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Abstract: This paper presents an approach for real-time distance measurement in a 2D image on hardware with limited 
resources without a reference object. Additionally, different approximated functions for distance 
measurement are presented. Here, we focus on an approach to develop real-time distance detection for 
hardware with limited resources in the field of the Internet of Things (IoT). Also, our distance measurement 
system is evaluated with simulated data, real data from model making area and data from a real vehicle from 
real environment. In the beginning, related work of this paper is discussed. The data acquisition of the different 
simulated and real data sets is also discussed in this paper. Additionally, dissimilar resolutions for distance 
measurement are compared in accuracy and run time to find the better and faster system for distance 
measurement in a 2D image on hardware with limited resources for low-power IoT devices. Through the 
experiments described in this paper, the comparison of the run time depending on different IoT hardware is 
presented. Here, the idea is to develop a radar control system for self-driving cars from model making area 
and vehicles from real environment. Finally, future research and work in this area are discussed.  

1 INTRODUCTION 

Autonomous vehicles are being developed daily in 
the autonomous vehicle industry. This development 
includes the installation of various sensors and new 
electronic components. The autonomous vehicle 
needs these sensors to interpret their environment and 
interact with it accordingly. In this way the 
autonomous vehicles are able to drive independently 
without human intervention. But how does the 
autonomous vehicle behave if these sensors fail or 
provide incorrect measurements? The radar sensor 
can measure the distance to the object in front using 
electromagnetic waves. Thereby, an autonomous 
vehicle is able to keep the distance to the vehicle in 
front, acts as a braking or emergency braking assistant 
automatically. To check these measurements, this 
paper presents an optical control system for the radar 
sensor. This radar control system is realised by optical 
distance measurement in a 2D image. Also, the stereo 
camera can be used for this purpose. This camera 
contains two cameras at a certain distance, similar to 
the human eye.  This delivers two images. These both 

images can be used to determine the depth of the 
image and distinguish between roads, people, cars, 
houses, etc. (Li, Chen and Shen, 2019). Our approach 
is to develop this optical radar control system with 
only one camera and to perform the distance 
measurements to the front object in a 2D image. With 
one camera there is only half as much input data to 
process. This approach makes it possible to check the 
measured values of the radar sensor. Furthermore, our 
system operates without a reference object, which is 
needed to convert the pixels to the real distance in the 
real environment. We emphasize that this system is 
not a replacement for the radar sensor, rather it is 
intended to serve as an optical distance verification 
system. 

In order to implement the distance measurements, 
the position of the front object must also be known. 
This object detection has to be done in real time, as 
the distance measurement has also to be done in real 
time. Also, the position of these objects in a 2D image 
is very important. For example, is the vehicle in front 
on the same lane or is it just parked on the side of the 
road? Here, a lane detection can be advantageous. To 
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detect the lane in real time, we have already presented 
the filtered Canny edge detection algorithm (Kuzmic 
and Rudolph A1, 2021).  

The future goal of our work is to switch from the 
simulation we developed before (Kuzmic and 
Rudolph, 2020) to the real model cars. In case of a 
successful transfer of simulation to reality (sim-to-
real transfer), the model car behaves exactly as before 
in the simulation. Here, the hardware of these model 
cars belongs to the low-power IoT devices with 
limited resources. 

2 RELATED WORK 

There are some scientific papers dealing with distance 
measurement, e.g. (Marutotamtama and Setyawan, 
2021) who have made a physical distancing detection 
using YOLO v3 and bird's eye view transform or 
(Rahman et al., 2009) who have developed a person 
to camera distance measurement based on eye-
distance. Furthermore, there are (Mahammed, 
Melhum and Kochery, 2013) who implemented an 
object distance measurement by stereo vision. This 
approach requires a 3D camera consists of two 
cameras of parallel optical axes. However, there also 
some scientific papers that are dealing with the 
detection of the objects in real time on hardware with 
limited resources for low-power IoT devices. For 
example, (Wang, Li and Ling, 2018) who have 
developed pelee: a real-time object detection system 
on mobile devices. This system reaches 23.6 FPS on 
an iPhone 8. Similarly, there are (Jose et al., 2019) 
who have researched real-time object detection on 
low power embedded platforms. This system operates 
at 22 FPS on low-power TDA2PX System on Chip 
(SoC) provided by Texas Instruments (TI). 
Additionally, there are scientific works that deal with 
YOLO real-time object detection for low-power 
hardware, such as (Huang, Pedoeem and Chen, 2018) 
who have developed YOLO-LITE: a real-time object 
detection algorithm optimized for non-GPU 
computers or (Jin, Wen and Liang, 2020) who 
implemented embedded real-time pedestrian 
detection system using YOLO optimized by LNN.  

