
Deriving UML Logic Architectures of Software Product based on a
Cloud Reference Architecture: An Experience Report

Francisco Morais1 a, Tiago F. Pereira1 b, Carlos Salgado1 c, Ana Lima1 d, Manuel Pereira2 e,
João Oliveira2 f, António Sousa3 g and Helena Rodrigues4 h

1CCG - Centro de Computação Gráfica, Campus de Azurém, Guimarães, Portugal
2F3M Information systems S.A., Braga, Portugal

3HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
4Centro ALGORITMI, Escola de Engenharia, Universidade do Minho, Guimarães, Portugal

Keywords: Cloud Computing, Design Methods, Cloud Reference Architecture, Cloud Requirements, Logic Architecture.

Abstract: Companies are nowadays looking for the development of solutions based on public and private clouds capable
of interoperating with information sources such as other systems, or devices in an IoT and CPS approach, and
subsequently using that information efficiently. However, applying appropriate techniques for requirements
engineering and designing logical architectures for that context can be complex. The cloud environments are
very dynamic and are difficult to identify, clarify, and systematically manage cloud requirements. The lack
of requirements engineering methods for this domain carry risks related to incorrect or unjustified decisions,
which result in subjective project developments. This paper presents the use of NIST Cloud Computing Ref-
erence Architecture in the eliciting of requirements by employing a new approach (the 2P2S technique), that
enables the use of an existing Model-Driven Design method (the 4SRS technique), derive logic architectures
for cloud-based solutions, assuring that the system requirements are based on effective client needs.

1 INTRODUCTION

According to Reese (Reese, 2009), Cloud Comput-
ing (CC) is the evolution of a variety of technologies
that have come together to alter an organization’s ap-
proach to building out an IT infrastructure. Adopting
the cloud and its services brings fundamental changes
in how organizations think and engineer their require-
ments. Moreover, designing logical architectures for
that context can be knotted. One of the problems
is the natural discontinuity between functional and
structural models (Machado et al., 2005). Another
is the requirements modeling for CC, in the degree
to which requirements are correctly understood by

a https://orcid.org/0000-0001-6579-8509
b https://orcid.org/0000-0001-8155-4491
c https://orcid.org/0000-0002-5436-0082
d https://orcid.org/0000-0003-3077-6662
e https://orcid.org/0000-0001-9470-2764
f https://orcid.org/0000-0003-0629-4444
g https://orcid.org/0000-0001-8639-5346
h https://orcid.org/0000-0002-8978-8804

the cloud service providers and consumers. Unlike
classical requirements engineering, these processes
should cater for scale, decentralization, uncertainties,
and heterogeneity making traditional approaches lim-
ited in their applicability. Thus, matching between
the user requirements and features of the cloud is a
key asset for a correct evaluation of cloud services
and their adoption (Zardari and Bahsoon, 2011). To
accomplish the matching between the user require-
ments and features of the cloud, proper requirements
elicitation and logical architecture are required, to
help increase the comprehensibility of requirements
for cloud service consumers, and model a technical
architecture needed to place the application on the
cloud, exploring cloud computing concepts, architec-
tural references, and SaaS business models.

Since standards and reference models enable the
use of domain best practices, the cloud requirements
should be based on cloud computing models. The Na-
tional Institute of Standards and Technology (NIST)
has developed a logical extension of its cloud defini-
tion by developing the NIST Cloud Computing Ref-

Morais, F., Pereira, T., Salgado, C., Lima, A., Pereira, M., Oliveira, J., Sousa, A. and Rodrigues, H.
Deriving UML Logic Architectures of Software Product based on a Cloud Reference Architecture: An Experience Report.
DOI: 10.5220/0011146700003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 399-409
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

399



erence Architecture (NIST CCRA) (Liu, F., Tong, J.;
Mao, J.; Bohn, R.; Messina, J.; Badger, M.; Leaf, D.,
2011). First, we discuss some related work in Sec-
tion 2 on CC requirements engineering approaches.
Section 3 shows the proposed approach for eliciting
requirements and deriving logic architectures for the
cloud. In Section 4, we present our case study. Sec-
tion 5 describes a brief discussion of the results, and
finally, Section 6 concludes the paper.

2 RELATED WORK

To create a software architecture model, one must un-
derstand the problem, find a solution, and evaluate the
final result, according to (Souza et al., 2019). Finding
a solution is related to deriving a software architecture
from the requirements specification.

