
Connections between Language Semantics and the Query-based
Compiler Architecture

Peter Lenkefi a and Gergely Mezei b

Department of Automation and Applied Informatics, Budapest University of Technology and Economics,
Faculty of Electrical Engineering and Informatics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

Keywords: Compilers, Query-based Compilers, Language Engineering, Memoization, Optimization.

Abstract: Modern software development has drastically changed the role of compilers with the introduction of responsive
development tools. To accommodate this change, compilers have to go through an architectural transforma-
tion, diverging from the classic pipeline. A relatively new idea is called query-based compiler design, which
took inspiration from build systems. It splits up the pipeline into smaller, individual operations, which - given
some constraints - allows for some interesting optimizations. We argue that some programming language
semantics introduce cyclic dependencies between certain compiler passes, which can naturally lead to redis-
covering query-based compilers. In this paper, we present a framework that can be used to create compilers
with a query-based architecture. Based on this framework, we introduce the Yoakke programming language,
which we also use to explore our hypothesis regarding cyclic dependencies and rediscovering query-based
compilers.

1 INTRODUCTION

Historically compilers have been designed as a simple
pipeline that started with the source code and ended
with the executable, treating the in-between steps as
a strict sequence of operations (Aho et al., 2006), as
illustrated in Figure 1. This was acceptable when
the sole purpose of a compiler was to be ran in the
command-line as part of a batch process, producing
the output or a list of error messages. Since modern
software development is a very different process, the
requirements towards compilers have also changed.

Normally the developer works in an Integrated
Development Environment (IDE), which aids coding
in various ways by providing different services, for
example:

• syntax (or semantic) highlighting

• error reporting

• auto completion

• refactoring operations (like symbolic renaming)

These services are usually implemented by a lan-
guage analysis tool that runs in the background of the
IDE, updating their output on each keystroke. Some-

a https://orcid.org/0000-0002-9421-4151
b https://orcid.org/0000-0001-9464-7128

Lexical 
analysis

Syntax 
analysis

Semantic
analysis

Code
generation Optimization

Figure 1: The classic compiler pipeline.

times these services are implemented as a completely
independent set of tools, which introduces a poten-
tial source of bugs. If one of these tools interprets
the language specification incorrectly, they will have
different interpretation of the code from the compiler,
leading to inconsistent behavior. The severity of these
inconsistencies can vary: a simple lexical misinter-
pretation can lead to the incorrect highlighting of to-
kens. A more severe case could be that the language
tool reports an error but the code compiles correctly,
or vice versa.

Compilers already implement and work with most
operations and data structures that these language
analysis tools require, such as the Abstract Syntax
Tree - or AST for short - (Aho et al., 2006), the sym-
bol table or type information. Ideally the compiler
would expose its knowledge about the codebase, act-
ing as a back-end service for the tooling, reducing

Lenkefi, P. and Mezei, G.
Connections between Language Semantics and the Query-based Compiler Architecture.
DOI: 10.5220/0011260400003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 167-174
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

167



the potential source of errors. This is the idea the
Roslyn 1 compiler went with, and it seems to work
well in practice: most tooling in the .NET environ-
ment can be written as so-called analyzer packages,
that use the Roslyn APIs. This approach however re-
quires a different architecture to stay reasonably ef-
ficient and achieve the response times that are ex-
pected from these tools. A possible solution for this
is the query-based compiler architecture, which splits
up the pipeline into smaller, independent operations
called queries. It is not too big of a divergence from
the pipeline architecture, but will allow for optimiza-
tions that greatly helps responsiveness.

In Section 2 we discuss the idea behind query-
based compilers and the optimizations they can offer.
We also talk about languages with semantics that nat-
urally require a different architecture, hinting towards
the query-based approach. In Section 3 we describe
the framework we have developed along with its main
goals. While it is not the focus of our contribution,
we present an experimental programming language
used to showcase the capabilities of the framework.
We believe that the main value in the programming
language is the connection between its semantics and
its architecture and how that connects to query-based
compilers, so - due to it also being out-of-scope for
this paper - we will not give a formal description of
the language itself. In order to help better understand
the framework, Section 4 contains an illustrative ex-
ample.

