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Abstract: As the speed of finding new proteins exceeds that of structural analysis, traditional experimental ways are 
time-consuming and cannot meet the need to decipher the structure of proteins in a relatively short time, which 
leads to the appearance of protein structure prediction. Protein structure prediction uses deposited protein 
structures to predict the newfound and has developed fast with the increase of computational resources and 
the refinement of algorithms. This review introduces protein structure prediction based on machine learning, 
including sequence encoding and feature extraction. After that, we focus on deep learning and interpret several 
common methods used in deep learning algorithms, including sequence alignment, residues contact profile. 
Finally, we introduce several representative algorithms and their methods. 

1 INTRODUCTION1 

Protein Structure prediction is crucial to understand 
the protein function and inter-protein contact. 
Traditionally, scientists use experimental methods to 
analyse the three-dimensional (3D) structure, like X-
ray Crystallography, Nuclear Magnetic Resonance 
(NMR) spectroscopy and Cryogenic Electron 
Microscopy (Cryo-EM) 
(https://www.genome.jp/dbget/aaindex.html.); 
(Anand, 2008); (Anfinsen) But now, the gap between 
protein sequences and know structures is getting 
bigger (Bateman, 2021). Meanwhile, the speed of 
discovering new proteins surpass that of analysing, so 
it is needed to predict the structure of new-finding 
proteins based on what we have known. Proteins have 
infinite patterns of structure, but the basic forming 
elements are conservative among all species. Also, 
according to self-assembly theory, only the amino 
acid residue is adequate to model the final 3D 
structure (Bengio, 1994). That's the theoretical base 
for computational prediction. Many methods were 
created to predict 3D structures based on sequences. 
According to Critical Assessment of Protein 
Structure Prediction (CASP), protein structure 
prediction can be divided into two categories, 
template-based modeling (TBM) and free modeling 
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(FM) (Bernardes, 2013). TBM compares target 
sequences with those in Protein Database (PDB) 
(https://www.rcsb.org) and finds homologous 
fragments, then takes known motifs together and 
thread several parts to present the whole 3D structure. 
FM, also called ab initio prediction, predict the target 
sequence based on inter-residues interaction and 
evolutional relationship.  

The Dictionary of Protein Secondary Structures 
defines eight states of a single amino acid residue to 
make the sequence easier to be processed by the 
procedure, so the algorithm can easily categorize 
residues. Different methods are applied to process the 
sequence and get information (Bonetta, 2020).  

2 PROTEIN STRUCTURES 

2.1 Primary Structure 

The primary structure of proteins refers to the 
sequence of amino acids in the polypeptide chains, 
like ACDE, which is determined by the sequence of 
DNA. After transcription and translation, the genetic 
information is transformed from DNA to mRNA and 
finally to protein (Cai, 2000). Each amino acid is 
joined by peptide bonds, formed by dehydration 

308
Wen, J.
Protein Structure Prediction: Biological Basis, Processing Methods and Deep Learning.
DOI: 10.5220/0011203900003443
In Proceedings of the 4th International Conference on Biomedical Engineering and Bioinformatics (ICBEB 2022), pages 308-315
ISBN: 978-989-758-595-1
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



between amino groups and carboxyl groups. In 
structure prediction, 20 amino acids are encoded with 
20 letters, so the input to the algorithm is actually 
character strings. The first protein deciphered was 
insulin. Frederick Sanger discovered its amino acid 
sequence in 1951 and brought up that proteins have 
defining amino acid sequences (Chou, 1995).  

2.2 Secondary Structure  

Secondary structure refers to regular local sub-
structures defined by the patterns of hydrogen bonds. 
The one-dimensional sequence can form three 
dimensional local segments through the hydrogen 
bond between amino and carboxyl oxygen. Because 
secondary structures are elements for protein folding, 
prediction from sequence to local segments is critical 
and therefore challenging. Pauling assigned 
secondary structures to eight types based on 
hydrogen bonding patterns. For convenient 
expression and encoding, The Dictionary of Protein 
Secondary Structures (DSSP) is commonly used to 
describe secondary structures with corresponding 
eight letters (Bonetta, 2020).  

