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Abstract: This paper studies the problem of forecasting joint default. The default is the result that the credit rating of an 
obligor, determined by obligor’s operating situation and financing state, decreases to some certain degree. 
The dependence relationship of financing indexes is investigated to judge the credit rating of an obligor and 
the conditional dependence probability and probability density functions are proposed. A member of 
conditional dependence risk relationships is completely characterized by the marginal distribution and the 
copulas of random variables. These results can be applied to investigate the conditional dependence structure 
and the conditional dependence measure of obligor’s assets and of the defaults among obligors. 

1 INTRODUCTION 

In the economic and financial market environment, a 
default would have a chain effect on. The default is 
the result that the credit rating of an obligor, 
determined by obligor’s operating situation and 
financing state, decreases to some certain degree. A 
number of studies have investigated credit risk about 
financial market and default correlation of obligors. 
The KMV (Kealhofer, 1998) and Credit Metrics 
(Gupton, et al., 1997) Models are the most important 
and widely used industry models. A core assumption 
of the KMV and Credit Metrics Models is the 
multivariate normality of the latent variables, where 
the latent variables often interpreted as the value of 
the obligor’s assets. In these models default of an 
obligor occurs if the latent variables fall below some 
threshold which often interpreted as the value of the 
obligor’s liabilities. Defaults are predictable since the 
values of assets are continuous process. Indeed, at 
any time investors know the nearness of the assets to 
the default threshold, so that they are warned in 
advance when a default is imminent. However, for 
bond prices and credit spreads, prices converge 
continuously to their default-contingent values can 
not appear at all. This means that they fail to be 
consistent in particular with the observed contagion 
phenomena, although the existing structural 
approaches provide important insights into the 
relation between firms’ fundamentals and correlated 
default events as well as practically most valuable 

tools (Kay, 2004). A benchmark study was provided 
on the basis of time to default in credit scoring using 
survival analysis and identifying hidden patterns in 
credit risk survival data using Generalised Additive 
Models (Dirick, 2017, Claeskens, 2017, Baesens, 2017, 
Djeundje, 2019, Crook, 2019). 

The default of an obligor is an asymptotical 
accumulating process of firm’s assets decreasing. The 
default will occur when the operating situation and 
financing are distressed to some certain degree. The 
indexes characterizing the credit rating of an obligor 
are dependence on each other. It is useful of judging 
the probability of default of an obligor and running 
the credit risk to investigate the dependence structure 
of indexes. 

In this paper we provide a dependence model of 
multivariate indexes based on copula functions for 
forecasting the obligor’s default and the conditional 
dependence relationship of some indexes. Based on 
the properties of probability, we present the 
conditional dependence probability and density 
functions.  

2 COPULAS AND THE LATENT 
VARIABLE MODEL 

Copulas are simply the joint distribution function of 
random vectors with standard uniform marginal 
distributions. The most important result in the copula 
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framework is due to (Sklar, 1959). That is, the copula 
connects a multivariate distribution to its margins in 
such a way that it captures the entire dependence 
structure in the multivariate distribution. Their value 
in statistics is that they provide a way of 
understanding how marginal distributions of single 
risks are coupled together to form joint distributions 
of groups of risks. 

Let F be a joint distribution function with 
continuous margins 1, , mF F . Then there exists a 

unique copula [ ] [ ]: 0,1 0,1mC → such that  

( ) ( ) ( )( )1 1 1, , , ,m m mF x x C F x F x=            (1) 

holds. Conversely, if C is a copula and 1, , mF F

are distribution functions, then the function F by (1) 
is a joint distribution function with margins 1, , mF F . 

For example, in the credit application, if the latent 
variables ( )1, , mX X X=  have a multivariate Gaussian 
distribution with correlation matrix ρ , then the 
copula of X may be represented by 

( ) ( ) ( )( )Ga 1 1
1 1, , , ,m mC u u u uρ ρ=Φ Φ Φ － － , 

where ρΦ denotes the joint distribution function of a 
standard m − dimensional normal random vector 
with correlation matrix ρ , and Φ is the distribution 

function of univariate standard normal. Ga Cρ is called 
as the Gaussian copula which characterizes the 
dependence structure of the latent variables.  