2 BACKGROUND

Language analysis tools that work in the background
of the IDE need to have reasonably fast response
times. When the developer edits the code, the tool
needs to immediately show the errors or suggest the
best possible auto completion options for example. If
we simply opened up the classic, pipeline-based ar-
chitecture, exposing all functionality as-is, the result-
ing process would be highly inefficient. The reason
behind this is that the entire process of code analy-
sis would have to run for the entire codebase each
time the user alters the code, which is potentially
very expensive. This could cause delays that are usu-
ally unacceptable for such a tool. A new architecture
is needed that is not only incremental in nature, but
would also only do the minimal required computa-
tion for the given analysis, hinting towards a demand-
driven system. This is where query-based compilers
can aid us.

1https://github.com/dotnet/roslyn

2.1 Query-based Compilers

The idea of query-based compilers has gained some
popularity recently as major compilers - most no-
tably the rustc compiler (Klabnik and Nichols, 2019)
- have started to turn towards this architecture. Gen-
eral incremental computation frameworks like Rock
(Fredriksson, 2020) and Salsa (Matsakis, 2019) ex-
tracted the principle into libraries, helping the under-
standing and development of such systems. The basic
architectural transformation is quite simple: instead
of the pipeline elements that transform the input in
large batches, we define smaller declarative opera-
tions that work on individual entities in the compiler.
These smaller operations are called queries (Fredriks-
son, 2020) (Matsakis, 2019).

For example, symbol resolution might be imple-
mented as a single pass on the AST in a classic com-
piler, but in a query-based compiler we would have
various queries defined such as:

• attaching a declared symbol to an AST node
• retrieving the declared symbol of an AST node
• asking for all available symbols in a given context

While a compiler working with the classic
pipeline architecture also has to implement these op-
erations in some form, the key is that these queries
should be implemented in such a way that they can
be invoked without assuming that any previous passes
have been executed. A query will always assume that
no work has been done before and starts with invok-
ing all other queries that are required to do its own
work. Figure 2 shows a possible tree of queries in-
voked when type checking a simple C statement. The
query starts from the operation we want to perform,
and invokes all computation to reproduce results, up
until the source code is requested, which is consid-
ered as a given input for the system. While this might
seem inefficient at first, it is a very important step to
make the compiler into a demand-driven system. In
the next section we will explain how redundant com-
putations can be eliminated from the system, solving
this inefficiency concern.

Solving the inefficiency concerns, this could mean
that the compiler and the IDE tools would be able to
share the exact same code, reducing the complexity,
codebase sizes and the possibilities for errors. Despite
this promising design, there are still very few systems
that have been developed to support this architecture
and idea (Fredriksson, 2020) (Matsakis, 2019).

2.2 Memoization

Memoization is an optimization technique that caches
the results of expensive computations and looks up

ICSOFT 2022 - 17th International Conference on Software Technologies

168



typecheck[printf("%d", x);]

type_of[printf]

get_symbol[printf]

ast[stdio.h]

source[stdio.h]

type_of[x]

get_symbol[x]

ast[main.c]

source[main.c]

Figure 2: Portion of a possible computation-tree of queries.

these results the next time the computation is invoked
(Michie, 1968) (Norvig, 1991). In the simplest form
it is nothing more than a dictionary from the tuple of
input arguments to the computed result. This can only
be done for operations that are side-effect free, other-
wise the results might be incorrect (Hughes, 1990). A
small Python sample is provided below, demonstrat-
ing how one might memoize values by hand for com-
puting Fibonacci-numbers.
cache = {}
def fib(n):

if n <= 2:
return 2

if n not in cache:
cache[n] = fib(n - 1) + fib(n - 2)

return cache[n]

As long as the queries we define are side-effect
free - which is usually desirable when developing a
compiler -, we can safely memoize their results. This
means that despite potentially calling certain queries
multiple times that would do redundant computation,
in reality we will not perform more work than a pass-
based compiler. This is because once everything has
been memoized once, the recall of that result can
be considered insignificant compared to the compu-
tation.

2.3 Dependency Tracking

If query A calls query B, we can assume that the re-
sult of A depends on the result of B - given that the
queries are side-effect free -, otherwise the call would
be unnecessary. This allows for further optimizations.