Existing software architecture methods offer ways
to derive architectural models from requirements
specifications. But creating an architectural model
is difficult, especially because requires a balance
between the different forces imposed by different
application domains and quality attributes. Also,
(Souza et al., 2019) refers that the current architec-
tural derivation methods rely heavily on the archi-
tect’s tacit knowledge (experience and intuition), do
not offer sufficient support for inexperienced archi-
tects, and lack explicit evaluation mechanisms. This
leads to poor requirements understanding process, un-
detailed decision-making process, inconsistency be-
tween artifacts, semantic loss, and lack of traceability
between models. (Souza et al., 2019) highlights the
lack of standardized terms, reducing understandabil-
ity, making the communication between stakeholders
inefficient and error-prone. While the standardization
of terms contributes to an established body of lan-
guage, beneficial to software architecture researchers
and practitioners, also could contribute to the adop-
tion of Architecture Description Languages - ADL
(UML, sysML, other). ADLs poor adoption is mainly
because they need to capture design decisions judged
fundamental to satisfy different stakeholder concerns
and also because it is difficult to capture all the differ-
ent concerns with a unique language. Standardization
of terms would facilitate the adoption of ADLs.

The cloud environments are stochastic and dy-
namic, so it is complex to identify, clarify and man-
age cloud requirements in a systematic way (Zardari
and Bahsoon, 2011), (Iankoulova, 2012). According
to (Zalazar A.S., 2017), the CC requirements engi-
neering approaches are mostly concentrated in object-
oriented artifacts and tools. And existing require-
ments engineering processes for CC are generally

about nonfunctional requirements, usually focused on
particular characteristics, as security, privacy, avail-
ability, and other performance aspects. CC is com-
plex to administrate because of dynamism imposed
by the context of having elastic resources (scaling, re-
sizing, on/off), requirements depending on business
changes (peak and non-peak times), consumers being
heterogeneous from different geographic places and
jurisdictions, and distributed systems being managed
remotely.

Authors like (Schrodl and Wind, 2011) conclude
that none of the common models (V-model, Volere,
Extreme programming, and Rational Unified Process)
is suitable to cover the needs of requirements un-
der cloud computing. Also, there is little informa-
tion about frameworks and methods for supporting
projects for this domain (Klems et al., 2009). Or-
ganizations try to adapt existing techniques or create
new ones for supporting cloud projects, but missing
a systematic guidance (Zardari and Bahsoon, 2011),
(Koitz et al., 2013). The lack of engineering methods
for this domain carried risks related to incorrect or un-
justified decisions, which result in subjective project
developments. Thus, (Rimal, 2011), states that a big
challenge for CC is the lack of a standard that helps
meet the objectives covering many different aspects
of cloud services.

(Zalazar A.S., 2017) refers that the recent contri-
butions to the requirements engineering approaches,
proposes frameworks to evaluate and to handle re-
quirements for CC projects. However, there are no
well-known tools and automatic techniques support-
ing that CC adoption.

Some approaches pursue the idea of cloud com-
puting as a multidimensional paradigm, related with
cloud services and SLA, and used to identify cloud
requirements and constraints in natural language, and
being the bases for models, and ontologies.

For example, (Repschlaeger et al., 2012) presents
six target dimensions based on general objectives
(service and cloud management, IT security and com-
pliance, reliability and trustworthiness, scope and per-
formance, costs, and flexibility). (Pichan et al., 2015)
consider only three dimensions (technical, organiza-
tional, and legal). Also, (Zalazar A.S., 2017) proposes
five dimensions (service cloud dimensions of contrac-
tual, financial, compliance, operational and techni-
cal), considering CC as a multidimensional paradigm
where different activities, roles, and service dimen-
sions are integrated. Also, because requirements
change frequently, the author states that a stream-
line is needed, to monitor and trace requirements us-
ing traceability mechanisms, but without specifying
them.

ICSOFT 2022 - 17th International Conference on Software Technologies

400



(Souza et al., 2019) refers to the current practice
of deriving architectural models from requirements
specification that indicates they have been based on
the architect’s tacit knowledge, without enough sys-
tematization and tool support, lack of standardized
terms in the definition of software architecture con-
cepts, and lack of existing architecture evaluation
methods. This indicates there is much interest in doc-
umenting architectural decisions to reduce the ”archi-
tectural vaporization knowledge” during the evolu-
tion of architecture. Also mention a variety of strate-
gies for specific types of development environments,
like cyber foraging, model-driven design, automotive
open software architecture, component-based archi-
tecture, service-based architecture, decision support
for clinical systems, computer game architecture, ref-
erence architectures, architectural patterns, architec-
ture erosion. But concludes that reusing knowledge
about decision-making and evaluation is still a topic
worthy of further research. The current practice of de-
riving architectural models from requirements speci-
fications still has some gaps.

