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Abstract: Autonomous vehicles play a key role in the smart cities vision: they bring benefits and innovation, but also
safety threats, especially if they suffer from vulnerabilities that can be easily exploited. In this paper, we
propose a method that exploits Deep Reinforcement Learning to train autonomous vehicles with the purpose
of preventing road accidents. The experimental results demonstrated that a single self-driving vehicle can help
to optimise traffic flows and mitigate the number of collisions that would occur if there were no self-driving
vehicles in the road network. Our results proved that the training progress is able to reduce the collision
frequency from 1 collision every 32.40 hours to 1 collision every 53.55 hours, demonstrating the effectiveness
of deep reinforcement learning in road accident prevention in smart cities.

1 INTRODUCTION

Smart city is an expression that recently has become
fashionable and it refers to the collective ideal of the
city of the future. The notion of smart city is related
to an urban area where the use of digital technologies
and technological innovation optimizes and improves
the infrastructures and services provided to citizens.
In the smart cities context, the so-called autonomous
vehicles (i.e., AVs) play a crucial role. As a matter of
fact, AVs are expected to be among the first robotic
systems to enter and widely affect existing societal
systems (Wu et al., 2017a).

On the other hand, cybersecurity threats are
emerging hand in hand with technological advance-
ment, and they may affect the rapid diffusion of AVs.
Therefore, improving safety and reliability in AVs
is growing interest from both the industrial and the
academic research community, considering that the
global market for AVs is expected to rapidly grow in
the next decade (Statista.com, 2021; Martinelli et al.,
2021b).

As pointed out by Kathoun et al. (Khatoun and

a https://orcid.org/0000-0001-7060-6233
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Zeadally, 2017), the smart city architecture and tech-
nological innovation necessarily leads to open cyber-
security scenarios that involve new threats and chal-
lenges for security experts (Martinelli et al., 2021a;
Martinelli et al., 2018a). The wide adoption of In-
formation and Communications Technologies (ICT)
systems into vehicles has opened new possibilities
for attackers to access and attack cars. Nowadays,
we use smartphones to control the radio/GPS tracker,
these features can be exploited to control cars passing
through ICT systems such as Android applications.
Since it is possible to remotely control the behaviour
of a vehicle, we should design AV systems that can
automatically react to these attacks that cause devia-
tions from the expected driving behaviour.

In the light of the above considerations, this pa-
per proposes a method aimed to reduce the likeli-
hood of road accidents using vehicular network data
to smooth traffic flows and control the behaviour of
the drivers. In detail, we are interested in understand-
ing whether a Deep Reinforcement Learning (DRL)
trained vehicle inserted in the road network can pre-
vent road accidents. We assume that ’vehicles under
cyberattacks’ have unwanted aggressive and unsafe
driving. The study poses the following research ques-
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tion:

• RQ: Is it possible to increase driving safety by in-
troducing in a road network a vehicle trained by
DRL?

The paper proceeds as follows: in Section 2, we
present the proposed method; in Section 3, we dis-
cuss the results of the experimental evaluation; cur-
rent state of the art is discussed in Section 4; finally,
in last section conclusion and future research plans
are provided.

2 A METHOD FOR PREVENTING
ROAD ACCIDENTS

In this paper, we propose a method that, using DRL,
is dedicated to prevent traffic accidents in smart cities
when some running vehicles are under cyberattacks.
Figure 1 illustrates the workflow of the proposed
method. More in detail, the security analyst uses Flow
to implement its DRL algorithm and interfaces with
the TraCI APIs that are used to interact - both inbound
and outbound - with the traffic managed by the SUMO
simulator.

Figure 1: The proposed method for avoiding traffic inci-
dents in smart cities.

We applied the proposed method in a simulated
scenario where vehicles are driven on several lanes,
taking into account, in addition to sudden acceler-
ations, the cases in which the sudden lane-change
may cause inconvenience or collisions, since lane-
changing is considered one of the main causes of road
accidents (Wu et al., 2017b). The rationale behind
the proposed method is related to accident prevention
in the AVs context, by considering the application of
DRL to train vehicles on how to behave to avoid sud-
den collisions. To demonstrate the effectiveness of the
proposed method, we considered a simulated environ-
ment involving several vehicles, in which it is possi-
ble to intervene on the simulation causing vehicles to
make real-time decisions. Attacks are configured in
aggressive driving caused, purposely, by human deci-
sions. As an evidence, there is the possibility to exter-

nally set the trajectory and the speed of the individual
vehicles and above all the possibility of changing ve-
hicles’ speed during the simulation. This applies both
to the self-driving vehicle trained with DRL and to
vehicles under attack. Furthermore, it is worth not-
ing that our methodology does not take into account
a specific cyberattack on the vehicles, but instead it is
a countermeasure to any possible one that interferes
with the usual driving style. Indeed, we assume that
an attacked vehicle will start acting aggressively (such
as invading lines), and then we study how all the other
vehicles in the simulation can react to this behaviour
to mitigate the collisions and damages.