Our approach is to implement a distance 
measurement with only one camera with a function 
approximation (without a reference object) and to 
develop a real-time radar control system for low-
power IoT hardware. Thus, it is possible to develop a 
low-cost real-time distance measurement e.g. for 
model making or a surveillance camera in a short 
time. For this purpose, we use the Raspberry Pi 3 B 
and Raspberry Pi 4 B. 

3 DATA SETS 

Before distance measurements can be conducted, 
different data sets are needed. A higher quality of data 
increases the chance for a successful distance 
measurement with a low error rate. These data sets are 
also the basis for a successful distance measurement. 
For this purpose, we created different data sets from 
simulation, model making area and real environment. 
Data from the simulation could be automatically 
generated and annotated with our already published 
simulator (Kuzmic and Rudolph, 2020). Data from 
the model making area and the real environment has 
to be created and annotated manually. These 
procedures are described in sections 3.1 and 3.2. The 
resolution is given in the format width × height. Data 
set 1 contains images of a simulation car with the 
corresponding distances (Unity unit) with 795 
pictures.  Data set 2 includes data of a model car 
(PiCar) from the model making area with the 
corresponding distances (metres) with 30 pictures. 
Data set 3 contains images of a real vehicle from the 
real world with the corresponding distances (metres) 
with 24 pictures. Figure 1 shows some images from 
our data sets. The resolution of data sets 1 and 2 is 
1280 × 720 pixels. In figure 1, third row can also be 
seen that the images are smaller in height. The 
resolution of data set 3 is 1280 × 500 pixels. The 
engine hood of our real vehicle was cut out from these 
pictures, so the pictures were reduced in height. 

 
Figure 1: Our data sets for distance measurement. First row: 
Data set 1 from simulator with simulation car. Second row: 
Data set 2 from model making area with model car (PiCar). 
Third row: Data set 3 from real environment with real 
vehicle. 

Here, this resolution is completely sufficient. In the 
next step the pictures of our data sets will be resized 
to the resolution of 320 × 160 pixels. This will be 
discussed in section 4. Table 1 shows the data sets we 
have created for our distance measurement including 
the description and unit scale. For each picture there 
is a corresponding distance (unit scale), which is 
relevant for the later distance conversion. 
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Table 1: Data sets for distance measurement. Count stands 
for the number of records. 

No. Name Description Unit scale Count 

1 Sim 
Distances 

from Unity 
3D simulator 

Unity unit 795 

2 Mod 
Distances 

from model 
making area 

Meter 30 

3 Real 
Distances 
from real 

environment 
Meter 24 

3.1 Automatic Annotation 

One of the advantages of working in the simulated 
environment is the rapid generation of automatically 
annotated data (Kuzmic and Rudolph A2, 2021). 
Through rapid prototyping, meaningful results can be 
generated quickly without an elaborate experimental 
setup in the real environment. To obtain the 
automatically annotated simulation data for the 
distance measurement, our previously published 
simulator applied to accident simulations and 
emergency corridor building on motorways was used 
(Kuzmic and Rudolph, 2020). The corresponding 
distance (unit scale in table 1) to the simulation car in 
front was measured with virtual ray casts (Fig. 2).  

 
Figure 2: Automatic data acquisition and annotation with 
the Unity 3D simulator. Yellow line demonstrates the ray 
cast for the distance measurement (no. 1 in table 1). 

Ray casts can be imagined as a line in a certain 
direction with a certain length. This ray is shown as a 
yellow line between the red and grey simulation car 
in figure 2. So, the distance between both objects can 
be determined. The distance is given in Unity units 
(no. 1 in table 1). Thus, an image with the 
corresponding distance could be automatically 
generated and saved. The different objects can also be 
exchanged without much effort. Consequently, the 
data set from the simulation can be extended as 
desired and automatically annotated. This is an 
additional advantage of the simulated environment. 