(David 2000) studied the default correlation via 
the copula function approach. In his model the 

random vector ( )1, , T
mX X X=  are interpreted as time-

until-default which implicate the survival time of 
each defaultable entity or financial instrument, and 
the thresholds 1, , mD D are all set to take the value

T , the time horizon. (Frey 2001, McNeil 2001) 
proposed a latent variable model combine to copula 
functions to investigate the credit. For random vector
X with continuous marginal distributions, 
deterministic cut-off levels vector 1, , mD D and the 

binary random vector ( )1, , T
mY Y , such that the 

following relationship holds:  
  1i i iY X D= ⇔ ≤ . 

We define the 1iY = as default of obligor i at time

t and 0iY =  as non-default.  

3 DEFAULT FORECASTING 
MODELS OF OBLIGOR 

In this section, we take into account the defaultable 
probability of an obligor. Suppose that the credit 
quality of the obligor at time t is completely 

determined by its financing index ( )1, , T
t mtX X X= 

which is a m− dimensional observable random 
vector with continuous marginal distributions iF  

and density functions if , 1, ,i m=  , respectively. 
The financing indexes correlations are calibrated by 
assuming that they follow a factor model, where the 
underlying factors are interpreted as a set of 
macroeconomic variables. Let 1, , mD D be a vector of 
deterministic cut-off levels of financing indexes, 
respectively, for determining the thresholds iD ,

1, ,i m=  , an option pricing technique based on 
historical firm value data is used. Under normal 
operation, commonly it iX D> , 1, ,i m=  , when the 
credit rating of the obligor decreases, some financing 
indexes become

k ki t iX D≤ , { } { }1, , 1, ,ki i m⊂  . 
Moreover, the procedure of the credit rating 
decreasing is an asymptotic process. The lower the 
credit rating is, the higher the probability of obligor’s 

default is. Let ( )1 , , T
t mtX X X=  have joint 

distribution H such that  
 ( ) { }1 2 1 1 2 2, , , , , ,m t t mt mH x x x P X x X x X x= ≤ ≤ ≤  , 

By Sklar’s theorem, there exists a copula function 
such that  

  ( ) ( ) ( ) ( )( )1 2 1 1 2 2, , , , , ,m m mH x x x C F x F x F x=  . 

So that copula C represents the probability of 
event 1 1 2 2, , ,t t mt mX x X x X x≤ ≤ ≤ and simultaneously 
describes the dependence structure of financing 
indexes. The joint probability of all financing indexes 
being less than the cut-off levels can be calculated by  

  { }1 1 2 2, , ,t t mt mP X D X D X D≤ ≤ ≤

( ) ( ) ( )( )1 1 2 2, , , m mC F D F D F D=  . 

Now we consider that j financing indexes

1
, ,

jit i tX X among 1 , ,t mtX X are more than the cut-off 

levels and others m j− financing indexes are less 
than the cut-off levels. For simplify representing, we 
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take into account the probability

{ }1 1 1 1, , ,t jt j j t j mt mPX D X D X D X D+ +> > ≤ ≤  , 

{ }1 1 1 1, , ,t jt j j t j mt mP X D X D X D X D+ +> > ≤ ≤   

( ) ( )( ) ( ) ( ) ( )( )1 1 1 11, ,1, , , sgnc c, , ,j j m m j j m mC F D F D C F D F D+ + + += −  

(2) 

Where ( ) ( ) ( )( )1 1 2 2c , , , j jF D F D F D=  , ( ) 1i iF D = or

( )i iF D, 1, ,i j=  , 

( ) ( )
( )

1 1 ' ,
sgn c

-1, 1 ' .
i i

i i

if F D for anodd number of i s

if F D for anevennumber of i s

≠=
≠

，

ji ,,2,1 = . 

By the properties of copula functions, we know 

the ( ) ( )( )1 11, ,1, , ,j j m mC F D F D+ +  is the marginal copula 

of the copula C of Xt (and then is the copula of 

variables ( )1 , ,j t mtX X+  ). Others are similar.  

One is often interested in estimating or 
forecasting certain conditional probability, such as 
under the condition of some financing indexes lower 
than the cut-off level values, calculating the 
probability of which the remains are more than the 
cut-off levels. 

