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Abstract: The accumulation of antibiotics in river watersheds and lakes would induce spread of antibiotic resistance 
genes in drinking water. For the mineralization of sulfadiazine (SD), •OH equipment was installed in a 
drinking water treatment system with a capacity of 500 m3/h. The •OH was produced by strong ionization 
discharge combined with water jet cavitation. During the transfer of algae bloom water, in only 20 s, a dose 
of 1.0 mg/L and 0.5 mg/L •OH completely degraded the SD after coagulation sedimentation and sand 
filtration, respectively. All algae bloom was inactivated by disinfection with 0.5 mg/L •OH; the 106 drinking 
water quality indexes satisfied the Chinese Standards; and disinfection by-products, such as bromate was not 
formed. Based on NaClO disinfection, the total THM content increased to 188 μg/L, which is 2.35 times 
higher than the concentration limit regulated by United States Environmental Protection Agency (80 μg/ L). 
Advanced •OH oxidation based on strong ionization discharge can be used to completely mineralize 
antibiotics during drinking water treatment. 

1 INTRODUCTION 

Antibiotics which occur and accumulate in varies of 
water systems, this condition will generate the 
spreading of the antibiotic resistance genes which 
affects human health, and as one of the biggest threats 
it is taken into consideration by the World Health 
Organization. Lately, antibiotic contamination in The 
Jiulong River in China has occurred frequently, while 
the concentrations have varied from nanograms to 
micrograms per liter. Beyond that, due to severe 
eutrophication pollution, river basins and lakes often 
experience massive blue algal blooms. Nevertheless, 
the used techniques of the water treatment, like 
coagulation and sedimentation, sand filtration and 
chlorine disinfection which cannot continue to play 
important roles in the remove of antibiotics from 
algal blooms efficiently. To hold back the separation 
of antibiotics in humans it is essential to exploit 
practical therapeutic techniques before getting the 
available potable water. 

Advanced Oxidation Technologies (AOT) refer to 
the process of generating hydroxyl radical (•OH), 
after that a series of chain reactions in •OH are 
triggered. and finally degrading organic pollutants 

into CO2, H2O and inorganic salts. In Fenton system, 
•OH completely degrades 0.025 mM sulfadiazine 
(SD) in glass cells with a diameter of 5.0 cm within 
30 minutes, and inactivated 94.7% of Pseudomonas 
aeruginosa cells after 5 minutes in a cylindrical 
reactor. In the photocatalytic system, •OH degraded 
100% pure water SD in 100 mL reactor after 2h., and 
100% Microcystis Aeruginosa was inactivated after 4 
h in 100 mL reactor. whereas, the present small 
laboratory-scale AOT for antibiotic degradation and 
algal bloom removal requires a long reaction time. 

For this article, •OH mineralization in SD during 
algal bloom water treatment was completed in a 500 
m3/h drinking water treatment system (DWTS) 
during algal bloom. Because SD is widely used to 
treat some common bacterial infections in humans, 
animals and aquatic environments SD was selected to 
be the representative to show the effects and 
mechanisms in the degradation of •OH. What’s more, 
we also studied the influence of the •OH disinfection 
on water quality, algae and DBPs which may exist in 
the drinking water treatment. The comparation of the 
ordinary disinfectant sodium hypochlorite (NaClO).  
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2 MATERIALS AND METHODS 

2.1 Experimental Procedures  

During the algae bloom, the total content of algae in 
the source water reached 168,000 cells /mL, which 
include 92.1% M. Aeruginosa and 1.2% 
Pseudanabaena sp. and 0.31% Cyclotella sp., as 
shown in Figure 1.  

The potable water treatment system consists of 
"coagulation sedimentation, sand filtration, 
•OH/NaClO disinfection, antibiotic degradation and 
a clean water tank" with a capacity of 500 m3/h. For 
•OH disinfection, part of the sand filter is pumped 
into •OH equipment, and •OH solution is generated 
through a series of plasma chemical reactions such as 
water jet cavitation. After sand filtration, algal bloom 
water flows to the clean water tank along the pipe at 
a flow rate of 500 m3/h. After the injection of 
resulting •OH solution to the liquid/liquid mixer, it 
will be mixed with water and transferred to the main 
pipe. For NaClO disinfection, a peristaltic pump is 
used to inject NaClO solution. The treated water 
flows through pink pipes to clean tanks. The 
treatment lasted for 20 s. 

To simulate the severe pollution of antibiotic, part 
of algal bloom water was diverted from the main pipe 
at a flow rate of 1.0 m3/h into a treatment tank. The 
prepared SD solution was pumped into the bypass 
pipe and then injected with •OH or NaClO solution 
for the degradation SD. The reaction time in the by-
pass tube is 20 s. 

