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Abstract: A key step in drug discovery is the identification of drug-target interactions (DTIs). However, only a small 
fraction of DTIs have been experimentally validated due to the time-consuming and expensive aspects of 
experimental validation. To improve the efficiency of drug discovery, many computer-aided drug-target 
prediction methods have been developed to guide experimental validation. There are numerous prediction 
methods for DTIs, among which heterogeneous network-based methods do not depend on the 3D structures 
of the targets or compound molecules and they avoid the shortcomings of machine learning methods for 
negative training dataset selection, exhibiting greater advantages than other methods. Currently, although 
many reviews of drug-target prediction methods exist, only a few of them have addressed network-based 
methods, and they have not been compared in terms of the heterogeneous networks and algorithms used. 
Therefore, this paper presents a review of the heterogeneous network-based methods for DTI prediction, 
compares the differences in the prediction performance of different heterogeneous networks and algorithms 
from the perspective of the networks and algorithms used by these methods, and provides suggestions for 
the selection of heterogeneous networks and algorithms. 

1 INTRODUCTION1 

Drug-target interactions (DTIs) can be 
experimentally validated by wet-laboratory methods 
(e.g., affinity chromatography, etc.) (Bi et al. 2015). 
However, these experiments are time-consuming 
and costly, and large-scale validation is not possible. 
Therefore, predicting DTIs by computer-assisted 
methods will significantly reduce the scope of 
experimental validation and improve the efficiency 
of drug discovery. With the rapid increase in the 
number of compounds (Kim et al. 2021), the 
proportion of compound molecules with known 
target characteristics and drug effects has decreased. 
In addition, researchers have accumulated a large 
amount of information on compounds, proteins, and 
interactions to construct larger datasets, making it 
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possible to develop more accurate and efficient 
methods to predict DTIs. 

DTI prediction has multiple applications, such as 
facilitating drug discovery (Chen Z. H. et al. 2020), 
drug repositioning (Chen Z. H. et al. 2020), and drug 
side-effect prediction (Pliakos & Vens 2020). The 
drug discovery process is long, has a low success 
rate, and consumes significant resources. It is 
estimated that it takes approximately 10–15 years to 
develop a new drug, consuming an average of $1.8 
billion (Paul et al. 2010). Currently, the main reason 
why the vast majority of the compounds that have 
been discovered are not used as drugs is that the 
interaction of these compounds with proteins is 
unknown. Therefore, a computer-aided approach to 
predict compound-protein interactions would have 
the potential to significantly narrow the drug search 
space and improve the efficiency of drug discovery. 
Drug repositioning is a research strategy for new 
uses outside the scope of the original medical 
indication for a marketed drug or a clinical trial drug 
(Ashburn & Thor 2004). The safety of approved 
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drugs or clinical trial drugs has been widely 
confirmed due to the extensive clinical trials they 
have undergone. Since the outbreak of the COVID-
19 pandemic, drug repositioning has become a 
method for the rapid development of potent anti-
COVID-19 drugs. Drug repositioning studies can 
either directly predict drug molecules for treating a 
disease or to screen potential drug molecules by DTI 
prediction in the context of identifying therapeutic 
targets. DTI prediction has become an important 
research direction in drug repositioning. The 
combination of a drug with a therapeutic target may 
produce therapeutic effects, while the combination 
of a drug with other targets may produce side 
effects. Drug side effects have become a major cause 
of drug clinical trial failure (Pliakos & Vens 2020). 
Therefore, predicting possible drug side effects by 
DTI at the preclinical study stage will help in 
selecting more suitable drug molecules for clinical 
trials. 

Therefore, DTI prediction will be very useful in 
drug development. Prediction methods for DTIs are 
generally divided into three categories (Sachdev & 
Gupta 2019): ligand-based methods, docking 
methods, and chemical genomics methods. Ligand-
based methods were developed based on the idea 
that similar molecules usually bind to similar protein 
targets and display similar properties (Jacob & Vert 
2008). Docking methods use simulations of the 
three-dimensional structures of proteins and drugs to 

predict whether they will interact with each other 
(Nagamine et al. 2009). Chemogenomic approaches 
use information from both drugs and proteins for 
interaction predictions (Zhao et al. 2019). 