If we can build a dependency graph for the
queries, we can track what queries were affected by
certain changes of the source code and only invalidate

the memoized results where necessary. This can cut
the required work even shorter for many queries, but
only if the entire codebase has been processed previ-
ously. This is ideal for a tool working behind an IDE,
where the user mostly makes localized changes, leav-
ing most of the codebase largely unaffected. There
will be an example showing off this kind of optimiza-
tion in Section 4.

Interestingly, the problem of dependency tracking,
namely, how it can be solved and optimized - and the
query-based architecture as a whole - is very simi-
lar to problems build systems face: caching, version-
ing, invalidating results and tracking dependencies are
usually associated with build systems (Mokhov et al.,
2018).

2.4 Languages with Cyclic Compilation

While developing the framework, we have noticed
that certain language semantics naturally lead to a
query-based compiler architecture. Since we wanted
to develop a compiler to study the architecture in
more depth, we have decided to investigate languages
with these semantic properties. The language that has
mainly inspired us while creating our own was the JAI
programming language 2, which syntactically unifies
function calls and generic parameterization. A small
sample of a type definition and instantiation in JAI
can be found below.
List :: struct(T: type) {

// ...
}

list := new List(i32);

From this small syntactic change, the Zig pro-
gramming language (Zig Software Foundation, 2016)
and our own programming language, Yoakke have
both derived a very similar semantics, bringing types
and values onto the same level. This will be described
in more detail in Section 3.2.

3 CONTRIBUTION

Our contribution consists of two main parts: archi-
tectural research and language research. First, we
wanted to see how we could extract the essential logic
for query-based compilers into a reusable compo-
nent. Our results are shown in Section 3.1, where we
present the framework we have developed as a gen-
eral tool for query-based compiler development. We

2https://github.com/BSVino/JaiPrimer/

Connections between Language Semantics and the Query-based Compiler Architecture

169



also argue that certain programming language seman-
tics naturally give rise to the query-based compiler
architecture. In Section 3.2 we will discuss the de-
tails of such a language we have designed and how it
naturally leads to the rediscovery to the query-based
compiler architecture.

3.1 Query Framework

Developing a query-based compiler manually is a
repetitive task and prone to errors. The logic of mem-
oization and dependency tracking would have to be
written manually, all intermixed with the actual com-
pilation logic. To solve this concern, we have devel-
oped a framework 3 with the following goals:

1. The memoization logic is provided by the system,
completely separated from the compilation logic.

2. The dependency tracking between queries is im-
plicit and automatic, meaning that the framework
should discover dependencies between queries
without the user having to do that manually.

3. The query operations are cut short and terminated
as soon as possible, when the framework can de-
tect that the previous results are reusable. There
will be a detailed example in Section 4.

4. Queries can be interrupted with a cancellation to-
ken, facilitating asynchronous use.

5. Old and irrelevant results can be periodically col-
lected by a garbage collector.

6. The queries can be exposed as a public API in a
way that is easy for language tools to consume.

The basic API describing how the framework can
be used is very similar to the one Salsa presents but is
written for C# instead. Queries are defined in groups,
which carries no significant meaning other than that
queries are related in functionality. There are two
kinds of query groups:

• Input query groups: queries that provide the input
for the other computations. These invoke no other
queries. They are declared with the InputQuery-
Group attribute.

• Computed query groups: queries that depend on
input queries and other computed query results.
They are declared with the ComputedQueryGroup
attribute.

The declaration of query groups is done through a C#
interface annotated with the proper attribute. The in-
put queries are special in the sense that each query

3https://github.com/LanguageDev/Fresh/

will have an appropriate setter generated in the inter-
face definition. Since these interfaces and their im-
plementations are very similar in their look and use to
the usual service-pattern in the .NET world, we will
also refer to them as services. A simple input- and
computed query group declaration can be found in the
snippet below.

[InputQueryGroup]
public partial interface ICompilerInputs
{

public Manifest ProjectManifest();
public string SourceText(string filename);

}

[ComputedQueryGroup]
public partial interface ISyntaxService
{

public Sequence<Token> Lex(string filename);
public SyntaxTree Parse(string filename);

}

Since ICompilerInputs is an input query group,
the setters SetProjectManifest and SetSourceText are
automatically generated in the interface definition.