Our method uses SUMO as a server that is run-
ning on a remote port waiting for clients to connect. A
client interacts with the server to cause actions on the
entities in the simulation. The TraCI APIs are used to
intervene at run-time on the running simulation (e.g.
to make a car accelerate, brake, change lane, etc.).
The analyst or security expert interfaces with Flow to
implement its DRL methodology, allowing them to in-
teract with traffic (Figure 1). At run-time, depending
on the effects of the actions performed by the vehi-
cles, each action of a vehicle is given a reward when
it is considered positive, otherwise a penalty when the
action is considered negative. It’s important stressing
that SUMO creates a model that is collision-free by
nature and this makes it impossible to simulate road
accidents. Thus, in order to let vehicles learn that ac-
tions that lead to collisions are negative, we had to
reduce to 0 the minimum safety distance between ve-
hicles to let them crash. This change within the simu-
lation increased the probability of causing cars’ colli-
sions.

Interacting with the simulation is the way to cause
actions that can lead to rewards and penalties. For
the sake of clarity, consider that suddenly increasing
vehicles’ speeds and/or making them lane-change can
probably let vehicles collide. These actions can be un-
wanted if they are the result of vehicular cyberattacks
on the cars within the simulation. In that scenario, the
vehicles that performed bad actions that caused col-
lisions receive a penalty aimed at discouraging them
from repeating those actions again. After performing
several simulations, it was clear that - at each simula-
tion cycle - the execution of the algorithm improved
the performance of the vehicles even if some cyberat-
tacks were performed on some vehicles making them
perform some dangerous actions, since generally all
the vehicles are able to learn from good and wrong
actions performed in the past.

In order to design a method to prevent road ac-
cidents we developed a network configuration cus-
tomizing the original single-lane ring network de-
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Figure 2: Our four-lanes network (19 ”human” vehicles and
1 DRL vehicle).

scribed in the paper by Vinitsky et al. (Wu et al.,
2017b) and that is one of the benchmarks designed
in flow. The original ring network provided by Flow
(Wu et al., 2017b) simply consists of a circular lane
with a fixed length. Our personalized ring network ex-
tended the original single-lane environment by adding
three lanes: we created a four-lane ring road network
that is a natural extension to problems involving a
single-lane ring in order to consider a more realistic
multi-lane scenario. Basically, it is a loop road gen-
erated by specifying the number of lanes and a ring
circumference, in this case personalized starting from
the original. In our four-lanes ring network were in-
serted 20 vehicles (19 vehicles driven by humans and
1 guided by DRL) in order to cause cyberattacks on
5 different vehicles (25% of the total number of vehi-
cles).

Once the network is created, the initial position-
ing of the vehicles is random on multiple lanes. Each
vehicle has a starting speed of 60 km/h. Each vehi-
cle is 5 meters long and follows the Intelligent Driver
Model (IDM) (Sutton and Barto, 2018) dynamics
with parameters specified by Martin Treiber and Arne
Kesting (Treiber and Kesting, 2013). In traffic flow
modeling, the IDM is a time-continuous car-following
model for the simulation of freeways and urban traf-
fic. The proposed network also relies on additional
parameters. Despite the default timestep1 duration is
1 second for SUMO, in our case each step lasts 0.1
seconds, as this is the default in Flow. Though the
speed limit is 36.1 m/s (maximal limit of Italian high-
ways, just as baseline), the vehicles can reach very
high velocities because of their maximum possible ac-
celerations and decelerations that are set to 30 m/s2

that is the highest acceleration possible as it is reached
by a supercar2. Vehicles should be allowed to reach
high accelerations in order to increase the possibili-
ties to let them be victims of cyberattacks consisting
of sudden increasing/decreasing a vehicle’s accelera-
tion. Also, in order to give the model the possibility
to cause collisions when hazard, dangerous and un-

1A timestep is the sampling frequency
2Ferrari Daytona SP3 0 to 100 km/h in 2.85 seconds

safe maneuvers are performed, we had to set the min-
Gap3 = 0 and the minGapLat4 = 0. At this point,
vehicles were free to crash - both latitudinally and
longitudinally - because they were not blocked any-
more by SUMO at certain distances. In fact, since
SUMO is a collision-free model, if it is not forced to
reduce the minimum gap between vehicles to 0, ve-
hicles cannot crash, despite the presence of reckless
vehicles and maneuvers. Not only SUMO, but also
Flow supplement its car following models with safe
driving rules that prevent the inherently unstable car
following models from crashing (Wu et al., 2017b).