{ }1 1 1 1, ,t jt j j t j mt mP X D X D X D X D+ +> > ≤ ≤   

{ }
{ }

1 1 1 1

1 1

, , ,
,

t jt j j t j mt m

j t j mt m

P X D X D X D X D

P X D X D
+ +

+ +

> > ≤ ≤
=

≤ ≤

 


 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

1 1 1 1

1 1

1, ,1, , , sgnc c, , ,

1, ,1, , ,
j j m m j j m m

j j m m

C F D F D C F D F D

C F D F D
+ + + +

+ +

−
=

  

 
 (3) 

In similarly, we can obtain the conditional 
probability 

{ }1 1 1 1, , , ,t jt j j t j mt mP X D X D X D X D+ +≤ ≤ ≤ ≤  .  

Furthermore, the conditional probability of

( )1 1, ,j t j mt mX D X D+ +≤ ≤  under the condition 

( )1 1, ,t jt jX D X D> > . 

{ }1 1 1 1, ,j t j mt m t jt jP X D X D X D X D+ +≤ ≤ > >   

{ }
{ }

1 1 1 1

1 1

, , ,
,

t jt j j t j mt m

t jt j

P X D X D X D X D

P X D X D
+ +> > ≤ ≤

=
> >

 


 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1 1 1 11, ,1, , , sgnc c, , ,

1 sgnc c,1, ,1
j j m m j j m mC F D F D C F D F D

C
+ + + +−

=
−




  


  (4) 

According to the definition and properties of 
probability, we can obtain the conditional probability 
density function  

( )
1 1

1, ,
j m j

j mX X X X
f x x

+
+ 
  

{ }
1

1 1 1 1 1 1

0
1

0

, ,
lim
j

m

j j t j j m mt m m t jt j

x
j m

x

Px X x x x X x x X D X D

x x+
+

+

+ + + +

Δ →
+

Δ →

< ≤ +Δ < ≤ +Δ > >
=

Δ Δ


 



( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1, , 1 1 1, , 1 11, ,1, , , sgnc c, , ,

1 sgnc c,1, ,1
j m j j m m j m j j m mC F x F x C F x F x

C
+ + + + + +−

=
−




   


 

( ) ( )1 1j j m mf x f x+ +⋅ ⋅ ⋅ .                   (5) 

where

( ) ( )1
1, , 1

1

, , ,
, , ,

m j
j m

j m j m
j m

C u u
C u u

u u

−
+

+ +
+

∂
=

∂ ∂

 
 


. 

In this section, we achieve some dependence 
conditional probability functions and its density 
functions under the conditions of some financing 
indexes lower or more than the cut-off levels. These 
results are very useful in credit risk management, 
since the risk analysts need to analyse the conditional 
dependence structure and conditional dependence 
measure of financing indexes according to given 
some conditions. Especially, the conditional 
dependence risk probability and density functions 
have particular meaning when the threshold values 
equal some certain values such as 0iD=  and 

( )i iD VaR Xα= . 
In realistic application, it is very difficult that the 

default of an obligor is exactly forecasted by the 
obligor’s credit rating or its operating situation. The 
default is a result which is affected by many factors. 
Obligors have the same credit rating or similar 
operating situation, but they have different credit 
results. The default is capable of contagion among 
obligors. Whenever an obligor suddenly defaults, 
investors learn about the default threshold of closely 
associated business partner obligors. This updating 
leads to “contagious” jumps in credit spreads of 
business partners. 
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4 CONCLUSIONS 

In this paper, we have studied the dependence 
structure of financing indexes of obligor, and the 
conditional dependence risk probability and the 
conditional dependence risk density functions. We 
mainly focus on the scenarios under the conditions 
such as ( )1 1, ,j t j mt mX D X D+ +≤ ≤ and ( )1 1, ,t jt jX D X D> > . 

A member of conditional dependence risk 
relationships is completely characterized by the 
marginal distribution and the copulas of random 
variables. These results can be applied to investigate 
the conditional dependence structure and the 
conditional dependence measure of obligor’s assets 
and of the defaults among obligors.  
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