Heterogeneous network-based methods are the 
best type of chemical genomics methods for 
prediction (Ezzat et al. 2019), which do not depend 
on the 3D structure of targets and compound 
molecules or avoid the defects of negative data 
selection of machine learning methods, showing 
greater advantages than other methods. The methods 
based on heterogeneous networks can be generally 
classified into network inference (Saint-Antoine & 
Singh 2020; Cheng et al. 2012), network 
propagation (Engin et al. 2014), and matrix 
decomposition (Hodos et al. 2016; Abbou et al. 
2021) (Fig. 1). Several review articles have been 
published about the prediction methods for DTIs, 
which also contain a summary of the network-based 
prediction methods (Wu et al. 2018). However, these 
reviews do not provide a systematic comparison of 
the heterogeneous networks and algorithms used by 
these prediction algorithms. Therefore, this thesis 
reviews recent heterogeneous network-based 
forecasting methods for DTIs and proposes 
recommendations for heterogeneous network 
construction and algorithm selection after a 
systematic comparison of the heterogeneous 
networks and algorithms used. 

 
Figure 1: The application and classification of DTIs. 
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2 DTIs PREDICTIONS METHODS 

This review summarizes the newly published 
prediction methods for DTIs in recent years and 
classifies them into the following categories: 
network propagation, network inference, and matrix 
factorization (Table 1). 

Network propagation is a common approach 
used to analyze heterogeneous networks, and a 
variety of DTI prediction tools have been developed 
based on this approach. NRWRH (Chen et al. 2012) 
is a large-scale method for predicting DTIs 
constructed by Chen et al. using a restarting random 
walk algorithm under the assumption that similar 
drugs usually have similar targets. This method 
integrates three different networks (a protein 
similarity network, a drug similarity network, and a 
drug-target interaction network) into a “drug-target” 
heterogeneous network. NRWRH was compared 
with traditional supervised or semisupervised 
methods such as NRWR (Chen et al. 2012), RWRH 
(Li & Patra 2010), and RWR (Camoglu et al. 2005; 
Kohler et al. 2008), which makes full use of 
network-based information to achieve random 
walking on the “drug-target” heterogeneous network 
and improve the accuracy of predicting DTIs, but the 
method still has certain shortcomings, such as the 
problem of randomness, which is mainly caused by 
the choice of the initial probability (Ganegoda et al. 
2015). LPMIHN (Yan et al. 2016) is a label 
propagation method optimized by Yan et al. based 
on the NRWRH method. Its “drug-target” 
heterogeneous network consists of a drug similarity 
network, a target similarity network, and a drug-
target interaction network. Compared with NRWRH, 
LPMIHN used a label propagation algorithm on the 
constructed “drug-target” heterogeneous network to 
infer potential DTIs, which reduces the network 
sparsity problem caused by rare drug-target 
interactions and further improves the prediction 
accuracy. DTINet (Luo et al. 2017) is a 
computational prediction pipeline developed by Luo 
et al. that integrates multiple drug-related 
information. Particularly, this method integrated six 
different networks (including a drug-protein 
interaction network, a protein similarity network, a 
protein-disease association network, a drug-disease 
association network, a drug similarity network, and a 
drug-side effect association network) into the “drug-
disease-target-side effect” heterogeneous networks 
and utilized the restart random walk algorithm to 
accurately explain the topological characteristics of 
each node in this heterogeneous network. In 
addition, in experiments, Luo et al. verified the 