2.3 Tertiary Structure 

Tertiary structure refers to the three-dimensional 
structure of a single protein folding with one or 
several domains driven by non-specific hydrophobic 
interaction. Tertiary structure is basically the spatial 
arrangement of multiple secondary structures, 
sometimes accompanied by metal ions.  

Therefore, models for structure prediction 
actually try to extract local features from the amino 
acid sequence (input) and transform them into octet-
state secondary structures, and then assemble 
elements into three-dimensional protein structures. 

Table 1. The Dictionary of Protein Secondary Structures. 

Code Secondary Structure 
G 310 helix (3-turn helix) 
H  helix 
I  helix 
T hydrogen-bonded turn 
E extended strand in parallel and/or anti-

parallel β-sheet
B Isolated β-bridge 
S Bend 
C Coil 

3 SELF-ASSEMBLY THEORY  

In 1961, Anfinsen treated bovine pancreatic 
ribonuclease with 8 M urea and got a randomly coiled 
polypeptide chain with cysteine residues. Then he 
found that though the ribonuclease was denatured, it 
could regain the activity under optimal conditions of 
polypeptide concentration and pH (Bengio, 1994). 
Therefore, he proposed that proteins have their 
natural structures, determined by one-dimensional 
sequence, and peptide chains will automatically fold 
into that conformation. That's the self-assembly 
theory. It is the basis for protein structure prediction 
because the theory assumes that no other variables 
are influencing the final structure of proteins except 
for the sequence. 

4 FEATURE EXTRACTION 

After the input of sequence, a specific encoding 
scheme is needed to generate a set of features to 
represent the properties of each protein and use those 
features as input to machine learning (ML) 
algorithms (Chou, 2020). In the past 30 years, 
scientists have developed a number of different 
descriptors of proteins for different aspects of 
prediction, including fold classification, subcellular 
location prediction and membrane protein type 
prediction (Chou, 2001); (Chou, 2019). Descriptors 
are designed to show some information of the 
proteins, like isoelectric point (pI), amino acid 
residues composition. Here we introduce some 
strategies to extract protein features. 

4.1 Amino Acid Composition 

Proteins are composed of amino acid residues whose 
arrangement determines how proteins will fold. So 
basically, amino acid composition (AAC) help to find 
a specific spatial structure. Originally, AAC was 
utilized as a feature descriptor. Based on sequence, a 
vector with 20 elements is yielded, and each element 
represents the frequency of a specific amino acid 
residue (Comet, 2002); (Dayhoff, 1983); (Deng, 
2018). However, it was found that only the AAC 
descriptor cannot simulate the spatial structure, and 
the bias is inevitable. Scientists think some important 
information may be neglected, so Zhou proposed the 
concept of pseudo amino acid composition 
(PseAAC) (Ding, 2013); (Dubchak, 1995). It is just 
some additional digital information adding to the 
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original 20 elements, yielding a 20 + -dimension 
vector: 𝑋 = [𝑥ଵ, 𝑥ଶ,⋯ , 𝑥ଶ଴, 𝑥ଶ଴ାଵ,⋯ , 𝑥ଶ଴ାఒ] 

The factors 𝑥ଵ, 𝑥ଶ,⋯ , 𝑥ଶ଴  are frequencies of 20 
natural amino acids, and the factors 𝑥ଶ଴ାଵ,⋯ , 𝑥ଶ଴ାఒ 
are the information along the sequence as 
complementary input. PseAAC includes 
hydrophobicity, hydrophilicity, etc. With the 
development of analysis, more PseAACs showed up, 
representing more important information (Dubchak, 
1999); (Eddy, 2002). Free resources containing 63 
different kinds of PseAACs can be accessed through 
a web server named "PseAAC", which was 
established by Shen and Chou 
(https://www.csbio.sjtu.edu.cn/bioinf/PseAAC/) 
(Edgar, 2004); (Elmlund, 2015).  