3 PROPOSED APPROACH

Our approach uses the Use Case and Logical views
defined by The Rational Unified Process (RUP)
(Reed, 2002). We use the use case view model to
gather the cloud requirements, which are used as in-
put to derive a logic architecture as the first view of a
cloud architecture.

3.1 Requirements Elicitation for the
Cloud

Our approach is aligned with the NIST CCRA frame-
work, through the mapping of the NIST layers com-
ponents with the product use cases, and it takes into
account architectural decisions considering a particu-
lar CC deployment model. These decisions are taken
by the software product owner, considering the de-
gree of technological dependency he requires from
the cloud provider for the service model (from more
independent IaaS to more dependent SaaS cloud com-
ponents), and also the degree of dependency from
the cloud infrastructure for the deployment model
(from more dependent public cloud, to more inde-
pendent private cloud infrastructures). NIST CCRA
also identifies the Cloud Carrier (communications op-
erator that provides connectivity and transport of ser-
vices from cloud providers to the cloud consumers),
but this is not considered in our requirements elicita-
tion.

The requirements elicitation for the cloud is ex-
ecuted in two phases, each of them comprising two
steps (2P2S), as depicted in figure 1. In the first phase,
we consider the degree of dependency from the cloud
infrastructure provider. In the second phase, we con-
sider the degree of technological dependency from the
cloud provider.

Figure 1: 2P2S concept diagram.

Phase 1 Step 1: Domain Application Deployment
Model. The aim of the first step is to build segmented
views of the application use case model (domain ap-
plication). The use cases are grouped and classified
as public, private, or community, producing one seg-
mented view per each of these classifications, named
as Public Domain Application use cases (UC), Pri-
vate Domain Application UCs, and Community Do-
main UCs. This classification is based on the product-
owner decisions on the deployment model for the ap-
plication functionality. The result of this step is de-
picted in figure 2 (left side part), which considers a sit-
uation where domain application functionality is split

Deriving UML Logic Architectures of Software Product based on a Cloud Reference Architecture: An Experience Report

401



across the three deployment models. The prefix let-
ter of the UC numbering is only used here for read-
ability, distinguishing between the several segmented
views. The UC numbering should follow known tech-
niques as the Volere Template (Robertson and Robert-
son, 2000).
Phase 1 Step 2: Cloud Management Deployment
Model. In the second step, the designer adds to
the UC model the cloud management functionality
(configuration and administration) as described by
the NIST CCRA. These Cloud Management UCs in-
clude all functions related to services necessary for
the management and operations of the services re-
quested or proposed to customers, according to the
service model of the provider and the consumers. In
the same way as above, if we consider a situation
where domain application functionality is split across
the three deployment models, we will have the cor-
responding cloud management functionality for each
deployment model of the domain application. The re-
sult of this step is depicted in figure 2 (right side part).
Graphically, the Use-Case refinement can be repre-
sented as a tree structure. In the level 0 (root level), it
is represented the most abstract requirements that are
related to a lower level of refinement. As template for
describing the cloud management use cases we pro-
pose the following descriptions for level 0 use cases:

• {dU.C.1}, {eU.C.1}, {fU.C.1} Cloud account
support management: involves the set of services
supporting the contract between cloud provider
and cloud consumer in the public cloud. It in-
cludes the components used to perform these
business operations, such as account manage-
ment, contract management, catalog manage-
ment, billing management. These use cases are
detailed in Account management, Contract Man-
agement, Service catalog management, and in-
voicing management level 1 use cases.

• {dU.C.2}, {eU.C.2}, {fU.C.2} Cloud services
provisioning and configuration management: in-
cludes the set of services for provisioning, mon-
itoring, and reporting on cloud services, measur-
ing resource usage and service level management,
such as Quality of Service (QoS) parameters for
the Service Level Agreements (SLA). These use
cases are detailed in Application management,
Platform monitoring, Resource utilization mea-
surement, and SLA management level 1 use cases.