novel interaction relationship between the three 
drugs and the cyclooxygenase protein predicted by 
DTINet and proved the new potential application of 
these cyclooxygenase inhibitors in the prevention of 
inflammatory diseases. Compared with HNM (Wang 
et al. 2014), BLMNII (Mei et al. 2013), NetLapRLS 
(Xia Z. et al. 2010), CMF (Xia L. Y. et al. 2019), 
DTINet had a better predictive effect, which was 
6.9% and 5.9% higher. Shahreza et al. developed a 
semisupervised machine learning approach, Heter-
LP, using a label propagation algorithm on the 
“drug-target-disease” heterogeneous network (Lotfi 
Shahreza et al. 2019). The network of this approach 
consists of a drug-disease association network, a 
drug-target interaction network, and a disease-target 
association network. In particular, Shahreza et al. 
applied Heter-LP to analyze innovative putative 
drug-disease, drug-target, and disease-target 
relationships, including cosyntropin (drug) and 
DHCR7, IGF1R, MC1R, MAP3K3, and TOP2A 
(protein targets), for a rare disease adrenocortical 
carcinoma (ACC). Heter-LP provided a new way for 
the treatment of ACC (Lotfi Shahreza et al. 2017). 
DHLP-1 (Maleki et al. 2020) and DHLP-2 (Maleki 
et al. 2020), with two distributed label propagation 
methods based on the “drug-target-disease” 
heterogeneous network developed by Maleki et al. 
Its heterogeneous network consists of a drug-disease 
association network, a drug-target interaction 
network, and a disease-target association network. 
Compared with the two nondistributed methods, 
MINProp (Lotfi Shahreza et al. 2017) and Heter-LP, 
the two methods had superior results in terms of 
running time and accuracy. 

Network-based inference (NBI) is another 
common approach to analyze heterogeneous 
networks and it is frequently used in the prediction 
methods for DTIs. HGBI (Wang et al. 2013) is a 
new heterogeneous network-based inference method 
proposed by Wang et al. This method constructs a 
“drug-target” heterogeneous network by the known 
drug-target interaction network, a drug similarity 
network, and a target similarity network, and it 
predicts DTIs based on this heterogeneous network. 
Its prediction accuracy was improved compared with 
NBI (Cheng et al. 2012) and BLM (Bleakley & 
Yamanishi 2009). Wang et al. developed TL_HGBI 
(Wang et al. 2014), which adopts the guilt-by-
association principle to integrate five networks 
(including a disease similarity network, a drug-
disease association network, a drug similarity 
network, a drug-target interaction network, and a 
target similarity network) into the “drug-target-
disease” heterogeneous network. It optimized the 
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HGBI method, particularly compared with other 
methods. When the heterogeneous network model 
was changed or the iterative algorithm was updated, 
TL_HGBI could not only automatically construct a 
new drug-target relationship network but also 
automatically add drug-target information for drug-
disease relationship prediction. DT hybrid (domain 
tuned-hybrid)  (Alaimo et al. 2013) is an NBI 
recommendation method based on heterogeneous 
networks developed by Alaimo et al., integrating 
NBI and Hybrid (Alaimo et al. 2013) tools. The 
“drug-target” heterogeneous network of this method 
includes a drug similarity network, a target 
similarity network, and a drug-target interaction 
network. Different from the traditional NBI 
recommendation method, the DT hybrid takes into 
account the important characteristics of the drug 
target domain (Alaimo et al. 2015). SDTNBI (Wu et 
al. 2017) is an NBI method based on a “drug-
substructure-target” heterogeneous network 
developed by Wu et al. The heterogeneous network 
consists of a new chemical entity-substructure 
network, a substructure-drug network, and a drug-
target interaction network. This method prioritizes 
potential targets of old drugs, failed drugs, and new 
chemical entities and combines network and 
chemical information to establish relationships 
between new chemical entities and known DTI 

networks. The advantage of SDTNBI is that it can 
predict potential targets of new chemical entities, 
whereas traditional network-based methods cannot. 

The matrix factorization method can solve the 
data sparsity problem well with better prediction 
accuracy and has been widely used in the prediction 
of DTIs. Liu et al. built a “drug-target” 
heterogeneous network by integrating a drug 
similarity network, a target similarity network, and a 
drug-target interaction network while using the 
matrix factorization method to develop NRLMF 
(Liu et al. 2016). This method used the 
neighborhood regularization logistic matrix 
factorization algorithm to establish the interaction 
probability model between the drug and the target, in 
which the attributes of the drug and the target were 
represented by the drug-specific and target-specific 
potential vectors, respectively. The average AUC 
and AUPR values of NRLMF in the gold standard 
dataset are better than those of NetLapRLS (Xia Z. 
et al. 2010), BLM-NII (Mei et al. 2013), WNN-GIP 
(van Laarhoven & Marchiori 2013), KBMF2K 
(Gonen 2012), CMF (Xia L. Y. et al. 2019). KMDR 
(Kuang Q. F. et al. 2017) is a heterogeneous network 
method based on the kernel matrix reduction 
dimension algorithm developed by Kuang et al. The 
“drug-target” heterogeneous  

Table 1: Drug-target interaction predictions methods. 