Separating the interface and the implementation
is very important from a usability standpoint. The
framework internally generates a proxy serivce im-
plementation for these interfaces that wrap the user-
implemented service logic. This proxy is responsible
for carrying out the memoization logic and depen-
dency tracking, ensuring that the actual compilation
logic and memoization logic are not mixed. The ser-
vice interface and the implementation can then be reg-
istered into a dependency injection framework. When
a service is requested through the interface, the user
implementation of the service is wrapped up in the ap-
propriate generated proxy, which is returned instead.
This makes sure that only proxy implementations are
handed out, which means that every operation will be
tracked and memoized correctly.

3.1.1 Constraints within the Framework

A few constraints have to be satisfied while using the
framework. These constraints are either harder to au-
tomatically validate or might introduce inefficiencies
in the system:

• All queries must be side-effect free. Otherwise,
memoizing the result leads to incorrect behavior.

• Services should not call other queries directly
through the this instance. The proxy service
should be injected and called instead, otherwise
the call will not participate in memoization, since
it is not made through the proxy.

• Queries must not be called conditionally. The de-
pendencies of each query are discovered on the

ICSOFT 2022 - 17th International Conference on Software Technologies

170



first invocation only, to be more efficient. This
means that if the condition changes, a query that
is only invoked later might not be tracked properly
as a dependency.

• Query parameters and return type must have
value-based equality. The memoization logic as-
sumes that these types can be stored in a standard
C# Dictionary.

• The query return type should either be cloneable
or immutable. Otherwise, the stored return value
could be accidentally mutated from the outside,
making it invalid for reuse.

Fortunately these rules do not introduce a lot of
unreasonable constraints. We believe some of these
are even desirable for compilers - like the side-effect
free nature and immutability.

3.2 The Yoakke Programming
Language

For experimentation purposes we have developed the
Yoakke programming language 4. The original goal
of Yoakke was to reduce the number of required con-
cepts a developer needs to know about, while still pro-
viding static type safety:

• Almost every language element can be used in
compile-time computations, no need for separate
mechanism and constraints.

• Types are values at compile-time, allowing
generic structures to be simple compile-time ex-
ecuted functions.

• Every top-level construct is either a constant or a
variable binding.

This leads to a simplification of language features
in general. For example, there is no explicit need for
supporting generics as they can be modeled simply by
a function constructing a structure, parameterized by
the generic types. This is showcased by the code snip-
pet below, which defines a generic two-dimensional
vector as a function, that constructs the vector struc-
ture from the given type parameter.
const Vec2 = function(T: type) -> type {

return struct {
x: T;
y: T;

};
};

The language allows arbitrary expressions where
the syntax would expect a type, and those will be eval-
uated at compile-time to compute the specified type.

4https://github.com/LPeter1997/YoakkeLang

Source

AST

Symbol TableGenerated IR
function

Lex & Parse
Pruned

IR Binary
Pruning Assembly

Type checking

Codegen

Execution

Figure 3: High-level architecture of the prototype compiler.

This means that the above function can be called in
a types place, with a type supplied as a parameter, to
create a two-dimensional vector type of any coordi-
nate type.

3.2.1 Cycles in the Compilation

It is easy to see that a language with such unrestricted
features cannot be checked and compiled with classic,
pipeline-like compiler passes. Namely, we can intro-
duce dependencies inside the code that require code-
generation and execution of a function to be properly
type-checked. To not give up type-safety, that exe-
cuted code also has to be type-checked beforehand,
which in turn can cause more code-generation and
execution. This is demonstrated in the code snip-
pet below, where the type-checking of the variable x
in the main function requires evaluating the expres-
sion get type(true), which requires type-checking the
get type function.
const get_type = function(value: bool) -> type {

if (value) {
return int;

} else {
return double;

}
};

const main = function() {
var x: get_type(true) = 0;

};

This cyclic nature of the compilation has caused
us to separate the semantic checks and compilation
into smaller, individual steps and group them into ser-
vices that can depend on each other. This was es-
sentially the rediscovery of the query-based compiler
architecture. While the architecture can be used for a
wide variety of language semantics, it is interesting to
see that certain language semantics naturally lead to
this architecture. Unsurprisingly, these semantics are
very closely related to the problems that need to be
solved by build systems. The high-level architecture
of our compiler can be seen in Figure 3.