• {dU.C.3}, {eU.C.3}, {fU.C.3} Portability and in-
teroperability management of the cloud: includes
the mechanisms to support data portability, ser-
vice interoperability, and system portability. From
the cloud consumers’ perspective, the activities

of data portability and service interoperability be-
tween public cloud data and external information
systems are performed. These use cases are de-
scribed in Systems Integration and Data Synchro-
nization level 1 use cases.

• {dU.C.4}, {eU.C.4}, {fU.C.4} Cloud security
and privacy management: perform a set of func-
tionalities that allow the platform administrator to
manage backups, monitor activities, and config-
ure access controls. In a logic of shared respon-
sibilities between the Cloud Provider and Cloud
Consumers, these components are provided by
the Provider for privileged access to resource ser-
vices. The management of application user ac-
counts is the responsibility of the Cloud Con-
sumer. These use cases are detailed in Backup
management, Configuration of data access con-
trol, and Activity monitoring level 1 use cases.

Phase 2 Step 1: Domain Application Service
Model. In this step the objective is to classify the
Domain Application resources and actors according
to the product-owner decisions on the delivery model
(SaaS, IaaS, or PaaS). The classification of the actors
promotes the discussion with stakeholders in order to
validate roles and raise functional requirements. The
classification of the resources appears in the descrip-
tion of the use cases to be used as non-functional re-
quirements or design decisions later on as modeling
decisions on the Logic Architecture Design. The re-
sult of this step is depicted in figure 2 (actors on the
left side).
Phase 2 Step 2: Cloud Management Service
Model. The purpose of this last step is to classify
the Cloud Management resources and actors accord-
ing to the product-owner decisions on the delivery
model (SaaS, IaaS, or PaaS). As in the previous step,
this classification promotes the discussion with stake-
holders, in order to validate roles and modeling de-
cisions considering the technology dependency from
the cloud providers. The classification of the re-
sources appears in the description of the use cases to
be used as non-functional requirements or design de-
cisions later on the Logic Architecture Design. The
result of this step is depicted in figure 2 (actors on the
right side).

3.2 Logic Architectural Model for the
Cloud

The 4SRS technique, in its original version (Machado
et al., 2005), allows the transformation of the user re-
quirements model into the first logical system archi-
tecture, based on mapping of UML use-case diagrams

ICSOFT 2022 - 17th International Conference on Software Technologies

402



Figure 2: Segmented Views of the Use Case UML Diagram.

for UML object diagrams. Our approach is based on
the 4SRS method and takes as input a set of use cases
describing the requirements for the cloud manage-
ment services and domain application services, repre-
senting both the intended application and cloud con-
cerns based on NIST CCRA, of the involved business
and technological stakeholders. This technique is or-
ganized in four steps, to transform use cases into ob-

jects, being this transformation supported by tabular
representations, constituting the main mechanism to
automate the decisions assisted by these four steps.
Each column of the tabular representation, depicted
in the figure 3, corresponds to a step (or micro-step)
in the execution of the 4SRS method, and shows an
example of this transformation. Next, each of these
four steps is described, applied to the use case dia-

Deriving UML Logic Architectures of Software Product based on a Cloud Reference Architecture: An Experience Report

403



grams mapped to the NIST CCRA reference archi-
tecture, generating a specification for a cloud service-
oriented platform (SOA).
Step 1: Creating Objects. In the first step each use

case is transformed into three objects, an interface ob-
ject, a data object, and a control object. Each object
receives the reference or numbering of the use case
preceded by the letter ”O”, and a suffix i, d, or c, in-
dicating the category of the object. From this step
onwards there are only objects as modeling entities,
although use cases are still used to introduce require-
ments in the object model.
Step 2: Eliminating Objects. In this step, a deci-

sion is made on which of the three objects should be
kept, to computationally represent each use case, tak-
ing into account its textual description, and the system
as a whole. In addition to this decision to keep ob-
jects from step 1, decisions are also made to eliminate
redundant user requirements, and decisions to dis-
cover new requirements, and in this step, the definitive
system-level entities are defined. To reduce complex-
ity, this step is composed of seven micro-steps:

• Micro step 2i, classification of use cases: each use
case can generate one of eight patterns, if ignoring
the link between objects, by the different combi-
nation of its category (φ, i, c, d, ic, di, cd, icd). The
goal is to transform use cases into objects, giving
clues as to which categories of objects to use and
how to link them together through associations;