Name Networks Algorithm 
classification Algorithms Datasets for network 

construction Ref 

NRWRH drug-target (protein-protein + 
drug-drug + drug-target) 

Network 
propagation 

Random walk with 
restarts (RWR) 

DrugBank, KEGG, 
SuperTarget,  

Yamanishi et al. 
(Yamanishi et al. 2008)  

 (Chen et 
al. 2012) 

HGBI drug-target (drug-drug + target-
target + drug-target) 

Network 
inference Network inference  

Sophic 
Integrated Druggable 

Genome Database 
(Sophic 2012), OMIM, 

DrugBank, InterPro 
(Hunter et al. 2009) 

 (Wang et 
al. 2013) 

TL_HGBI 

drug-target-disease (disease-
disease + disease-drug + drug-

drug + drug-target + target-
target) 

Network 
inference 

Triple layer 
heterogeneous 
graph based 

inference 

DrugBank, Sophic 
Integrated Druggable 

Genome Database 
(Sophic 2012), OMIM,  
Gottlieb et al. (Gottlieb 

et al. 2011)  

 (Wang et 
al. 2014) 

DT-Hybrid drug-target (drug-drug + target-
target + drug-target) 

Network 
inference 

Bipartite network 
projection 

DrugBank,  
Yamanishi et al. 

(Yamanishi et al. 2008)  

 (Alaimo 
et al. 
2013)

DASPfind drug-target (drug-drug + target-
target + drug-target) 

Network path 
analysis 

Simple paths 
finding 

DrugBank, KEGG, 
SuperTarget, BRENDA, 

Yamanishi et al. 
(Yamanishi et al. 2008)  

 (Ba-Alawi 
et al. 
2016) 

NRLMF drug-target (drug-drug + target-
target + drug-target) 

Matrix 
factorization 

Neighborhood 
regularized logistic 
matrix factorization

Matador, ChEMBL, 
DrugBank, KEGG, 

SuperTarget, BRENDA 

 (Liu et al. 
2016) 

LPMIHN drug-target (drug-drug + target-
target + drug-target) 

Network 
propagation Label propagation ChEMBL, DrugBank, 

KEGG, SuperTarget, 
 (Yan et al. 

2016)
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BRENDA 

KMDR drug-target (drug-drug + target-
target + drug-target) 

Matrix 
factorization 

Kernel matrix 
dimension 
reduction

DrugBank, KEGG, 
UniProt 

 (Kuang Q. 
F. et al. 
2017)

DTINet 

drug-disease-target-side effect 
(drug-protein + protein-protein 

+ protein-disease + disease-
drug + drug-drug + drug-side 

effect) 

Network 
propagation 

RWR and diffusion 
component analysis 

DrugBank, HPRD, CTD, 
SIDER 

 (Luo et al. 
2017) 

DNILMF drug-target (drug-drug + target-
target + drug-target) 

Matrix 
factorization 

A dual-network 
integrated logistic 

matrix factorization

DrugBank, KEGG, 
BRENDA, SuperTarget, 

COMPOUND 

 (Hao et al. 
2017) 

GRMF drug-target (drug-drug + target-
target + drug-target) 

Matrix 
factorization

Graph regularized 
matrix factorization

Yamanishi et al. 
(Yamanishi et al. 2008)  

 (Ezzat et 
al. 2017)

SDTNBI 

substructure-drug-target 
 (drug-substructure + drug-

target + 
new chemical entity-

substructure) 

Network 
inference Network inference ChEMBL, DrugBank, 

BindingDB 
 (Wu et al. 

2017) 

Heter-LP 
drug-target-disease (drug-

disease + 
drug-target + disease-target) 

Network 
propagation Label propagation DrugBank, SuperTarget 

 (Lotfi 
Shahreza 

et al. 
2019)

DHLP-1 
DHLP-2 

drug-target-disease (drug-
disease + 

drug-target + disease-target) 

Network 
propagation Label propagation Yamanishi et al. 

