Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., 
Rosenbaum, J. S., & Heveker, N. (2009). AMD3100 is 
a  CXCR7  ligand  with  allosteric  agonist  properties. 
Molecular  pharmacology,  75(5),  1240–1247. 
https://doi.org/10.1124/mol.108.053389 
Katt,  M.  E.,  Placone, A.  L.,  Wong, A.  D.,  Xu,  Z.  S.,  & 
Searson,  P.  C.  (2016).  In  vitro  tumor  models: 
Advantages, disadvantages, variables, and selecting the 
right  platform.  Frontiers  in  Bioengineering  and 
Biotechnology,  4. 
https://doi.org/10.3389/fbioe.2016.00012 
Kim, I. S., Gao, Y., Welte, T., Wang, H., Liu, J., Janghorban, 
M., Sheng, K., Niu, Y., Goldstein, A., Zhao, N., Bado, 
I., Lo, H. C., Toneff, M. J., Nguyen, T., Bu, W., Jiang, 
W., Arnold, J., Gu, F., He, J., . . . Zhang, X. H. F. (2019). 
Immuno-subtyping  of  breast  cancer  reveals  distinct 
myeloid  cell  profiles  and  immunotherapy  resistance 
mechanisms.  Nature Cell  Biology,  21(9), 1113–1126. 
https://doi.org/10.1038/s41556-019-0373-7 
Koizumi, K., Hojo, S., Akashi, T., Yasumoto, K., & Saiki, 
I.  (2007).  Chemokine  receptors  in  cancer  metastasis 
and  cancer  cell-derived  chemokines  in  host  immune 
response.  Cancer  Science,  98(11),  1652–1658. 
https://doi.org/10.1111/j.1349-7006.2007.00606.x 
Li,  Q.,  Dong, H., Yang,  G.,  Song, Y.,  Mou, Y.,  &  Ni, Y. 
(2020).  Mouse  Tumor-Bearing  models  as  preclinical 
study  platforms  for  oral  squamous  cell  carcinoma. 
Frontiers  in  Oncology,  10. 
https://doi.org/10.3389/fonc.2020.00212 
Li, X., Bu, W., Meng, L., Liu, X., Wang, S., Jiang, L., Ren, 
M.,  Fan,  Y.,  &  Sun,  H.  (2019).  CXCL12/CXCR4 
pathway  orchestrates  CSC-like  properties  by  CAF 
recruited  tumor  associated  macrophage  in  OSCC. 
Experimental  Cell  Research,  378(2),  131–138. 
https://doi.org/10.1016/j.yexcr.2019.03.013 
Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L., & Yin, 
R. (2019). Cancer-associated fibroblasts: an emerging 
target  of  anti-cancer  immunotherapy.  Journal  of 
Hematology  &  Oncology,  12(1). 
https://doi.org/10.1186/s13045-019-0770-1 
Lv, M., Wang, K., & Huang, X. J. (2019). Myeloid-derived 
suppressor cells inhematological malignancies: friends 
or  foes.  Journal  of  Hematology  &  Oncology,  12(1).     
https://doi.org/10.1186/s13045-019-0797-3 
Mollica Poeta, V., Massara, M., Capucetti, A., & Bonecchi, 
R. (2019). Chemokines and chemokine receptors: New 
targets  for  cancer  immunotherapy.  Frontiers  in 
Immunology,  10. 
https://doi.org/10.3389/fimmu.2019.00379 
Mollica Poeta, V., Massara, M., Capucetti, A., & Bonecchi, 
R.  (2019b).  Chemokines  and  chemokine  receptors: 
New  targets  for  cancer  immunotherapy.  Frontiers  in 
Immunology,  10. 
https://doi.org/10.3389/fimmu.2019.00379 
Morris,  S.  Y.  (2018,  September  29).  Understanding 
neutrophils:  Function,  counts,  and  more.  Healthline. 
https://www.healthline.com/health/neutrophils 
NCI Dictionary of Cancer Terms. (n.d.). National Cancer 
Institute. 
https://www.cancer.gov/publications/dictionaries/canc
er-terms/def/five-year-survival-rate 
Okuyama Kishima, M., Oliveira, C. E. C. D., Banin-Hirata, 
B. K., Losi-Guembarovski, R., Brajão De Oliveira, K., 
Amarante,  M.  K.,  &  Watanabe,  M.  A.  E.  (2015). 