3.2 Manual Annotation 

To generate the data set from the model making area 
for a model car, a small test track was set up with two 
model cars (Fig. 3, top). Each of these model cars 
have a camera installed in front. This makes it 
possible to get pictures at a certain distance from the 
model car in front of it. These model cars were placed 
at certain distances from each other. First, the 
distance to the front model car was measured with a 
tape measure (Fig. 3, top, orange circle). Then the 
model car behind was used to take a picture from the 
model car in front manually. Therefore, a 2D input 
image with a corresponding distance as annotation 
(no. 2 in table 1) can be obtained. A similar procedure 
was realised with the real vehicles from the real 
environment (no. 3 in table 1). These pictures were 
also taken with the model car, which was on the roof 
of the real vehicle (Fig. 3, bottom, green circle). This 
model car was also aligned parallel to the road. The 
distance measurement was also carried out with a tape 
measure (Fig. 3, bottom, orange circle). An 
alternative could be a dashcam on the windscreen of 
the real vehicle. This could also provide necessary 
pictures. 

 
Figure 3: Manual data acquisition and annotation. Top: 
Distance measurements with model cars. Bottom: Distance 
measurements with real vehicles. 

4 DISTANCE MEASUREMENT 

After the data acquisition, the distance measurement 
in a 2D image with simulation, model making and 
real environment data could be started. Our approach 
is to realise the distance measurements without a 
reference object. Thereby, the real size of an object in 
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the same image is not needed. Here, our approach is 
to approximate a mathematical function to converting 
the measured pixels to the real distance. We have 
considered two approaches for the distance 
measurement with a bird's eye view transformation 
and without a bird's eye view transformation for the 
simulation data, data from the model making area and 
data from the real world. This transformation yields a 
view of the lane from the top (Venkatesh and 
Vijayakumar, 2012). The pixel measurements for the 
distance start at the bottom of the image in each case. 
Additionally, the input image was resized to a 
resolution of 320 × 160 pixels. This resolution has 
already been used in our real-time lane detection with 
the filtered Canny edge detection algorithm (Kuzmic 
and Rudolph A1, 2021). For this reason, we use this 
resolution for distance measurement. Thus, the 
distance of the vehicles on the same lane can be 
measured in the next step.   

Some preliminary experiments show: The 
conversion of the pixels to the actual distance 
depends on the resolution of the input image, the 
inclination of the camera and the height of the camera 
from the road. If these match, these approximated 
functions can be used. So, the autonomous vehicle 
can be calibrated once in the factory before delivery. 
The pixel calculation is done as a Euclidean distance 
(Malkauthekar, 2013) in pixels to the vehicle in front 
in a 2D image. Here, a linear distance measurement 
to the object in front was carried out. If the road is 
curved, the linear distance measurement can be 
performed, too. The distance measurement is carried 
out up to the bottom line of the detected object using 
our real-time object detection for hardware with 
limited resources for low-power IoT devices (Kuzmic 
and Rudolph, 2022). Thus, the bounding box of the 
object did not have to be defined manually.  

The source (src) and destination (dst) parameters 
required for the bird's eye view transformation to 
generate the transformation matrix were found by 
trial and error. We add them for completeness for the 
320 × 160 pixel images:  

src = [[0, 0], [320, 0], [320, 135], [0    , 135]] 
dst = [[0, 0], [320, 0], [176, 135], [144, 135]] 

For the real environment data with real vehicles, the 
destination changes to: 

dst = [[0, 0], [320, 0], [163.2, 135], [156.8, 135]] 

4.1 Simulation 

The distance measurement was performed on the 
simulation data to check whether an optical distance 
measurement without a reference object is possible at 
all. As already mentioned, a real-time object detection 

is the condition for a real-time distance measurement. 
To measure the distance in pixels in a 2D image, the 
position of the object in pixels have to be known in 
this 2D image. First, we started with the bird's eye 
view transformation (Venkatesh and Vijayakumar, 
2012). Figure 4 (left) shows the input image with 
object detection and distance measurement for the 
simulation data set. Figure 4 (right) represents the 
bird's eye view transformation for the simulation data 
set. The red line shows the Euclidean distance to the 
detected object in pixels (Fig. 4, right). The converted 
input image into the bird's eye view is smaller in 
height. This is a result of the transformation. The 
position of the object can also be converted with the 
generated transformation matrix from the bird's eye 
view transformation. The object detection is done on 
the original input image. Therefore, the conversion of 
the both bottom coordinates of the bounding box into 
the bird's eye view is sufficient. Figure 4 shows the 
conversion of all pixels of the input image including 
the position of the object into the bird's eye view. The 
conversion of all pixels is only for a better 
representation and is excluded from the run time 
measurements in section 5.2. 

 
Figure 4: Bird’s eye view transformation for simulation 
data. Left: Input image with object detection and measured 
distance in pixels. Right: Transformed bird’s eye view. 