(Yamanishi et al. 2008)  
 (Maleki et 
al. 2020) 

iDrug 
drug-target-disease (drug-target 
+ drug-disease + drug-drug + 

target-target + disease-disease) 

Matrix 
factorization Matrix factorization CTD, Gottlieb et al. 

(Gottlieb et al. 2011)  

 (Chen H. 
et al. 
2020)

 
network of KMDR consists of a drug similarity 
network, a target similarity network, and a drug-
target interaction network. KMDR can reduce the 
prediction bias, and it has a better DTI performance 
than the regularized least squares classifier (RLS)  
(Kuang Q. et al. 2014) and a semisupervised link 
prediction classifier (SLP) (Kuang Q. et al. 2014). 
DNILMF (Hao et al. 2017) is a dual-network 
integrated logistic matrix factorization algorithm 
developed by Hao et al., and its “drug-target” 
heterogeneous network consists of a drug similarity 
network, a target similarity network, and a drug-
target interaction network. This method used a 
domain regularization logistic matrix factorization 
algorithm, which was optimized based on NRLMF, 
to improve the drug-target prediction accuracy, and 
its prediction results had higher AUC and AUPR 
values than NRLMF. Ezzat et al. developed a 
network-based regularized matrix decomposition 
tool, GRMF (Ezzat et al. 2017), whose “drug-target” 
heterogeneity network consists of a drug similarity 
network, a target similarity network, and a drug-
target interaction network.In addition, this method 
took into account the situation in which many non-
occurring edges in the network were unknown or 
missing cases and it added edges with intermediate 
interaction probability scores in the preprocessing 
step to improve the prediction results of the new 
drugs and new targets. As a result, GRMF 
performed very well in predicting the left-out 

interactions. Chen et al. integrated a drug-target 
interaction network, a drug-disease association 
network, a drug similarity network, a disease 
similarity network, and a target similarity network to 
form the “drug-disease-target” heterogeneous 
network and thus developed the iDrug (Chen H. et 
al. 2020) method. This method utilized a matrix 
factorization method to connect a drug-disease 
association network and a drug-target interaction 
network through drugs. MBiRW has better drug-
target prediction and drug-disease prediction 
performance than TH_HGBI, and it can also identify 
new drug-miRNA interactions.  

In addition to the above three types of DTI 
prediction methods, there are other methods, such as 
network path analysis. DASPfind (Ba-Alawi et al. 
2016) is a network path analysis method based on a 
heterogeneous network developed by Ba-Alawi et al. 
Its “drug-target” heterogeneous network consists of 
a drug similarity network, a target similarity 
network, and a drug-target interaction network. 
Compared with the other methods, the advantage of 
this method is that it can better predict DTIs with 
unknown targets or drugs with fewer targets and it 
has a better prediction performance than HGBI, DT-
Hybrid, and NRWRH. 
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3 RESULTS AND DISCUSSION 

3.1 Comparison of DTIs Prediction 
Methods 

Common algorithm evaluation methods include 
independent dataset testing, ab initio prediction, 
leave-one-out verification, and external dataset 
verification, and the most commonly used cross-
validation is the tenfold cross-validation method, 
which is widely used in the evaluation of algorithm 
accuracy. The AUC value is the area under the ROC 
curve, which can usually indicate the overall 
performance of the algorithm, and it can be used to 
compare the relative performance of different 
algorithms, with larger values indicating better 
algorithm performance (Sing et al. 2005). The PR 
curve (precision recall curve) shows the relationship 
between precision and recall. In most of the 
literature, the indicators used to evaluate the 
prediction performance of the algorithm are the area 
under the curve (AUC) and the area under the 
precision recall curve (AUPR)  (Nascimento et al. 
2016).  

We collected the AUC and AUPR values of 
more than a dozen methods, including NRWRH, 
DT-Hybrid, DHLP, etc. on the gold standard dataset 
(Lotfi Shahreza et al. 2018) (http://web.kuicr.kyoto-
u.ac.jp/supp/yoshi/drugtarget/), which was divided 
into four parts (Yamanishi et al. 2008): enzyme, ion 
channel, GPCR, and nuclear receptor (Table 2). 