Immunohistochemical expression of CXCR4 on breast 
cancer and its clinical significance. Analytical Cellular 
Pathology,  2015,  1–6. 
https://doi.org/10.1155/2015/891020 
Ping, Q., Yan, R., Cheng, X., Wang, W., Zhong, Y., Hou, Z., 
Shi, Y., Wang, C., & Li, R. (2021). Cancer-associated 
fibroblasts:  Overview,  progress,  challenges,  and 
directions.  Cancer  Gene  Therapy.  Published. 
https://doi.org/10.1038/s41417-021-00318-4 
Positron  Emission  Tomography  (PET).  (n.d.).  Johns 
Hopkins  Medicine. 
https://www.hopkinsmedicine.org/health/treatment-
tests-and-therapies/positron-emission-tomography-pet 
Rey-Giraud, F., Hafner, M., & Ries, C. H. (2012). In vitro 
generation  of  monocyte-derived  macrophages  under 
serum-free conditions improves their tumor promoting 
functions.  PloS  one,  7(8),  e42656. 
https://doi.org/10.1371/journal.pone.0042656 
Righetti, A., Giulietti, M., ŠAbanović, B., Occhipinti, G., 
Principato,  G.,  &  Piva,  F.  (2019).  CXCL12  and  its 
isoforms: Different roles in pancreatic cancer? Journal 
of  Oncology,  2019,  1–13. 
https://doi.org/10.1155/2019/9681698 
Schmid, M. C., & Varner, J. A. (2010). Myeloid cells in the 
tumor  microenvironment:  Modulation  of  tumor 
angiogenesis  and  tumor  inflammation.  Journal  of 
Oncology,  2010,  1–10. 
https://doi.org/10.1155/2010/201026 
Taghavi,  N.,  &  Yazdi,  I.  (2015).  Prognostic  factors  of 
survival rate in oral squamous cell carcinoma: clinical, 
histologic, genetic and molecular concepts. Archives of 
Iranian medicine, 18(5), 314–319. 
Veglia, F., Perego, M., & Gabrilovich, D. (2018). Myeloid-
derived  suppressor  cells  coming  of  age.  Nature 
Immunology,  19(2),  108–119. 
https://doi.org/10.1038/s41590-017-0022-x 
Wright  stain.  (2020,  January  5).  Lab  Tests  Guide. 
https://www.labtestsguide.com/wright-stain 
Yoshida,  H.,  Yoshimura,  H.,  Matsuda,  S.,  Ryoke,  T., 
Kiyoshima,  T.,  Kobayashi,  M.,  &  Sano,  K.  (2018). 
Effects  of  peritumoral  bevacizumab  injection  against 
oral  squamous  cell  carcinoma  in  a  nude  mouse 
xenograft  model:  A  preliminary  study.  Oncology 
Letters.  Published. 
https://doi.org/10.3892/ol.2018.8399 
Yu, P. F., Huang, Y., Xu, C. L., Lin, L. Y., Han, Y. Y., Sun, 
W. H., Hu, G. H., Rabson, A. B., Wang, Y., & Shi, Y. F. 
(2016). Downregulation of CXCL12 in mesenchymal 
stromal  cells  by  TGFβ  promotes  breast  cancer 
metastasis.  Oncogene,  36(6),  840–849. 
https://doi.org/10.1038/onc.2016.252 
Zhou, Y.,  Cao, H.  B.,  Li, W.  J.,  & Zhao,  L.  (2018).  The 
CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic 
properties,  molecular  targeting,  and  synthetic  and 
natural product CXCR4 inhibitors for cancer therapy.