4.2 Sequence Order 

Lin and Li take two adjacent amino acid residues as 
an unit and use it to predict secondary structure 
(Gondro, 2007); (Gonzalez-Lopez, F.). For example, 
dipeptide composition is utilized, which means it 
yields 400 possible theoretical arrangements. The 
output is then a vector containing the occurrence 
frequency of a combination of specific two residues. 
Similarly, Yu and coworkers use dipeptide, 
tripeptide, and tetrapeptide elements to promote 
modeling accuracy (Hall, 1964); (Hanson). What's 
more, they convert polypeptide composition into a 
structural class tendency sequence, which was then 
used as a new feature descriptor. Tetrapeptide 
arrangement predicts regular structures, for i-th 
residue usually interact with i+4-th residue (Hanson). 

4.3 Physiochemical Properties 

Each amino acid has its specific side chain, which 
determines its physiochemical properties, like 
isoelectric point, polarizability and hydrophobicity 
(Dayhoff, 1983); (Henikoff, 1992); (Hornak, 2006). 
Those properties are accessible online at the amino 
acid index database 
(https://www.genome.jp/dbget/aaindex.html) 
(Hornak, 2006); (Ilonen, 2003). Chou extracted 
information from physicochemical properties with a 
set of correlation factors, yielding PseAAC 
descriptors. Using different functions, sequence 
order correlation factors can be calculated.  

According to global protein sequence descriptors 
(GPSD) theory, amino acids are classified according 
to their unique properties (Henikoff, 1992). GPSD 
includes three dimensions: composition, transition 

and distribution. Same as AAC, the composition 
means the occurrence frequency of each amino acid 
residue type. The transition means frequencies that a 
specific type of amino acid changes to another one. 
The distribution is position-specific information, 
showing the distribution of each amino acid residue 
along the sequence.  

4.4 Secondary-structure-based 
Features 

According to DSSP above, each amino acid has its 
tendency to appear in one or more secondary 
structures. So the protein sequence can be converted 
into secondary structure descriptors by extracting 
information with GPSD. Helix (H), strand (E) and 
coil (C) are commonly utilized (Jararweh, 2019). 
Also, this method can be integrated with several 
methods above to improve accuracy. For example, 
Secondary structure features help to calculate the 
correlation factors or yield PseAAC (Jumper, J.); 
(Kabsch, 1983).  

5 SEQUENCE ALIGNMENT 

One letter represents a specific amino acid during the 
prediction, and the input is a character string. The 
algorithm cannot get the information about the 
character of each amino acid, so the first thing to do 
is to find if deposited proteins are containing the same 
sequence fragments. To achieve this, the target 
sequence must be compared with every sequence in 
the database once, which needs the application of 
Pairwise Alignment (PA). If there are some 
counterparts in the database, the algorithm will just 
take the known structure of counterparts to construct 
the model, based on the self-assembly rule proposed 
by Christian B. Anfinsen. If there is no sequence 
counterpart in the database, then we have to apply the 
algorithm to make an ab initio prediction, which is 
normally Multiple Sequence Alignment (MSA). 
Through MSA, we can know the evolutional 
relationship between the target sequence and existing 
sequences and then reason probable 3D structure.  

5.1 Pairwise Sequence Alignment 
(PSA)  

Pairwise sequence alignment (PSA) is a method 
assessing the similarity between two sequences. The 
classic method is Dynamic Programming, also named 
the needleman-wunsch (NW) algorithm 
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(Kawashima, 2000). By using the trace-back process, 
DP can provide optimum alignment and predict the 
objective function (Kinch, 2016). When the input 
contains two sequences, which is the simplest case, 
DP builds an i×j matrix based on two sequences (i, j 
is the sequence length). Each position in the matrix 
has a score, representing the similarity of the row and 
the column. Finding the path with the highest scores 
can get an alignment pattern of two sequences 
(Kurgan, 2007). However, DP is time-consuming and 
requires high computation resources. The complexity 
grows exponentially along with the increase in 
sequence length, not to mention that two or more 
optimal paths are available. Moreover, DP suffers 
from high-dimensional problems in multiple 
sequence alignment. Even if the computation 
resources are adequate, the optimum alignment from 
DP is rarely biologically optimum. For high accuracy 
of prediction, protein sequence alignment 
substitution matrices were established (Landan, 
2009). The substitution scoring matrix includes PAM 
and BLOSUM, (Landan, 2009); (Lecun, 1998). 
Jararweh and co-workers improved the needleman-
wunsch algorithm by applying three sets of parallel 
implementations. They utilized three hardware 
solutions: POSIC Threads-based, SIMD Extensions-
based and GPU-based implementations (Lewicki, 
2003).  