As shown in Table 2, DT-Hybrid, LPMIHN, 
DNILMF, MINProp, NRLMF, and SDTNBI have 
high AUC values on the same benchmark datasets, 
and their AUC values on the four parts of 
benchmark datasets are above 90%. In particular, 
DT-Hybrid has a high prediction accuracy of DTIs 

with AUC values of approximately 99% on the four 
types of benchmark datasets. In addition, LPMIHN 
has the highest AUPR value and has better 
application prospects. 

3.2 Comparison of Heterogeneous 
Networks and Algorithms 

In addition to the above comparison of the 
performance of the DTI prediction methods through 
the AUC and AUPR values, this paper also provided 
statistics and comparisons of the effects of different 
heterogeneous networks and different algorithms on 
the prediction results (Table 3). 

The comparisons shown in Table 3 indicate that 
most of the methods with higher accuracy in 
predicting DTIs used “drug-target” heterogeneous 
networks constructed by a drug similarity network, a 
target similarity network, and a drug-target 
interaction network. The “drug-disease-target” 
heterogeneous network constructed by adding 
disease information did not contribute significantly 
to an improvement of the prediction accuracy. Using 
the same “drug-target” heterogeneous network, the 
prediction accuracy of DNILMF and NRLMF using 
the logistic matrix-based decomposition method was 
higher than that of GRMF using only the matrix 
decomposition method, and the AUPR value 
increased from 76.3% to more than 98%. Therefore, 
logistic matrix factorization was chosen as superior 
for the prediction method of DTIs based on 
heterogeneous networks. In addition, among the 
methods using “drug-target” heterogeneous 
networks, network propagation methods and 
network inference methods were used for better 
prediction. 

Table 2: Reported AUC and AUPR on gold standard datasets in literature. 

Method Enzyme Ion channel GPCR Nuclear receptor  Ref 

 AUC  AUPR AUC  AUPR AUC  AUPR AUC  AUPR  
NRWRH 0.953  - 0.971  - 0.945  - 0.867  -  (Chen et al. 2012) 

DT-
Hybrid 0.999  - 0.997  - 0.999  - 1.000  - 

 (Eslami 
Manoochehri & 
Nourani 2020)

SDTNBI 0.958 - 0.971 - 0.966 - 0.932 -  (Wu et al. 2017) 

DASPfin
d 0.929  - 0.907  - 0.881  - 0.853  - 

 (Eslami 
Manoochehri & 
Nourani 2020)

HGBI 0.916  - 0.889  - 0.913  - 0.876  - 
 (Eslami 

Manoochehri & 
Nourani 2020)
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NRLMF 0.987  0.892  0.989  0.906  0.969  0.749  0.950  0.728   (Liu et al. 2016) 

LPMIHN 0.999  0.929  0.998  0.961  0.998
6 0.973  0.996  0.970   (Yan et al. 2016) 

GRMF - 0.763  - 0.745  - 0.567  - 0.423   (Ezzat et al. 2017) 
DHLP-1 - - - - 0.976  0.766  - -  (Maleki et al. 2020) 
DLHP-2 - - - - 0.955  0.956  - -  (Maleki et al. 2020) 

HeterLP - - - - 0.967  0.796  - -  (Maleki et al. 2020) 
DNILMF 0.989 0.922 0.990 0.938 0.975 0.821 0.955 0.751  (Hao et al. 2017) 

 
4 CONCLUSIONS 

In this paper, we systematically reviewed the 
heterogeneous network-based prediction methods 
for DTIs, and the statistical analysis of the 
heterogeneous networks showed that most of the 
DTI prediction methods used the “drug-target” 
heterogeneous network, which was comprised of a 
drug similarity network, a target similarity network, 
and a drug-target interaction network. In terms of the 
algorithm selection methods, network inference, 
network propagation and matrix factorization were 
used for the prediction of DTIs. By comparing the 
performance of these DTI methods against the gold 
standard dataset, DT-Hybrid and LPMIHN were 
found to have the best prediction performance. By 
comparing the heterogeneous networks and 
algorithms against the gold standard dataset, it was 
found that the method using “drug-target” 
heterogeneous networks had better prediction 
performance and that the triple-layer heterogeneous 
networks constructed by adding disease information 
were of limited use in improving the prediction 
accuracy. Among the “drug-target” heterogeneous 
networks, network propagation and network 
inference methods were found to have better 
prediction performance. 
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