• Micro step 2ii, elimination of objects: in this step,
the objects assigned in step 1 are eliminated, since
the assignment of categories i, c, d does not con-
sider the problem domain. It takes into account
the classification assigned in micro-step 2i, and
the description of the use case in the context of
the problem domain to be solved;

• Micro step 2iii, naming of objects: the objects not
previously eliminated are named, reflecting the
use case and the specific role of the object in the
main object;

• Micro step 2iv, description of the objects: each
object resulting from the previous micro-step 2iii
is described so that the requirements represent-
ing these objects are included in the object model.
These descriptions should be based on the original
use case descriptions, except if they are classified
as non-functional requirements (NFR) or design
decisions (DD);

• Micro step 2v, object representation: a decision
is made to eliminate redundancies of user require-
ments as well as discover new requirements. It
constitutes an internal validation that ensures se-

mantic consistency of the object model and dis-
covers anomalies in the use case model;

• Micro step 2vi, global elimination: it is based on
the result of the previous micro-step. Objects that
have come to be represented by others are elim-
inated since their system requirements no longer
belong to them. In this way a coherent object
model is maintained from the requirements point
of view;

• Micro step 2vii, object renaming: the purpose
of this last micro-step of step two, is to rename
the objects that were not deleted in the previous
micro-step, and that represent additional objects.
These new names must fully describe the system
requirements they represent.

Step 3: Packaging and Aggregation. Packaging is
a technique that introduces a (tenuous) semantic co-
hesion between objects, which can be easily reversed
in the modeling phase. In other words, it is used in a
flexible way to obtain a temporary (or definitive) un-
derstanding of the object model. Aggregation, on the
other hand, imposes a strong semantic cohesion be-
tween objects and is more difficult to be reversed in
the following modeling phases. In other words, ag-
gregation should be used based on modeling options
that are aware of their impact on the considered ob-
jects. Aggregation is typically used when there is a
part of the system that is part of a pre-existing sub-
system, or when modeling takes into account an ar-
chitectural reference model that constrains the object
model. In this way, and this step, the objects main-
tained from the previous step and which offer advan-
tages in being considered together, give rise to aggre-
gations or packages of objects with semantic consis-
tency (stronger or weaker respectively. Thus obtain-
ing the construction of a coherent object model, since
it introduces a semantic layer at an abstraction level
that works as a functional link between the objects.
Step 4: Association of Objects. The last step of the

4SRS technique introduces associations in the object
model, based on the existing information in the use
cases, and on the information generated in the micro-
step 2i. In case the textual description of the use cases
provides clues about the sequence of actions, this
information is used to generate associations between
objects. At the same time, the use case diagram in
UML can itself include associations between use
cases and be used for the object model. In the case
of the micro-step 2i of object classification, this
generated information should be used to include
associations between the objects originally obtained
from the same use case.

ICSOFT 2022 - 17th International Conference on Software Technologies

404



Figure 3: Steps of the 4SRS method.

The execution of the 4SRS method ends with the
construction of a logical diagram, which represents
the logical architecture of the functionalities of the
software system. This logical architecture arises as
a result of the application of the 4SRS method to the
user requirements of the cloud management services
and domain application services, and that expresses
the system requirements. The user requirements gave
rise to textual descriptions of each object in the model
and to non-functional intentions classified as NFR and
DD modeling decisions, if applicable, in micro-step
2iv [4], as bounded contexts, namely: intra-service
behavior; interfaces; data models separation; inter-
service communication; and messaging requirements.

4 CASE STUDY

4.1 The Problem

To face some business challenges in the Textile
and Clothing Industry, the development of Interop-
erability and Digital Thread for a More Competitive
Textile Industry domain (IDT4CTI) project, will be
supported on a platform based on the Industry 4.0
paradigm, mainly adopting cloud computing models,
adopting SOA approaches and interoperability solu-
tions. In this context, the different steps of the gar-
ment manufacturing process leading to numerous iter-
ations and dependencies were designed, with conse-
quent communication and interoperability needs be-
tween the textile company and its subcontractors.
To address the difficulties encountered in the current
process and meet the interoperability needs between

the different actors of the Company ecosystem, the
main interactions, and respective sub-processes have
been identified. The Business processes were char-
acterized, as well as the domain functional and non-
functional requirements. The requirements for this
system were acquired using requirements engineer-
ing techniques, and the result was a collection of arti-
facts, including UML Use Case diagrams. To address
the challenge of deriving a cloud architecture from the
modeled requirements, we describe the application of
the proposed approach in this paper, first mapping the
use case diagram to NIST CCRA and obtaining cloud
requirements, and then applying the 4SRS method to
derive a first logical architecture for the cloud.