 
Figure 1: Images of the total algae and three main algae 
species (amplification factor: 400×)  

(a) M. aeruginosa (b) Pseudanabaena sp. (c) Cyclotella 
sp. 

2.2 Analytical Methods 

2.2.1 Determination of the Total Reactive 
Oxidants and •OH Concentration 

•OH and other oxygen radical concentrations as well 
as NaClO concentrations were defined as total 
reactive oxidants (TRO) concentrations using an 
online chlorine analyzer (Hash CL17, USA). As a 
free radical probe, 4-hydroxybenzoic acid (4-HBA) 
was used for measuring •OH which will form the 
hydroxylated derivative 3,4-dihydroxybenzoic acid 
(3,4-DHBA). The analysis was performed using a 
high-performance liquid chromatograph (HPLC, 
Dionex 113 Co. Ltd., USA) equipped with a diode 
array detector at 210 nm. When TRO concentration is 
1.0 mg/L and 0.5 mg/L, the corresponding •OH 
concentration is 6.35 μM and 3.67 μM, respectively. 

2.2.2 Determination of SD, DBPs, and 
Water Qualities 

SD was analyzed by high-performance liquid 
chromatograph-mass spectrometry (HPLC-MS/MS, 
Agilent 1290-6410 B, USA) on a 3.5 μm C-18 
column (2.1 mm × 100 mm, Waters, USA). The flow 
rate was 0.6 mL/min. Haloalkanes, formaldehyde and 
chloral were analyzed according to EPA methods 556, 
524.2 and 551.1 using gas chromatography-mass 
spectrometry (QP2020Plus, Japan) and electron 
capture detector. Haloacetic acid (HAAs) and rock 
salts (including BrO3

-, ClO3
-, and ClO2

-) were used by 
ion chromatographs (Thermo 2100, USA), 557 and 
300.1, respectively, according to the USEPA method. 
Water quality indexes such as total colony, turbidity 
and conductivity were measured according to GB-
5750.1-10. 

3 RESULTS AND DISCUSSION 

3.1 Degradation of Sulfadiazine during 
Drinking Water Treatment 

Thorough mineralization of antibiotics in drinking 
water can prevent the further induction of antibiotic 
resistance in humans by residual antibiotics. The 
chromatogram of SD degradation by •OH or NaClO 
is shown in Figure 2. •OH degraded SD from 68 ng/L 
to bellow detection limit (B.D.L) at TRO 
concentration of 1.0 mg/L within 20 s after 
coagulation, while NaClO degraded SD to 52 ng/L 
after 20 s and B.D.L after 2 h. •OH degraded SD from 
64 ng/L to B.D.L after 20 s and NaClO degraded SD 
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to 62.7 ng/L after 20 s and to B.D.L after 120 minues 
after sand filtration with injection of 0.5 mg/L TRO. 
Similarly, chlorides produced by electrochemical 
methods did not degrade SD until 3 hours later. •OH 

produced by strong ionization discharge has the 
prospect of large-scale industrial application in 
antibiotic degradation.  

 
Figure 2: Degradation of SD by •OH/NaClO (B.D.L =bellow detection limit). 

3.2 Effect of •OH Disinfection on Algae 
and the Water Quality  

•OH disinfection at 500 m3/h was performed to 
inactivate algae, bacteria, viruse and protozoa to 
inhibit their regeneration in the water supply network. 
After sand filtration, •OH solution was injected into 
the main pipe for disinfection after 20 s reaction. The 
results of inactivation of algae and bacteria are shown 
in Fig.3. In the source water, the total content of algae 
reached 179100 cells/mL. After coagulation and sand 
filtration, M. aeruginosa and other algae decreased to 
2000 cells/mL and 40 cells/mL, respectively. No live 
algae was detected after •OH disinfection. 

The heterotrophic plate count in the source water 
decreased from 300 cfu/mL to 57 cfu/mL by 
coagulation sedimentation and sand filtration, and no 

Escherichia coli, heat-resistant coliform group and 
total coliform group were detected. No bacteria were 
detected after •OH disinfection at 0.5 mg/L. After • 
OH disinfection, the CODMn decreased from 1.0 
mg/L to 0.9 mg/L which indicaties that •OH 
effectively oxidized the reductants and reduced the 
relative organic content. •OH enhances 
hydrophilicity by oxidizing hydroxyl and carboxyl 
groups, reducing turbidity from 0.18 NTU to 0.14 
NTU. No obvious change in color, conductivity, 
hardness, taste, odour, visible organisms and 
ammonia was observed, and 106 indicators of 
drinking water quality which could meet the Chinese 
Sanitary Standards for Drinking Water (GB5749, 
China, 2006). In consequence, advanced •OH 
oxidation technology based on strong ionization 
discharge can be used for drinking water treatment 
when algal blooms occur.  