As SUMO terminates its experiments when a col-
lision occurs, Flow provides a more conservative
course of action that is a fail-safe mechanism, called
the final position rule. The final position rule forces
each vehicle to keep a velocity such that if the preced-
ing vehicle suddenly starts braking with max deceler-
ation a, then even if the following vehicle has a delay
τ, it can still slow down such that it comes to rest at
the final position of the rear bumper of the preceding
vehicle (Wu et al., 2017b). Based on SUMO, Flow
leverages various safety features from SUMO in order
to prevent longitudinal and lateral collisions. These
fail-safes serve as bounds on the accelerations and
lane-changes human and autonomous vehicles may
perform and may be relaxed on any set of vehicles
in the network to allow for the prospect of more ag-
gressive actions to take place, as we did in our case
study.

The action space containing the set of actions a
vehicle is allowed to perform is made of accelera-
tions and lane-changing. In fact, for tasks with k au-
tonomous vehicles, the action space is a set of acceler-
ations c∈Qk and lane-changing decisions d ∈ [−1,1].
This is because when following a predefined route,
a vehicle performs longitudinal and lateral actions,
where longitudinal is meant accelerations and lateral
is meant lane-changing. The lane-changing values are
rounded to the nearest integer in (-1, 0, 1) denoting
lane-change left, don’t lane-change and lane-change
right, respectively; this keeps the action space repre-
sentation continuous. In our work, we inserted both
accelerations and lane-changes in our action space be-
cause we built a multi-lane ring network where, in ad-
dition to accelerations, lane-changes are allowed.

The observation space may be any set of state in-
formation the user wishes to provide to the agent to let
the agent fully or partially know the state of the envi-
ronment. In our experimental work, the DRL vehicle

3By minGap we mean the distance between 2 vehicles
longitudinally

4By minGapLat we mean the distance between 2 vehi-
cles latitudinally
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follows the partially observed setting, that is observ-
ing only the velocity of the autonomous vehicle, the
velocity of its preceding vehicle and its relative posi-
tion in respect to the preceding vehicle. At the state
of the art, the reward function can be any function
of vehicle speed, position, fuel consumption, acceler-
ation, distance elapsed, etc. (Wu et al., 2017b; Mar-
tinelli et al., 2018b). As researchers working on a new
scenario, we desired a different reward function from
the predefined ones. After a long phase of trial and
error, we came up with a final reward function that
mixes different parameters we want to keep an eye
on. Our system-level objective was mitigating the oc-
currences of collisions when cyberattacks happen in
the network and we followed the road of creating cy-
berattacks while letting the autonomous vehicle (AV)
learn how to mitigate collisions. More specifically,
our reward function gives a positive reward if the ve-
locity of the vehicle is near the averages velocities of
the whole set of vehicles and if it is under the target
velocity, while a penalty if the vehicle is accelerating
and lane-changing too much.

In our experimental analysis, we tried to improve
the traffic scenario when some cyberattacks are per-
formed on some vehicles in the ring network. After
different simulations involving different cyberattacks,
we used Flow to implement a DRL algorithm able to
stabilize the traffic flows and reduce the number of
collisions in time, despite several cyberattacks hap-
pening at each step. We freely release for research
purposes the Python scripts we developed and the
SUMO scenario 5.

3 EXPERIMENTAL ANALYSIS

Below we provide the answers for RQ.
In Figure 3 we can see that after 3.500.000

timesteps (0.1 s) corresponding to 97.22 hours, only
3 collisions happened. For this reason, the collision
frequency is 1 collision every 32.40 hours.

Figure 3: RQ. 3.500.000 timesteps of 0.1 s resulted in 3
collisions.

5https://mega.nz/file/wNkmXIiY#oiPCV2ZUCQSmu5t
cgez2JnWU8TA89GPzNanM0owx7fM

In Figure 4 we can see that after 7.000.000
timesteps (0.1 s) corresponding to 194.44 hours, only
5 collisions happened. For this reason, the collision
frequency is 1 collision every 38.89 hours.

Figure 4: RQ. 7.000.000 timesteps of 0.1 s resulted in 5
collisions.

In Figure 5 we can see that after 10.594.600
timesteps (0.1 s) corresponding to 294.29 hours, only
6 collisions happened. For this reason, the collision
frequency is 1 collision every 49.04 hours.

Figure 5: RQ: 10.594.6005 timesteps of 0.1 s resulted in 6
collisions.

Similarly to the previous trial, in this case in Fig-
ure 6 we can see that after 10.615.500 timesteps (0.1
s) corresponding to 294.88 hours, only 6 collisions
happened. For this reason, the collision frequency is
1 collision every 49.15 hours.

Figure 6: RQ: 10.615.500 timesteps of 0.1 s resulted in 6
collisions.

In Figure 7 we can see that after 21.659.500
timesteps (0.1 s) corresponding to 601.65 hours, only
10 collisions happened. For this reason, the collision
frequency is 1 collision every 60.16 hours.
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Figure 7: RQ: 21.659.500 timesteps of 0.1 s resulted in 10
collisions.