4.2 Cloud Requirements

The cloud requirements result from the application
of the two-phase two-step method (2P2S) described
in section 3.1. In the first phase, we discussed with
the software product owner the dependency on the
cloud infrastructure. In the first step, the software
product owner decided to deploy its software prod-
uct in a cloud infrastructure with computing resources
available to the general public over the public internet
network, and owned and managed by a Public Cloud
Provider organization. We grouped the domain appli-
cation use cases in one segmented view and classified
it as a Public Domain Application UC. In a second
step, we added a segmented view classified as Public
Cloud Management, containing the functions related
to services offered by the public cloud provider, used
by the Domain Application, to be configured and ad-
ministrated in the Cloud Provider Infrastructure.

In the second phase, we discussed with the soft-

Deriving UML Logic Architectures of Software Product based on a Cloud Reference Architecture: An Experience Report

405



Figure 4: IDT4CTI Platform Level 0 Use Cases UML Diagram.

ware product owner the degree of technological de-
pendency from the cloud provider. In the first step, the
decision was to deliver the software product as a SaaS
application. In this case, SaaS Consumers should be
billed based on the number of end-users, time of use,
network bandwidth consumed, the amount of data
stored, and the duration of data stored. We clas-
sified the actors using the Public Domain Applica-
tion as Public Cloud SaaS Consumers. In a second
step, the decision was to deploy the SaaS applica-
tion directly into the Cloud PaaS resources of the
cloud provider. In this case, the cloud provider is
responsible to manage the computing infrastructure,
i.e., managing the runtime software execution stack,
databases, and other middleware components. Ad-
ditionally, the cloud provider is responsible to sup-
port the development, installation, and management,
by providing tools such as integrated development en-
vironments (IDEs), cloud software development ver-
sions, software development kits (SDKs), installation
and management tools.

On the other hand, the product owner has decided
for the control over the domain application and also
for the configuration of the hosting environment, ex-
cepting for the configuration of the underlying infras-
tructure of the platform, such as network, servers, op-
erating systems (OS) or storage. In this case, prod-
uct owners may use the tools and execution resources
provided by Cloud Providers to develop, test, install
and manage applications hosted in a cloud environ-
ment. Following this decision, we classified actors of

the Public Cloud Management View as Public Cloud
PaaS Consumers and Public PaaS Cloud Provider.

Figure 4 presents the use case diagram for the
highest level of abstraction, level 0, as a result of the
requirements elicitation. This top-level UC diagram
was further refined into a total of thirty-three level-
one UCs. The description of these UCs was omitted
due to space limits. In Figure 5, we present the match-
ing between the thirty-three use cases, that capture the
elicited user requirements (Public Domain Applica-
tion UC and Public Cloud Management UC), and the
features of the NIST CCRA layers components, for
a correct evaluation of cloud services and their adop-
tion. The UC model describes the main functionali-
ties of the platform and their various interactions with
different actors, promoting the association of PaaS
providers, and PaaS and SaaS consumers. The Public
Domain Application UCs refers to the functions that
support the business needs of the Cloud SaaS Con-
sumers actors. The Public Cloud Management View
includes all the functions related to the management
and operations requested or proposed to customers
(Cloud SaaS Consumers actors). It refers to resources
related to the management of user accounts, monitor-
ing cloud resources, portability and interoperability,
and reliability of a public cloud.

4.3 Cloud Architecture

The IDT4CTI Logic Architecture is the result of
the 4SRS applied to the use case model (level-one)

ICSOFT 2022 - 17th International Conference on Software Technologies

406



Figure 5: Mapping NIST layers components with IDT4CTI
UC.

elicited in section 4.2. The IDT4CTI architecture, de-
picted in Figure 6 is constituted by forty components.
The logical architecture, represented as an object di-
agram, identifies the system entities, their responsi-
bilities, and the relationships between the objects. Its
purpose is to show the decomposition of the overall
system without going into detail, and which repre-
sents the logical architecture of the functions of the
IDT4CTI system.