Connections between Language Semantics and the Query-based Compiler Architecture

171



3.3 Tooling Integration

One of the most important aspects of this architec-
ture is the ability to make tooling integration easier.
We have implemented a Language Server 5 for Visual
Studio Code. Since the extension protocol is request-
response based, it has fit in well with the query-based
compiler API. For example, on a text change notifi-
cation, the input handling service is notified of the
change, then the compiler is queried for all diagnos-
tics - such as errors or warnings -, which are then pre-
sented to the user. A simplified version of the han-
dling of the text change notification can be seen in the
code below. Asynchronous elements are removed for
the sake of compactness.
void TextChange(ChangeParams req)
{

sourceRepo.Apply(req.Uri, req.Changes);
var newText = sourceRepo.GetText(req.Uri);
inputService.SetText(req.Uri, newText);
var diags = diagService.AllDiagnostics();
return PublishDiagnostics(diags);

}

The declarative nature of query-based APIs make
it short and simple to write Language Servers and
other tooling. Basic editor support - like error report-
ing - usually becomes a simple wrapper around the
protocol the editor uses to call into one of the com-
piler queries.

4 ILLUSTRATIVE EXAMPLE

To present the framework in a more concise manner,
we have prepared a small example to demonstrate its
ease of use. Please note, that even in the relatively
small language we have developed, even the small-
est computations would span multiple pages, so we
needed to find a smaller sample to demonstrate the us-
age of the framework. MathService calculates the nth
Fibonacci number using the recursive method. The
recursive method is considered highly ineffective be-
cause of the multiply-redundant computation it does,
so it is an ideal candidate for memoization (Dijkstra,
1978). To make the computation represent a scenario
closer to compilers, the system can accept the parame-
ter as an input string, from which an integer is parsed.
This attempts to bring the example a bit closer to the
targeted use case, which is usually working with a tex-
tual input. The example uses two services, one for
handling the input and one for the actual computa-
tion, the source of both can be found below. Note,
that the reason for injecting the math service to its

5https://microsoft.github.io/language-server-protocol/

implementation is because this is the only way mem-
oization can take place. This was further explained in
Section 3.1.1.
[InputQueryGroup]
public partial interface IInputService
{

public string Var(string name);
}

[ComputedQueryGroup]
public partial interface IMathService
{

public int Fib(int n);
public int ParseVar(string name);
public int FibFromVar(string name);

}

public sealed class MathService : IMathService
{

public readonly IInputService input;
private readonly IMathService math;
// Constructor omitted for brevity

public int Fib(int n)
{

if (n < 2) return 1;
return math.Fib(n - 1)

+ math.Fib(n - 2);
};

public int ParseVar(string name) =>
int.Parse(input.Var(name));

public int FibFromVar(string name)
{

var n = math.ParseVar(name);
return math.Fib(n);

}
}

There are two interesting optimizations the frame-
work can do. To showcase the simpler one, first we
will compute the 5th Fibonacci-number - using the
input n = “5”, which can be seen on Figure 4. The
redundant computations are picked up by the frame-
work, making it essentially a linear operation. After
changing the input to n = “8” and invoking the com-
putation again, the computation is even shorter, only
computing 3 new numbers, recalling the rest from the
cache, as can be seen on Figure 5.

A more interesting case of optimization can be ob-
served when the dependencies of a query change, but
the result stays unaffected. This is also picked up by
the system, short-cutting the computation. This can
be seen on Figure 6, after changing n= “8”, intention-
ally adding a space after the input. After the variable
parsing query notices that its output is unchanged -
despite the input change -, it immediately terminates
the computation, as it is considered up to date. This is
done by the framework, because all dependencies are

ICSOFT 2022 - 17th International Conference on Software Technologies

172



FibFromVar("n")

Fib(5)

Fib(4)

Fib(3)

Fib(2)

Fib(1) Fib(0)

ParseVar("n")

Var("n")

"5"

Figure 4: Calculating the 5th Fibonacci-number, assuming
an empty system.