5.2 Multiple Sequence Alignment 
(MSA) 

MSA aligns multiple sequences, which are normally 
related, to get more biological information, like the 
estimation of evolutionary divergence and ancestral 
sequence profiling (Lin, 2013). It is normally 
implemented when we want to know the evolutional 
trace of target proteins when it comes to protein 
prediction. By simulating the process of evolution 
with MSA, we hope to reason the possible structure 
of the target sequence right now. To achieve it, 
substitution matrix and scoring were assessed (Lin, 
2007). DP can work on MSA if the sequence number 
is small, but it cannot be applied on hundreds of 
sequences for the spur of complexity (Liu, 2020). 
Based on that situation, scientists create heuristic 
algorithms, sacrificing some accuracy for higher 
computational efficiency. For example, MUSCLE, 
CLUSTAL and T-COFFEE use progressive 
alignment (Moult, 1995); (Moult, 2007), and 
MUMMALS and PROMALS use hidden Markov 
model based alignments (Nanni); (Needleman, 
1970). Comet and Henry present a method that 
integrates other information to the classical dynamic 

programming algorithms, like the pattern of 
PROSITE (Notredame, 1998). 

6 CRITICAL ASSESSMENT OF 
PROTEIN STRUCTURE 
PREDICTION  

Critical Assessment of Protein Structure Prediction 
(CASP) is a biennial event that assesses the model of 
protein structure prediction, held firstly in 1994. For 
every CASP competition, participants are asked to 
construct models within a stipulated time to predict 
the structure of the given protein sequences. 
Participants do not know the actual structure of the 
sequences, but the actual structure was determined by 
experiments before (Pei, 2007). After modeling, the 
predicted structure will be compared to the 
counterpart from the experiments, and the similarity 
will be evaluated. There are two categories for 
modeling since CASP7, free modeling (FM) and 
template based modeling (TBM) (Pei, 2008). TBM 
predicts those targets whose homologies, which 
shares similar sequences, have been deposited in 
PDB. The FM category is a big challenge for low 
prediction accuracy, and fragment-based approaches, 
like Rosetta, I-TASSER, and QUARK, dominated 
CASP for many years until deep learning was 
introduced 
(https://www.csbio.sjtu.edu.cn/bioinf/PseAAC/). 

6.1 Deep Learning 

Deep learning, as a sub-field of machine learning, is 
based on artificial neural networks. It was introduced 
in predicting protein structure in 2016 because 
contact prediction, a key intermediate step for 
prediction, emerged in CASP12. A deep learning-
based method, Raptor-X, showed up and reached 
about 50% precision when evaluating top L/5 long-
range predictions, which was twice as much precision 
in CASP11 (Qian, 1988). After CASP12, an 
improved version of the Raptor-X and open-source 
deep learning method DNCON2 were released. In 
CASP13, AlphaFold and other high-performing 
methods were upgraded to use 'distogram' rather than 
just contacts (Qin, 2015); (Rumelhart, 1986).  