The objects derived from the cloud administration
use case were aggregated into a single ”black box”
package since it will be implemented by native cloud
components from Public Cloud Provider, relating to
account administration in the cloud provider, account
management, contract, billing, service catalog provi-
sioning, backup management, and data access permis-
sions and the tracking of user and service activity in
the use of cloud resources. The cloud configuration
use case objects were aggregated in another package
and included the configuration of cloud services and

resources provisioned from the Public Cloud Provider
component catalog. These objects include the appli-
cation management services and the SLA QoS param-
eters of the provisioned services, the measurement
and usage of cloud resources, monitoring of cloud no-
tifications and events, and report generation, and the
integration of external systems and data into the plat-
form. This Package is implemented by a native cloud
component from Public Cloud Provider and therefore
presented as a ”black box” package.

In order to group the different architectural com-
ponents we divide the architecture into packages that
represent the main processes of IDT4CTI. This pack-
aging defines decomposition regions, which contain
semantically cohesive objects, being grouped in the
following 9 packages: P1 Cloud Administration; P2
Cloud Configuration; P3 Message Delivery Manage-
ment; P4 Entity management; P5 Semantic Man-
ager; P6 Notification management; P7 Information
model management; P8 Authentication Management;
P9 Message Query Management.

5 DISCUSSION

In this work, we based the elicitation of cloud re-
quirements in the NIST CCRA framework and sys-
tematized a method (2P2S) to be executed in the re-
quirements elicitation phase when building the Use
Case Diagram. The Use Case model allows rep-
resenting the process visualization of a system and
can be considered as a suitable requirement gathering
method for the cloud. The method 2P2S adds seg-
mented views to the domain application’s use case di-
agram, allowing the deployment model for the appli-
cation functionality to be classified. In the case of the
IDT4CTI case study, we have introduced the cloud re-
quirements in the use case model following the prod-
uct owner perspective of a public cloud deployment
model and compliant with the NIST CCRA frame-
work. Following this, the 2P2S method provided a
segmented view with the associated cloud manage-
ment capability as defined by NIST CCRA, which en-
compasses all functions related to services required
for the domain application’s management and oper-
ations. In the case of the IDT4CTI case study, this
has resulted in a public cloud platform management
view, containing the use cases functionality to config-
ure and administrate the public cloud provider which
have later given origin, in the logical architecture, to
black box packages (P1 and P2 in figure 6). It only re-
mained to the product owner the discussion of the ac-
tors required to operate, configure, or administer these
software packages, such as administrators, program-

Deriving UML Logic Architectures of Software Product based on a Cloud Reference Architecture: An Experience Report

407



Figure 6: IDT4CTI Raw Object UML Diagram.

mers, testers or deployers.
In the following phase, the method classifies the

domain application and the cloud management re-
sources and actors based on the delivery model to val-
idate roles, raise more functional requirements, and
model judgments about cloud provider technology
dependency. In our case study, the application was
classified as a SaaS delivery model, and the cloud
management was classified as a PaaS delivery model.
This allowed identifying the actors and correspondent
functionality which have later given origin, in the log-
ical architecture, to the identification of design deci-
sions concerning the data objects, packaged as ser-
vices and picked from the provider’s service catalog
(database services).

This approach simplifies the procedure for obtain-
ing cloud requirements while also enriching the con-
text of use case diagrams, containing descriptions of

the deployment model and service delivery model,
which can then be utilized as input to an MDD tech-
nique to build a cloud architecture that is consis-
tent with the product owner’s decisions and com-
prehensibility of requirements for cloud service con-
sumers. The used MDD technique (the 4SRS method)
ensures that models of user requirements are trans-
formed into models of system requirements while al-
tering the relevant specifications. The adoption of
the SOA paradigm enables the managed system to
respond flexibly to changes in the business process
through reconfiguration and the addition of new func-
tionalities. It also organizes the various objects into
services, which can lead to differing perspectives on
the final product. The logical architecture’s object
diagram thus ensures the specification of the system
platform, which is based on a service-oriented plat-
form (SOA) and cloud computing.

ICSOFT 2022 - 17th International Conference on Software Technologies

408



6 CONCLUSIONS

In this paper, we use NIST Cloud Computing Ref-
erence Architecture in eliciting requirements by em-
ploying a new approach (the 2P2S technique), which
enables the use of an existing Model-Driven Design
method (the 4SRS method) to derive logic architec-
tures for cloud-based solutions.

