head. These are on the one hand the generation of a 
stable and focused aerosol beam, and on the other 
hand the prevention of wetting of the inner nozzle 
wall by the aerosol. The fundamental operating 
parameters ensuring these conditions are found by 
CFD simulations. In a first step the relationship 
between the mass flows of the sheath gas and the 
aerosol and the wetting of the inner wall is 
investigated leading to an operating point at 
Re = 1200 ensuring a non-wetting condition. Since a 
time-continous operation of the print head is a 
prerequisite of a reliable function of aerosol-on-
demand printing, steady-state as well as transient 
simulations are performed to investigate for time 
dependency of the solutions. The transient 
simulations give identical results as the steady-state 
simulations concerning the position of the beam focus 
as well as the velocity distribution. Thus, all 
requirements for aerosol-on-demand printing are 
fulfilled and the newly developed concept has been 
validated by simulation. 
In future studies, the simulative findings will be 
experimentally evaluated and validated by realising 
the design-for-manufacture as experimental setup. 
REFERENCES 
Ansys 2021. Ansys Fluent User’s Guide, Release 2021 R2, 
ANSYS, Inc. Canonsburg, PA, USA 
Chang, J.S., A.F. Facchetti, and R. Reuss. 2017. A circuits 
and systems perspective of organic/printed electronics: 
Review, challenges, and contemporary and emerging 
design approaches. IEEE Journal on emerging and 
selected topics in circuits and systems 7, : 1–21. doi: 
10.1109/JETCAS.2017.2673863. 
Ganz, S., H.M. Sauer, S. Weißenseel, J. Zembron, R. Tone, 
E. Dörsam, M. Schaefer, M. Schulz-Ruthenberg. 2016. 
Printing and Processing Techniques. Nisato, G., Lupo, 
D., and Ganz, S. (editors): Organic and Printed 
Electronics: Fundamentals and Applications: 48-116. 
Singapore: Pan Stanford Publishing. 
Gupta, A.A., A. Bolduc, S. G. Cloutier and R. Izquierdo. 
2016. Aerosol Jet Printing for printed electronics rapid 
prototyping,  IEEE International Symposium on 
Circuits and Systems (ISCAS), Montreal, QC: 866-869, 
doi: 10.1109/ISCAS.2016.7527378. 
Guha, A. and Smiley, B. 2010. Experiment and analysis for 
an improved design of the inlet and nozzle in Tesla disc 
turbines. Proceedings of The Institution of Mechanical 
Engineers Part A-journal of Power and Energy - PROC 
INST MECH ENG A-J POWER 224. doi: 
10.1243/09576509JPE818.  
Hedges, M. and A. B. Marin. 3D Aerosol Jet Printing - 
Adding Electronics Functionality to RP/RM. Direct 
Digital Manufacturing Conference (Berlin) 2012. url: 
https://optomec.com/wp- content/uploads/2014/04/Opt 
omec_NEOTECH_ DDMC_3D_Aerosol_Jet_Printing 
.pdf. (accessed: 24.02.2020). 
Magdassi, S. 2010. The Chemistry of Inkjet Inks. Singapore: 
World Scientific Publishing. 
Menter, F.R. 1994. Two-Equation Eddy-Viscosity 
Turbulence Models for Engineering Applications. 
AIAA Journal. 32(8): 1598–1605. 
Mette, A., P. L. Richter, M. Hörteis, S. W. Glunz. 2007. 
Metal Aerosol Jet Printing for Solar Cell Metallization, 
Progress in Photovoltaics 15, 621–627. doi: 
10.1002/pip.759. 
Neotech. 2021. 3D Printed Electronics applications realised 
by Neotech AMT. url: https://neotech-amt.com/ 
applications. (accessed: 19.10.2021). 
Schlichting, H. and K. Gersten. 2006. Grenzschichttheorie. 
10. Auflage. Berlin, Heidelberg: Springer. doi: 
10.1007/3-540-32985-4. 
Sieber, I. R. Thelen, and U. Gengenbach. 2020. Assessment 
of high-resolution 3D printed optics for the use case of 
rotation optics. Opt. Express 28: 13423-13431.  
Sieber, I., R. Thelen, and U. Gengenbach. 2021. 
Enhancement of High-Resolution 3D Inkjet-printing of 
Optical Freeform Surfaces Using Digital Twins. 
Micromachines 12(1): 35. https://doi.org/10.3390/mi1 
2010035. 
Sieber, I., Zeltner, D., Ungerer, M., Wenka, A., Walter, T., 
Gengenbach, U. (2022). Design and experimental setup 
of a new concept of an aerosol-on-demand print head. 
Aerosol Science and Technology. Taylor & Francis. 
DOI: 10.1080/02786826.2021.2022094 
Sirringhaus, H.  and T. Shimoda. 2003. Inkjet Printing of 
Functional Materials. MRS Bulletin 28(11): 802–806. 
doi: 10.1557/mrs2003.228. 
Wilcox, D.C. 2006. Turbulenc Modelling for CFD, 3rd 
edition). La Canada, California: DCW Industries, Inc. 
Ungerer, M., A. Hofmann, R. Scharnowell, U. Gengenbach, 
I. Sieber, and A. Wenka. 2018. Druckkopf und 
Druckverfahren [Print head and printing method]. 
Patent: DE 10 2018 103 049.5.  
Ungerer, M. 2020. Neue Methodik zur Optimierung von 
Druckverfahren fur die Herstellung funktionaler 
Mikrostrukturen und hybrider elektronischer 
Schaltungen [New methodology for optimising printing 
processes for the production of functional 
microstructures and hybrid electronic circuits]. 
Dissertation, Karlsruhe, Germany: Karlsruhe Institute 
of Technology (KIT).  
Zeltner, D. 2020. Auslegung und Evaluierung einer 
Dosiereinheit zur additive Fertigung funktionaler 
Strukturen [Design and evaluation of a dispensing unit 
for additive manufacturing of functional structures]. 
Karlsruhe: Karlsruhe Institute of Technology, Institute 
for Automation and Applied Informatics.