After the successful calculation of the Euclidean 
distance in pixels, a mathematical linear function can 
be approximated. This linear function (Fig. 5, green 
graph) is used to convert the calculated Euclidean 
distance into the actual real distance. In simulation 
data the measured value is Unity unit. The points in 
blue show the real measured distances from data set 
1. Figure 5 shows this approximated mathematical 
linear function for the data set from the simulation. 
Here, the total measured distance in the simulated 
environment is 8.5 Unity units. Figure 6 shows the 
Euclidian distance in pixels in a 2D input image 
without the transformation into the bird's eye view. 
As can be seen, the approximated mathematical 
function is a part of a polynomial graph of degree 6. 
With increasing distance in Unity unit, there are fewer 
pixels for distance measurement. This means some of 
the pixels are the same for different distances. For this 
reason, we only continue with the bird's eye view 
transformation approach for distance measurement. 
The mathematical linear function (Fig. 5) is easier to 
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approximate than the polynomial graph of degree 6 
(Fig. 6).  

 
Figure 5: Function approximation with bird’s eye view in a 
320 × 160 pixel image for simulation data. Green line: 
Graph of an approximated linear function. Blue points: Real 
measured distances from data set 1 (Sim). 

 
Figure 6: Function approximation without bird’s eye view 
in a 320 × 160 pixel image for simulation data. Green line: 
Graph of an approximated polynomial function of degree 6. 
Blue points: Real measured distances from data set 1 (Sim). 

4.2 Model Making Area 

Similar to the data from the simulation, the distance 
measurement was also conducted for data set 2 (Mod) 
from the model making area. The procedure for the 
distance measurement with bird’s eye view 
transformation is the same. First, the position of the 
front object in the 2D input image have to be known. 
Then the input image can be transformed into the 
bird's eye view. With the transformation matrix 
generated from the bird's eye view, the position of the 
object can be converted. Figure 7 (right) shows the 
bird's eye view transformation for data set 2 (Mod). 
The red line represents the Euclidean distance to the 
detected object in pixels. Figure 7 (left) shows the 
input image including object detection and distance 
measurement for data from model making area. Here, 
the total measured distance in the model making area 
is 1.37 metres. Here, a mathematical linear function 
can be successfully approximated (Fig. 8, green line) 
as well. This function can be used to convert the 
pixels into the actual distance, in metres. 

 
Figure 7: Bird’s eye view transformation for data from 
model making area. Left: Input image with object detection 
and measured distance in pixels. Right: Transformed bird’s 
eye view. 

 
Figure 8: Function approximation with bird’s eye view in a 
320 × 160 pixel image for model making data. Green line: 
Graph of an approximated linear function. Blue points: Real 
measured distances from data set 2 (Mod). 

4.3 Real Environment 

After successfully distance measurement for the data 
from the simulation and the model making area, the 
data set 3 (Real) from the real environment with real 
vehicles was investigated. In our development, we 
focused on the simulation and model making area. 
However, it is also interesting to investigate distance 
measurement with real vehicles. Figure 9 illustrates 
this distance measurement in use for data set 3 (Real). 
Figure 9 (left) shows the input image including object 
detection and distance measurement for data from the 
real environment with real vehicles. Figure 9 (right) 
represents the transformed bird’s eye view image 
from the real environment. The source (src) and 
destination (dst) parameters required for the bird's eye 
view transformation were found by trial and error and 
are included for completeness for the 320 × 160 pixel 
images:   

src = [[0, 0], [320, 0], [320, 135], [0    , 135]] 
dst = [[0, 0], [320, 0], [163.2, 135], [156.8, 135]] 

Figure 10 depicts the approximated mathematical 
linear function for converting pixels to the actual 
distance (green line). The distance output is given in 
metres in this scenario. Here, the total measured 
distance in the real environment is 60 metres. 
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Figure 9: Bird’s eye view transformation for data from real 
environment. Left: Input image with object detection and 
measured distance in pixels. Right: Transformed bird’s eye 
view. 

 
Figure 10: Function approximation with bird’s eye view in 
a 320 × 160 pixel image for real environment data. Green 
line: Graph of an approximated linear function. Blue points: 
Real measured distances from data set 3 (Real). 