 
Figure 3: Data of inactivated algae, bacteria, and water quality indicators in the •OH DWTS (B.D.L =bellow detection limit). 
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3.3 Analysis of Possible DBPs  

In DWTS of 500 m3/h, the same dose of •OH and 0.5 
mg/L NaClO solution were injected into the main 
pipe for disinfection after 20 s of reaction. 
Table1.shows that the DBP formed when TRO 
dosage (•OH/NaClO) was 0.5 mg/L. No halates, such 
as chlorite (ClO2

-), chlorate (ClO3
-) and BrO3

- were 
detected during •OH disinfection. When the NaClO 
disinfection, ClO2

- and BrO3
- were not detected, but 

the concentration of ClO3
- increased to 14 μg/L, 

lower than the national standard (GB5749). Notably, 
ClO3

- in water can be taken up by cells and converted 
to more toxic ClO2

- by nitrate reductase. According to 
the reports, aldehydes are mutagenic in mammalian 
cells and cause liver tumors in rodents. In the period 
of •OH disinfection, there was no formaldehyde and 
chloral detected. While, during NaClO disinfection, 
the content of chloral increased to 4.2 μg/L (below the 
limit of the Chinese Standard GB5749) because 
NaClO oxidizes alcohol functional groups, nitrogen 

compounds, and amino acids to form chloral. At 
alkaline pH, chloral further decomposes to generate 
TCM, which is carcinogenic to human beings.  

THM is potentially carcinogenic and genotoxic to 
humans. No TCM, DCBM, DBCM, TBM and total 
THM were detected during •OH disinfection. During 
NaClO disinfection, the contents of 
Trichloromethane, DCBM and DBCM reached to 
5.2, 4.2 and 2.1 μg/L, respectively, which were all 
lower than the national standard (GB5749). The total 
THM content was up to 188 μg/L, which was 2.35 
times higher than the limit set by EPA (80 μg/L) in 
the United States. This is because NaClO oxidizes a 
methyl hydrogen atom through a substitution reaction 
to form TCM. The OCl- could re-oxidize existing Br- 
through electron transfer reaction to form HOBr, and 
brominated THMs, such as DBCM and DCBM are 
generated by the substitution reaction.  
  Therefore, •OH did not produce DBPs after 
disinfection of algal bloom water, indicating that the 
treated drinking water after treatment is safe for 
human body.  

Table1: Formation of DBPs during •OH/NaClO disinfection.  

(TOC = 1.65 mg/L, TRO = 0.5 mg/L, temperature = 26.5 °C, pH = 7.19). 
 

Test items Control (μg/L) •OH disinfection (μg/L) NaClO disinfection (μg/L) 

ClO2- B.D.L B.D.L B.D.L 
ClO3- B.D.L B.D.L 13±2 
BrO3- B.D.L B.D.L B.D.L 

Formaldehyde B.D.L B.D.L B.D.L 
Chloral B.D.L B.D.L 5±1 

Trichloromethane B.D.L B.D.L 5.2±1 
Bromodichloro methane B.D.L B.D.L 4.2±0.8 
Dibromochloro methane B.D.L B.D.L 2.1±0.5 

Tribromomethane B.D.L B.D.L B.D.L 
Trihalomethane B.D.L B.D.L 188±3 

B.D.L =bellow detection limit 

4 CONCLUSIONS 

•OH equipment was installed after sand filtration in 
500 m3/h DWTS during algal bloom outbreaks. 
During algal blooms, •OH equipment was installed 
after sand filtration in 500 m3/h DWTS. 

To contrast with common oxidants, the •OH 
method possesses great practical application potential 
in antibiotic mineralization, algae inactivation, 
drinking water disinfection and other aspects. The 
main results suggest that: 

(1) In the transporting of algal bloom water within 
20 s, after coagulation precipitation and sand 
filtration by •OH degradation at 1.0 mg/L and 0.5 
mg/L there is no SD detected. Compared with it, the 
corresponding degradation rates of SD by NaClO 
were 24% and 2%, respectively.  

(2) In the main pipeline with a treatment capacity 
of 500 m3/h, •OH disinfection at 0.5 mg/L inactivated 
algae from 2040 cells/mL to 0 cells/mL in only 20 s. 
The 106 water quality indexes all meet the limit 
requirements of China Drinking Water Sanitation 
Standard (GB5749, China, 2006).  
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(3) DBPs, for example HAAs, aldehydes, THMs, 
and bromate, were not produced in the process of the 
•OH disinfection. During the disinfection by NaClO, 
the total THMs increased to 188μg/L, 2.35 times 
higher than 80 μg/L which is the limit that set by 
USEPA standards. This result showed that the •OH 
disinfection will lead no harm to human health 
potentially.  
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