for all these steps mentioned above.
Inferring Rules of Cryptographic API Misuse. In
the area of inferring the rules of cryptographic API
misuse, the goal is to create a list of specifications for
developers and researchers that imply the insecure use
of cryptography. Such rules can be crafted manually as
done in (Egele et al., 2013; Chatzikonstantinou et al.,
2016; Shuai et al., 2014). However, this approach
does not scale well, leading to the works (Paletov
et al., 2018; Gao et al., 2019) that attempt to infer
these rules from git commits, conjecturing that newly
introduced commits typically eliminate security vul-
nerabilities from the code. Surprisingly, Paletov et
al. (Paletov et al., 2018) reported success with this
approach, whereas chronologically later work (Gao
et al., 2019) commends against the initial assumption.
Evaluation of Cryptographic API Misuse. After
having a set of rules that suggest security violations
at hand, it is vital to explore these violations in the
Android applications market. While more powerful
dynamic analysis is employed in (Chatzikonstantinou
et al., 2016; Shuai et al., 2014) to show that more than
half of the examined applications violate the static set
of rules, the application dataset is relatively small (size
< 100). On the contrary, the static analysis approach
used by Egele et al. in (Egele et al., 2013) allowed
examining a large dataset of 145 thousand benign ap-
plications to reveal that 10.4% of them uses some form
of cryptography. 88% of such applications were found
to violate some rule of secure cryptography usage.
These results were confirmed by a later study (Mus-
lukhov et al., 2018) that gathered a new dataset of 109
thousand APKs that contain at least one cryptographic
API call and showed the analogical proportion of in-
secure applications. Static rules were substituted by
a more sophisticated definition language in (Krüger
et al., 2018) where 10 000 Android applications were
analyzed and misuses detected in over 95% of cases.

Some of the solutions above are impractical to run
against large projects due to many false positives. This
is treated by CryptoGuard (Rahaman et al., 2019)
that prunes the alerts to achieve 98% precision and
is successfully run against real-world projects. As of
early 2022, an open-source CRYLOGGER (Piccolboni
et al., 2021) can well complement CryptoGuard, as
it is based on dynamic analysis and was tested on a
sufficiently large dataset (approx. 1800 applications).
In 2021, the first systematic evaluation study (Ami
et al., 2021) was published that allows to measure the
quality of such detectors and reveals many flaws in
their design or implementation.

Concentrating on the TLS protocol, the work (Fahl
et al., 2012) from 2012 analyzed 13 thousand Android
applications to reveal inadequate TLS usage in 8% of

cases. The authors also managed to launch 41 MiTM
attacks against selected applications. Iterating on this
effort, an article (Oltrogge et al., 2021) studied Net-
work Security Configuration files9 in Android. The
authors revealed that 88% of applications employing
custom settings downgrade the security compared to
the default configuration. Also, the authors penetrated
Google Play safeguards that are supposed to protect
from publishing applications vulnerable to MiTM.
Attribution of Cryptographic API Misuse. Reliable
third-party package detection is central for attribution
of misuse. This problem has been addressed, e.g.,
in (Wang et al., 2015; Ma et al., 2016b; Backes et al.,
2016; Backes et al., 2016) where matching algorithms
were proposed to reliably detect third-party libraries.
As already discussed, a systematic review (Zhan et al.,
2020) then compared these detectors from various per-
spectives confirming that LibRadar is superior to oth-
ers when used for large-scale analysis due to result
quality comparable with the most precise tools, yet
running much faster.
Automatic Cryptographic API Repairs. More dis-
tant to our research are papers that concentrated on
automatic cryptographic API misuse repairs. From
this area of research, we refer the reader to (Ma et al.,
2016a; Zhang et al., 2017).
Study of Cryptography in Android Malware. We
point out that all the aforementioned research on the
Android platform did not concentrate on cryptographic
API in malicious applications or its comparison to the
benign landscape. Our work in this paper aims to fill
this gap in knowledge.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we provide a longitudinal analysis of how
cryptographic API was typically employed in Android
malware in the years 2012-2020. We analyzed 603937
applications and extracted over 1 million call sites that
have been extensively analyzed by extracting various
statistics. The attained results showed the following:

1. Use of weak hash functions. Most malicious appli-
cations featuring cryptographic routines resorted
to weak MD5 hash functions.

2. Late transition from DES to AES. It is worth point-
ing out one aspect of comparison with benign sam-
ples. In the symmetric cipher category, malware
authors adopted weak DES to modern AES only

9developer.android.com/training/articles/
security-config
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in 2015, while AES was the most popular cipher
in benign samples already in 2012.

3. Very limited use of third-party cryptographic li-
braries. Our analysis showed that Android appli-
cation authors favor using system-based libraries
to deliver cryptographic functionality.

4. Contrast between malicious and benign usage of
cryptography. Our study shows that cryptographic
API is generally more frequent in malware than in
benign samples (in relative measures).

Building a cryptography-based machine learning
model, we showed a significant difference in cryptogra-
phy deployment between benign and malware samples.
We demonstrated that a learning-based model based on
cryptography alone could separate between benign and
malicious samples with good performance. Moreover,
we showed that explaining the decision of the classifier
can expose intriguing links between cryptography and
malicious actions that are typically carried out by mal-
ware. In particular, these techniques constitute a valid
resource to guide the analysts towards discovering crit-
ical characteristics of the examined malicious samples.
Moreover, cryptographic features until now neglected
can be employed to further improve state-of-the-art
malware detectors.

Our results open door to various follow-up work.
For instance, it would be interesting to cluster malware
samples into families based on its usage of cryptog-
raphy. Likewise, future work can more closely focus
on understanding for what purpose specific crypto-
routines are employed in Android malware, thus better
understanding and profiling the characteristics of mal-
ware authors. This could, for instance, confirm or
dismiss our conjecture that weak hash functions are
not used for integrity-critical operations in malware.
Last but not least, one could employ more powerful
dynamic analysis to check if our findings hold also for
packed and obfuscated applications.
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