5 EXPERIMENTS 

The following experiments were carried out to 
compare the measurement error and the run time of 
the different resolution and different IoT hardware. 
The resolution is in the format width × height. All 
experiments were carried out on the same hardware 
and input images. For hardware with limited 
resources, a single-board Raspberry Pi 3 B and 
Raspberry Pi 4 B were used. The run time of distance 
measurement is shown in milliseconds (ms). These 
measurements contain only the time for distance 
measurement and do not include the time for loading 
the input images, the time for lane or object detection. 
Our hardware for the experiments: 

 Raspberry Pi 3 B with ARM Cortex-A53 1.2 
GHz CPU, 1 GB RAM, USB 2.0, 8 GB SD as 
hardware with limited resources. 

 Raspberry Pi 4 B with ARM Cortex-A72 1.5 
GHz CPU, 8 GB RAM, USB 3.0, 16 GB SD as 
hardware with limited resources. 

5.1 Different Resolution and Accuracy 

In these experiments, different resolutions for the 
input images in the distance measurement are 
investigated. To check the quality of the optical radar 
control system and the distance measurement for 

different resolutions, the mean absolute error (MAE) 
for the measurement error was calculated (Willmott 
and Matsuura, 2005). The measurement error is given 
in metres (m). Here, it was assumed that the unit scale 
from the simulation (Unity unit) is equal to the unit 
scale from the real environment (meter). 
Additionally, the MAE value was converted to 
percentage of the total distance (MAE in %). Through 
this percentage conversion, the MAE of 0.02 from 
exp. no. 6 in table 2 is comparable with MAE of 0.88 
from exp. no. 9 in table 2. Data set 1 (Sim) provides 
the total distance of 8.5 Unity units. Data set 2 (Mod) 
has a total distance of 1.37 metres. Data set 3 (Real) 
provides a total distance of 60 metres. The measured 
values are rounded to two decimal places. 

The results in table 2 show: With greater 
resolution in height, there are more pixels for distance 
measurement. So, there are fewer duplicate pixels for 
different actual distances. For this reason, the mean 
absolute error (MAE) is smaller with greater 
resolution in height (comparison between exp. no. 1 
to 3 and 7 to 9 in table 2). 

Table 2: Resolution and measurement error overview of 
distance measurement. First column contains the number 
(ID) of the experiment (Exp. No.). 

Exp. 
No. 

Resolution 
Data 
Set 

Measurement Error 

MAE [m] MAE [%] 
1 320 × 160 Sim 0.09 1.06 

2 320 × 320 Sim 0.09 1.06 

3 320 × 640 Sim 0.08 0.94 

4 320 × 160 Mod 0.02 1.46 

5 320 × 320 Mod 0.02 1.46 

6 320 × 640 Mod 0.02 1.46 

7 320 × 160 Real 0.97 1.62 

8 320 × 320 Real 0.89 1.48 

9 320 × 640 Real 0.88 1.47 

5.2 Different Resolution and Run Time 

To find a suitable approach for distance measurement 
on hardware with limited resources, the run time 
should be considered in relation to the measurement 
error. These run time measurements were performed 
on low-power IoT devices (Raspberry Pi 3 B and 4 
B). Small preliminary experiments show: The 
duration of the calculation of the Euclidean distance 
do not depends on the actual distance of the object in 
the input image. Thus, the object was hard coded at 
the upper edge of the input image. So, the Euclidean 
distance was kept the same for all data sets to compare 
the results afterwards. The average run time on 
different hardware was calculated from the respective 
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data set. These run time measurements only include 
the conversion of both bottom coordinates of the 
object into the bird's eye view, calculation of the 
Euclidean distance to the object and the conversion of 
the Euclidean distance to the actual distance. For this 
purpose, the approximated linear functions already 
presented in section 4 are used. The run time 
measurements do not include the transformation of 
the input image into the bird's eye view as this 
transformation is not required for the distance 
measurement. The following table 3 summarizes the 
resolution and the run time of the distance 
measurement. 

Table 3: Resolution and run time overview of distance 
measurement on Raspberry Pi 3 B and Raspberry Pi 4 B. 
First column contains the number (ID) of the experiment 
(Exp. No.)1. 

Exp. 
No. 