Deep learning (DL) simulates biological neural 
networks. Deep learning uses multiple connected 
layers to transform input into corresponding output. 
To some extent, Deep learning is the advancement of 
the Feed Forward Neural Network (FFNN) (Sadique, 
2020); (Sanger, 1951). FFNN is an artificial neural 
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network system that contains no cycles, dividing 
nodes into groups (layers) and process the input 
through them. Each node has its parameter and 
weight and all the nodes in the same layer calculate a 
vector. The layer i+1 gets its values exclusively from 
layer i, until the output layer is valued. The FFNN 
model can be trained with examples by propagation 
algorithm and have universal approximation 
properties, which has been proven (Shen, 2008); 
(Simpkin, A.J). Typically, the "windowed" version is 
applied to protein prediction. A fixed number of 
amino acids as a segment is regarded as the input, and 
the target is the PSA of the segment. Based on FFNN, 
the Deep Learning method variates the connectivity 
between the layers, allowing the algorithm to be 
applied to different data types. Like FFNN, Deep 
Learning can be trained with many examples by 
backpropagation automatically (Smyth, 2000). 
However, containing numbers of internal parameters 
leads to data-greedy and large samples required. Two 
mainstream DL algorithms are Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks 
(RNN). 

6.2 Convolutional Neural Networks 

Convolutional Neural Networks is designed to 
process spatial dependent data (like a base pair in the 
DNA sequence). Taking this advantage, CNN layers 
apply local convolutional filters on positions in the 
data. This strategy avoids the overfitting problem and 
is translation invariant. A module of CNN contains 
multiple consecutive layers to encode more complex 
features (Wang, 2017). "Windowed" FFNN is a 
specific, shallow version of CNN, so we keep 
referring to CNN as FFNN.  

6.3 Recurrent Neural Networks 

Recurrent Neural Networks aim to learn global 
features from sequential data. RNN modules use 
parameterized sub-module to process the sequence 
into an internal state vector and use the vector to 
summarize the original sequence. Previous state 
vector and current input elements determine the 
current internal state vector (Wang, 2018). However, 
RNN easily suffers from the gradient vanishing or 
gradient explosion problem because RNN keeps 
using the same function repeatedly (Xu, 2019). Then 
Long Short Term Memory, Gated Recurrent Unit and 
other Gated RNN are created to contain the problems. 

6.4 Alphafold 

AlphaFold (AlphaFold v2.0) outperform other 
methods in the CASP14 TM group. Its central 
essence is the CNN method (Qin, 2015). AlphaFold 
implements a distogram for protein structure 
prediction by constructing very deep residual neural 
networks with 220 residual blocks processing a 
representation of dimensionality 64 × 64 × 128. By 
customizing the length of the given sequence and plot 
an L × L map, AlphaFold can predict inter-residue 
distances for sub-regions. Then the map is 
transformed into 3D models using minimized 
distance potential, which implements sampling and 
gradient-descent-based methods. Trained by the 
proteins in PDB, it reaches high accuracy even for 
targets with fewer homologous sequences. 

AlphaFold contains two main stages: the trunk of 
the network and the structure module. After the input 
of amino acid sequence, the trunk of the network 
process it through multiple repeated layers of neural 
network block (named Evoformer) and produce two 
arrays. Nseq × Nres array represents a processed 
multiple sequence alignment (MSA), achieved by 
aligning the sequence with those of other species in 
Protein Database (PDB) and outputting a matrix 
representing the similarity between the target and 
deposited sequence. On the other hand, Evoformer 
also produces a Nres × Nres array. By assessing the 
interaction of every two amino acid residues, the Nres 
× Nres array can show residue pairs that likely attract 
or repulse each other, then predict the three-
dimensional position of residues. The innovative 
point of Evoformer is a new mechanism for 
information exchange within MSA and pair 
representation. It helps to reason spatial and 
evolutionary relationship.  

Besides, AlphaFold utilizes end-to-end structure 
prediction with pair representation. By assuming 
each residue is a free-floating rigid body, the module 
constructs residue gas. Residue gas represents 3D 
backbone structure as the form of Nres independent 
rotations and translations, which prioritize the 
orientation of the C backbone, so the side chains are 
highly constrained. Meanwhile, the C backbone is 
completely unconstrained, and the network 
frequently violates the chain constraint, hoping to 
find the conformation with minimum global energy. 
Finally, exact enforcement of peptide geometry is 
completed through post-prediction relaxation with 
gradient descent in the Amber force field (Ye, 2011); 
(Yu, 2007). 
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6.5 RaptorX-Contact 