FibFromVar("n")

Fib(8)

Fib(7)

Fib(6)

Fib(5)

ParseVar("n")

Var("n")

"8"

Fib(4)

Memoized results.

Figure 5: Calculating the 8th Fibonacci-number after the
5th one.

automatically discovered. Since the only dependency
- the variable n - has been recomputed, but its value
remained unchanged, the dependent is considered up
to date.

5 CONCLUSION

Compiler development has had a long period where
- besides special cases - no architectural improve-
ments were done, and with a good reason. Compiler
development is considered a difficult task, having a
proven architecture gave a fulcrum during develop-
ment. In this paper, we aimed to show that diverging
from this architecture and utilizing queries can be rel-

FibFromVar("n")

Fib(8)ParseVar("n")

Var("n")

"8_"

Computation not invoked.

Figure 6: Calculating the 8th Fibonacci-number after
adding a white space at the end of the variable value.

atively simple and does not require a completely dif-
ferent approach. Besides the simple change, it has
the additional benefit that opening up the compiler
for tooling integration becomes a lot easier. This is
important in the modern era of software development
where the tooling plays a lot bigger role than when
the first compilers were written. We have also shown
that this architectural shift is mandatory for languages
with certain semantics, where compilation is not nec-
essarily a strictly sequential operation anymore.

We have presented the framework we have devel-
oped to research and test this architecture, and talked
about the constraints and advantages it introduced.
We have also developed a language that by nature re-
quires an architecture resembling query-based com-
pilers, thus reinforcing the idea that this architecture
is something that will naturally emerge for certain lan-
guage semantics. The results of the research have
shown us that this architecture is a viable and effi-
cient way to open up compilers to tooling and IDEs
in general. While the illustrative example in section 4
does not show usage from the compiler itself - as that
would span many pages, even for trivial cases -, we
hope that it motivates the idea behind the efficiency
concerns mentioned in section 2.

Regarding future work, there are two paths we
would like to explore. First, we plan to see if the
query-based architecture could be extended to help
decoupling non-primary information from the pri-
mary query results. Currently, all operations that
might produce diagnostics return the list of produced
diagnostics alongside the actual result of the queries,
making the API a bit more noisy. We have been ex-
perimenting with information channels to publish this
non-primary information, that would also be recorded
and played back on requesting the results of a query.
Second, we would like to further explore the dis-
cussed language semantics. Currently, the compiler
can get stuck in an infinite loop from a compile-time

Connections between Language Semantics and the Query-based Compiler Architecture

173



computation. While this cannot be resolved in an ar-
bitrary case - as it would be the equivalent of solv-
ing the Halting-problem (Hopcroft et al., 2006) -, we
aim to explore if there are any sensible boundaries we
could introduce.

ACKNOWLEDGEMENTS

The work presented in this paper has been carried
out in the frame of project no. 2019-1.1.1-PIACI-
KFI-2019-00263, which has been implemented with
the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed
under the 2019-1.1. funding scheme.

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co.,
Inc., USA.

Dijkstra, E. W. (1978). In honour of fibonacci. In
Program Construction, International Summer School,
page 49–50, Berlin, Heidelberg. Springer-Verlag.

Fredriksson, O. (2020). Query-based compiler architec-
tures (https://ollef.github.io/blog/posts/query-based-
compilers.html).

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). In-
troduction to Automata Theory, Languages, and Com-
putation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

Hughes, J. (1990). Why Functional Programming Matters,
page 17–42. Addison-Wesley Longman Publishing
Co., Inc., USA.

Klabnik, S. and Nichols, C. (2019). The Rust Programming
Language (Covers Rust 2018). No Starch Press.

Matsakis, N. (2019). Responsive compilers.
Michie, D. (1968). “memo” functions and machine learn-

ing. Nature, 218:19–22.
Mokhov, A., Mitchell, N., and Peyton Jones, S. (2018).

Build systems à la carte. Proceedings of the ACM on
Programming Languages, 2(ICFP).

Norvig, P. (1991). Techniques for automatic memoization
with applications to context-free parsing. Computa-
tional Linguistics, 17(1):91–98.

Zig Software Foundation (2016). Official website of the zig
programming language (https://ziglang.org/).

ICSOFT 2022 - 17th International Conference on Software Technologies

174