Resolution 
Data 
Set 

Run time [ms] 

RPI 3 B RPI 4 B 
1 320 × 160 Sim 0.7 0.4 

2 320 × 320 Sim 0.7 0.4 

3 320 × 640 Sim 0.7 0.4 

4 320 × 160 Mod 0.7 0.4 

5 320 × 320 Mod 0.7 0.4 

6 320 × 640 Mod 0.7 0.4 

7 320 × 160 Real 0.7 0.4 

8 320 × 320 Real 0.7 0.4 

9 320 × 640 Real 0.7 0.4 

5.3 Evaluation of Run Time and 
Accuracy 

After the experiments and the performance tests have 
been completed, the evaluation of the run times and 
the measurement errors can be started. Therefore, it is 
important to find a balance between sufficient 
accuracy and the run time to find a suitable optical 
control system for the radar sensor. The distance 
measurement has been successfully investigated and 
can be applied on the simulation data, on the data 
from model making area and on the data from real 
environment for real autonomous vehicles. Here, the 
measurement error (MAE in %) varies between 0.94 
and 1.62 % (exp. no. 1 to 9 in table 2). This error is 
completely sufficient for our purpose. Evidently, if 
the resolution increases, the run time of the distance 
measurement does not increase, because the pixels of 
the input image are not transformed into the bird's eye 
view (see e.g. exp. no. 7 and 9 in table 3). 

                                                           
1  The reviews helped to improve the run time of the 

distance measurement. 

Additionally, the Raspberry Pi 3 B is slower in 
distance measurement than the Raspberry Pi 4 B (exp. 
no. 1 in table 3). This is caused by the less powerful 
hardware. Next, we consider the distance 
measurement with the input images from data set 2 
(Mod) with resolution of 320 × 160 pixels on the 
Raspberry Pi 4 B. This requires about 0.4 ms for the 
distance measurement (exp. no. 4 in table 3). The 
error in this optical distance measurement is approx. 
1.46 % (exp. no. 4 in table 2). So, a deviation of 
approx. 15 cm at 10 m is given. At this point, the 
variance of the distance measurement also depends on 
the accuracy of the object detection system. More 
accurate object detection, gives more accurate 
distance measurement to this object. Here, the 
position of the bottom line of the object is very 
important. Since, the Euclidean distance is measured 
exactly up to this line. 

On condition that our real-time object detection 
for hardware with limited resources for low-power 
IoT devices with about 30 frames per second (FPS) is 
used (Kuzmic and Rudolph, 2022), the actual run 
time for distance measurement can be calculated 
depending on this object detection. Each frame is 
slowed down by approximately 0.4 ms on a 
Raspberry Pi 4 B and about 0.7 ms on a Raspberry Pi 
3 B. This reduces the actual frame rate to roughly 29 
FPS. So, all our approaches achieve a real-time 
distance measurement on our hardware with limited 
resources. 

6 CONCLUSIONS 

This section summarizes once again the points that 
were introduced in this paper. In our research, we 
focused on real-time distance measurement to 
develop an optical radar control system with a single 
camera. The usage on hardware with limited 
resources for low-power IoT devices was our first 
priority. For this purpose, we also created our own 
data sets from the simulation, from the model making 
area and also from the real environment with a real 
vehicle to assess the quality of the sim-to-real 
transfer. In addition, several different resolutions and 
approximated mathematical linear functions were 
analysed to find a balance between sufficient 
accuracy and the run time of the distance 
measurement. The distance measurement requires 
about 0.4 milliseconds with a 1.46 % error for the data 
set from the model making area. In our development, 
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we focus on the simulation and model making area. 
The approach with real vehicles should show that the 
distance measurement is also suitable for the real 
world use. At this point, if this distance measurement 
is applied to real autonomous vehicles we recommend 
to obtain even more data and conducting more 
experiments. In conclusion, based on our experiments 
the distance measurement without a reference object 
conducts successfully in simulation, in model making 
and in the real environment. Consequently, an optical 
real-time control system for the radar sensor could be 
successfully developed. This real-time radar control 
system achieves an effective balance between 
accuracy and run time.  

7 FUTURE WORK 

As already announced, the goal of our future work is 
to successfully conduct a sim-to-real transfer, 
including our real-time lane detection, real-time 
object detection and real-time distance measurement 
(optical radar control system) we have developed for 
the model making area. This means the simulated 
environment is completely applied to a real model 
vehicle. In this approach, we focus on developing 
software for hardware with limited resources for low-
power IoT devices. Additionally, we want to set up a 
model test track like a real motorway for this 
experiment. Another important aspect on the 
motorways is the creation of an emergency corridor 
for the rescue vehicles in the case of an accident. 
Thus, the behaviour of the vehicles in the simulation 
can be compared with the behaviour of the model 
vehicles in reality. It is also conceivable to extend this 
real-time distance measurement system by a distance 
measurement to the detected objects outside the lane. 
Therefore, it is possible to track the course of 
different objects outside the lane, too. This can be 
used, for example, to extend the functionality of the 
radar sensor in self-driving cars. 
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