RaptorX-Contact was created for contact map 
prediction by Xu's group based on Deep Learning. It 
uses a model called deep ResNet, containing two 
major residual neural network modules, respectively 
called 1D deep ResNet and 2D deep dilated ResNet 
(Qian, 1988); (Qin, 2015); (Zhang, T.-L., Y.-S. Ding, 
and K.-C. Chou). The 1D and 2D ResNets play 
different roles, respectively capturing long-range 
sequential and pairwise context. 1D ResNet extracts 
sequential features and conducts 1D convolutional 
transformations from a L × 26 matrix, as the input, 
into a L × n matrix (L is sequence length). After 
converting the L × n matrix into a L × L × 3n pairwise 
feature matrix, 2D feature is obtained, derived from 
1D feature. It merges with a L × L ×3 pairwise feature 
matrix, froming the output. The output from the 1D 
ResNet is then fed into 2D ResNet. 2D ResNet is a 
Residual Neural Network module, conducting 2D 
convolutions. It transforming L × L × (3 + 3n) matrix 
into a L × L predicted distance matrix by softmax. 
Eventually, the output from the 2D module is fed into 
logistic regression. The 1D and 2D ResNets contains 
of ~7 and ~60 convolutional layers and kernel size of 
15 and 5 × 5, respectively. The 1D and 2D ResNets 
for 1D and 2D feature learning is a calculative way to 
save computational resources. That's also why 
RaptorX-Contact produced better results in CASP11, 
comparing with other existing approaches.  

For classification, interatomic distances are 
discretized into 25 bins: <4.5, 4.5-5, 5-5.5, …,15-
15.5, 15.5-16, and >16 Å, and treat each bin as a 
label. Contact prediction is achieved by summing up 
the probability of all the Cβ-Cβ distance bins that fall 
into interval [0, 8 Å]. 

In CASP12, average long-range contact 
prediction accuracy of RaptorX Postdict in L, L/2, 
L/5, L/10 are respectively 40.18%, 50.20%, 58.87%, 
63.93%, ranking the top. In CASP13 RaptorX-
Contact also did the best, when top L, L/2, and L/5 
long-range predicted contacts are evaluated, on the 
FM targets it has precision 44.731%, 57.787%, and 
70.054%, respectively, and F1 values 0.411, 0.362, 
and 0.233, respectively.  

7 CONCLUSION  

With the advancement of computation and 
experiments, we will rely more on algorithm 
prediction to predict more protein structures. Frankly, 
high prediction accuracy of AlphaFold on FM 
illustrates the power of deep learning,and contact 

profile and “distogram” are also huge successes and 
promote the accuracy of modeling.. But in some way, 
it also embodies the deficiency we have in the 
theoretical field of structural biology.  

Proteins with poor alignment are still hard to 
determine the 3D structure. For TBM, deficient 
sequence alignment means the difficulties to do 
homologous modeling, which for FM it means poor 
evolutional relationship accessible. That is to say, we 
cannot fully get rid of empiricism at present. Thus, 
more sufficient methods for crystallographic 
structural analysis are needed to abate the gap 
between known proteins and those experimentally 
determined. Also, some sequences with low 
similarities share with a similar structure, so we need 
to find out what really matters to determine 
secondary structure, or we can define new feature 
descriptors. Thus, more factors that influence the 
spatial bias are remained to find. On top of that, new 
deep learning methods are indeed successful in 
prediction, but integrating with other traditional 
methods is still a challenge. It is necessary to build a 
comprehensive model to maximize the accuracy 
rather than approach the real model through different 
aspects. We cannot know if the prediction is well 
enough unless cross-validate with PDB because some 
steps in protein folding are still remained to discover. 
That's why FM is still way behind TBM.  

In the future, more details of the protein folding 
process are needed to reduce the fluctuation of 
modeling. For now we are still not clear about how 
domains assemble together dynamically. We have to 
know more about the intermediate steps within. 
Algorithms need more training and refinement, 
basically helped by the database. More advanced 
neural network is still remained to discover.  
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