In Figure 8 we can see that after 32.770.035
timesteps (0.1 s) corresponding to 910.28 hours, 17
collisions happened. For this reason, the collision fre-
quency is 1 collision every 53.55 hours. The over-
all collision frequency is good, but in this case we
noticed a collisions phase after a no collisions phase
from timestep 15.000 because of the worsening of the
mean reward reached by the model.

Figure 8: RQ: 32.770.035 timesteps of 0.1 s resulted in 17
collisions.

Table 1: Results related to RQ (19 human vehicles and 1
DRL vehicle).

Trial Steps(0.1s) Hours Collision Collision frequency

1 3.500.000 97.22 h 3 1 co1/32.40 h
2 7.000.000 194.44 h 5 1 co1/38.89 h
3 10.594.600 294.29 h 6 1 co1/49.04 h
4 10.615.500 294.88 h 6 1 col/49.15 h
5 21.659.500 601.65 h 10 1 col/60.16 h
6 32.770.035 910.28 h 17 1 co1/53.55 h

In table 1, results for each simulation are summa-
rized, showing that - with the training progress - the
collision frequency was reduced from 1 collision ev-
ery 32.40 hours to 1 collision every 53.65 hours.

3.1 Discussion

Our results showed that just 1 DRL vehicle can help to
optimize traffic flows and mitigate the number of col-
lisions that would happen if no autonomous vehicles
were inserted in the network.

Answering RQ, we showed that the collision fre-
quency decreases while the number of simulation
steps is increasing: this means that the DRL agent
learns from the environment while bad behaviours

happen on some vehicles. In fact, observing the re-
sults related to the training iterations, we can see
that collision frequencies range from 1 collision ev-
ery 32.40 hours (3.500.000 steps) to 1 collision ev-
ery 53.55 hours (32.770.035 steps). The fifth trial re-
lated to 21.659.500 steps that resulted in a collision
frequency of 1 collision every 60.16 hours is a good
result but can be seen as an outlier because it repre-
sents the only case in which the next trial (trained on
more steps) performs worse. Generally, the model ex-
hibits a consistent and expected behaviour over time.

4 RELATED WORK

In this section, related works are discussed.
The statistics by the National Safety Council

(NSC) of the United States reported that more
than 40.000 roadway fatalities happened in 2017
(BOMEY, 2018). The primary reason for these road
tragedies is the human factor, where reckless driving
is the most considerable one (Saiprasert and Pattara-
Atikom, 2013), (Yu et al., 2016).

In 2015, two cybersecurity researchers published
a report (Miller and Valasek, 2015) showing how
someone can wirelessly control a Jeep Cherokee af-
ter shattering the vehicle’s Uconnect system.

In 2011, researchers at the University of Califor-
nia at San Diego and at the University of Washing-
ton found ways into a Chevy Impala’s innards that in-
cluded everything, e.g OnStar connection to a hacked
smartphone connected to its infotainment system via
Bluetooth (Drozhzhin, 2015).

Martinez et al. (Sikander and Anwar, 2018)
showed that the driving state such as velocity and ac-
celeration can be used to determine the driving per-
formance. Based on the corrected results, the sys-
tem may provide either passively or actively correc-
tive feedback to the driver. A sort of feedback mecha-
nism is involved also in DRL through the reward func-
tion and the progressive learning by the model. In our
case, relying on DRL, feedback is implicit and auto-
matic: the vehicles in the network are able to adapt
to what’s happening, so reckless behaviours are miti-
gated by the DRL vehicles themselves.

5 CONCLUSION AND FUTURE
WORKS

In this paper, we propose the application of DRL in
the context of autonomous driving. At each step of
our experiment, we cyberattacked some vehicles in
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the network to let them behave in an unexpected and
erroneous way, while monitoring if an autonomous
vehicle trained with a customized DRL algorithm was
able to minimize the number of road accidents (colli-
sions) over time.

The experimental analysis results showed that
only 1 DRL vehicle can help to optimize traffic flows
in order to mitigate the number of collisions that re-
alistically would happen if no autonomous vehicles
were inserted in the network. We showed that the col-
lision frequency decreases while the number of steps
increases: this means that the DRL agent is able to
learn from the environment despite the presence of
bad behaviours.

As future work, we plan to add an increasing num-
ber of DRL vehicles in the network with the aim to
create more complex scenarios to evaluate the perfor-
mances of the proposed DRL model based on a reward
function that penalizes strong accelerations and lane-
changes, while rewards velocities under a target ve-
locity and near to the mean velocity of all the vehicles
in the network. Also, we would like to execute a no-
DRL scenario with the same network configuration in
order to compare DRL performance with no-DRL per-
formance.
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