The result is to define the requirements in such
a way that they are understood by the cloud service
consumers (the owner of the product ) because it un-
covers more information as if using only the use case
model of the application domain. The discussion of
the deployment model uncovers functional require-
ments for cloud management and helps distribute the
domain application functional requirements up to a
multi-cloud concept. Moreover, the service model
discussion uncovers more role actors for the provider
and the consumers and enriches use cases with more
descriptions that may lead to new design decisions or
non-functional requirements. The requirements elici-
tation involved a detailed analysis of the NIST CCRA,
where a set of key use cases that capture the func-
tional requirements of cloud services were presented.
The use of this reference architecture was useful in the
requirements elicitation phase, since it allows proper
functional refinement of the domain application and
the cloud services, being a conceptual model that con-
stitutes an effective tool to discuss the requirements,
structure, and operation of the cloud. The 4SRS had
never been used for this particular context. However,
it has proved very useful since it formalized and ori-
ented the development of the architecture.

Some subjectivity may result from the application
of the 4SRS, so to minimize it, the model is iter-
ated and revised until a sufficient model is obtained
to serve as the basis for the technical modeling of the
architecture, allowing a linkage between the semantic
component, the logical architecture and the cloud ar-
chitecture. The correct derivation of system require-
ments from user requirements is an important topic
in requirements engineering research, where our ap-
proach contributes to the adoption of emerging cloud
paradigms in this early requirements phase, assuring
that the system requirements are based on effective
client needs.

REFERENCES

Iankoulova, I., D. M. (2012). Cloud computing security
requirements: A systematic review. In 2012 Sixth In-
ternational Conference on Research Challenges in In-
formation Science (RCIS) (pp. 1–7). IEEE.

Klems, M., Nimis, J., and Tai, S. (2009). Do clouds com-
pute? a framework for estimating the value of cloud
computing. volume 22, pages 110–123.

Koitz, I. T., Seyff, N., and Glinz, M. (2013). How
cloud providers elicit consumer requirements: An ex-
ploratory study of nineteen companies. 2013 21st
IEEE International Requirements Engineering Con-
ference (RE), pages 105–114.

Liu, F., Tong, J.; Mao, J.; Bohn, R.; Messina, J.; Badger, M.;
Leaf, D. (2011). NIST Cloud Computing Reference
Architecture. NIST Special Publication 500-292.

Machado, R.-J., Fernandes, J., Monteiro, P., and Rodrigues,
H. (2005). Transformation of uml models for service-
oriented software architectures. In 12th IEEE Interna-
tional Conference and Workshops on the Engineering
of Computer-Based Systems (ECBS 05), pages 173–
182.

Pichan, A., Lazarescu, M., and Soh, S. T. (2015). Cloud
forensics: Technical challenges, solutions and com-
parative analysis. Digital Investigation, 13:38–57.

Reed, P. (2002). Reference architecture: The best of best
practices. The Rational Edge.

Reese, G. (2009). Cloud Application Architectures: Build-
ing Applications and Infrastructure in the Cloud. The-
ory in Practice (O’Reilly). O’Reilly Media.

Repschlaeger, J., Wind, S., Zarnekow, R., and Turowski, K.
(2012). A reference guide to cloud computing dimen-
sions: Infrastructure as a service classification frame-
work. In 2012 45th Hawaii International Conference
on System Sciences, pages 2178–2188.

Rimal, B. P., J. A. K. D. G. Y. (2011). Architectural re-
quirements for cloud computing systems: An enter-
prise cloud approach. volume 9, pages 3–26.

Robertson, J. and Robertson, S. (2000). Volere require-
ments specification template.

Schrodl, H. and Wind, S. (2011). Requirements engineer-
ing for cloud computing. Journal of Computer and
Communication, 8:707–715.

Souza, E., Moreira, A., and Goulão, M. (2019). Deriving ar-
chitectural models from requirements specifications: a
systematic mapping study. Information and Software
Technology, 109.

Zalazar A.S., Ballejos L., R. S. (2017). Analyzing Require-
ments Engineering for Cloud Computing. Ramachan-
dran M., Mahmood Z. (eds) Requirements Engineer-
ing for Service and Cloud Computing. Springer.

Zardari, S. and Bahsoon, R. (2011). Cloud adoption:
A goal-oriented requirements engineering approach.
Proceedings - International Conference on Software
Engineering.

Deriving UML Logic Architectures of Software Product based on a Cloud Reference Architecture: An Experience Report

409


