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Abstract: Secure multi-party cryptographic protocols divide the secret key among multiple devices and never reconstruct
it in a single place. Such a mechanism protects against malware, code vulnerabilities, and backdoors when
different implementations and devices are used. Still, a protocol-level issue may result in a compromise, and
up until now, it has been unknown how to combine different unmodified multi-party protocols.
We study the interoperability of different multi-party Schnorr signature schemes and classify them based on
their approach to the nonce agreement. We identify issues that could hinder in-class interoperability, and we
propose a trustless mediator that facilitates interoperability among different classes in certain cases. Besides
mitigating the risks, interoperability provides usability and performance benefits, as protocols better suited for
special devices can be used together with more general protocols.
We make use of these advantages in our new multi-signature scheme SHINE, which is optimized for resource-
limited devices like cryptographic smartcards while being interoperable with popular schemes such as MSDL,
MuSig2, or SpeedyMuSig.

1 INTRODUCTION

Since the expiry of Schnorr’s patent (Schnorr, 1991b),
Schnorr signatures are making a considerable come-
back, fueling digital signature specifications like Ed-
DSA (Bernstein et al., 2012) and BIP-Schnorr (Wuille
et al., 2020a). EdDSA is being gradually incorporated
in many protocols like TLS, SSH, Tor, and WireGuard
(IANIX, 2022), and BIP-Schnorr is now being used
in Bitcoin (Nakamoto, 2008) as a part of the Taproot
consensus upgrade (Wuille et al., 2020b).

The practical problems these applications face
have reignited research interest in the area of multi-
party Schnorr signatures. New schemes (Alper and
Burdges, 2021; Maxwell et al., 2019; Nick et al.,
2021; Syta et al., 2016; Crites et al., 2021) im-
proved the practicality of Schnorr multi-signatures,
e.g., decreased communication and achieved security
in the plain public-key model. However, none of the
schemes is suitable for all scenarios, and their ap-
proaches often differ in technical or design details,
rendering them partly or fully incompatible. This re-
sults in having multiple protocols that perform in prin-
ciple the same task yet cannot work together.

Good protocol interoperability would improve not

only usability and performance but also security. A
frequent weak point of any real-world cryptographic
system is its implementation. Multi-party computa-
tion can mitigate the impact of implementation vul-
nerabilities by having different implementations run-
ning on different devices, as long as at least one of
them remains secure (Mavroudis et al., 2017). Multi-
party scheme interoperability extends this idea fur-
ther: choosing different protocols limits the threat of
common implementation errors in all of them at once.

Unfortunately, it is unknown if and how we can
achieve interoperability of different Schnorr-based
multi-party schemes. To tackle this problem, we
study the scheme differences and classify them by
their approach to the nonce agreement – a key compo-
nent in signature computation. This allows us to in-
vestigate possible interoperability across classes and
identify obstacles to in-class interoperability. We dis-
cover that cross-class interoperability can be in cer-
tain cases achieved via an untrusted mediator that
translates communication among different protocols.

Based on these new insights, we design a new
multi-signature scheme, SHINE, which is interoper-
able with several other Schnorr-based schemes and is
optimized for computationally limited devices.
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Main Contributions:
• We classify the current Schnorr-based multi-party

schemes by their approach to the nonce agree-
ment, and propose an untrusted mediation layer
that bridges class differences to achieve interoper-
ability.

• We design a two-round (one-round plus precom-
putation) Schnorr multi-signature scheme called
SHINE, which targets computationally limited de-
vices like smartcards, and is interoperable with
many pre-existing schemes. The scheme features
a novel approach to nonce caching that avoids the
previous attack on two-round schemes (Drijvers
et al., 2019).

• We provide an open-source implementation of
SHINE on the JavaCard platform, evaluate its per-
formance on five different smartcard models, and
demonstrate its interoperability with other scheme
classes via the proposed mediator.

After presenting the relevant background in Section 2,
we survey and compare different approaches to the
nonce agreement in Section 3. Building upon the
lessons learned, we propose our scheme SHINE in
Section 4 and draw conclusions in Section 5.

2 BACKGROUND

This section introduces the notation, recalls Schnorr
signatures, and presents relevant multi-party schemes.

2.1 Notation

A group description is a triplet (G,q,G), where q is
a λ-bit prime, G is a cyclic group of order q, and G
is a selected generator of G. We use the additive no-
tation for the group operation and denote group ele-
ments in upper-case. Conversely, we use lower-case
to denote elements of Zq. Sampling of an element e
from non-empty set S is denoted as e← S. By A(x),
we denote the set of outputs of probabilistic algorithm
A given input x. We reserve n for the number of sign-
ing parties. Furthermore, with a secret s, we use the
following notation:

• PRFs – a pseudorandom function seeded with s;
• KDFs – a key derivation function seeded with s;
• Encs – symmetric encryption with a key s;
• Decs – symmetric decryption with a key s;
• Com – a commitment function.

2.2 Schnorr Signatures

The Schnorr signature scheme (Schnorr, 1991a) is de-
rived from the Schnorr identification scheme using
the Fiat-Shamir transform (Fiat and Shamir, 1986),
and it relies on the hardness of the discrete loga-
rithm problem. The scheme outputs efficiently com-
putable and verifiable signatures of short length. It
has been proven existentially unforgeable under the
chosen message attack in the random oracle model
(Pointcheval and Stern, 2000). Various formulations
of Schnorr signature schemes have been proposed,
but in this paper, we choose the one typically used
in recent works (Bernstein et al., 2012; Wuille et al.,
2020a), as it supports efficient batch verification and
prevents related-key attacks (Morita et al., 2015).

Definition 2.1 (Schnorr Signature). Let (G,q,G) be
a group description and H : G2 × Zq → Zq be a
hash function. A Schnorr signature of a message
m ∈ Zq verifiable with public key X ∈ G is a pair
(R,s) ∈ G× Zq satisfying the verification equation
sG = R+H(R,X ,m)X .

For a random nonce r ∈ Zq and a private key x ∈
Zq such that xG = X , a valid Schnorr signature of a
message m is (R,s) = (rG,r+H(R,X ,m)x).

For fixed H(R,X ,m), the signing equation is lin-
ear, which is useful for efficient multi-party Schnorr
signature schemes. First, all n parties need to agree on
a collective nonce R, which is a linear combination of
their individual contributions Ri = riG. Subsequently,
they produce signature shares si = ri +H(R,X ,m)xi,
which are summed up to obtain the resulting signature
s = ∑

n
i=1 si, verifiable under the aggregate public key

X = ∑
n
i=1 Xi.

The simple multi-signature scheme described in
the previous paragraph has a few caveats, which cause
it to be insecure in many use-cases, and these issues
are addressed by more complex designs. The two
main security obstacles are related to the group key
aggregation and the nonce agreement, both of which
can be attacked to perform a forgery.

The key aggregation is prone to rogue-key attacks,
where the adversary computes her key as a function of
the public keys of other parties and cancels out their
contribution. To illustrate the problem, assume the
attacker is the first party. She can compute her key
as X1 = x′1G−∑

n
i=2 Xi for some x′1 ∈ Zq. When this

rogue key is combined with the other keys, the result-
ing aggregate key is X = x′1G, and the attacker can
create signatures on behalf of the group.

Rogue-key attacks can be prevented by distributed
key generation, which requires fresh key pairs like in
Myst (Mavroudis et al., 2017). Alternatively, pre-
existing keys can be reused when supplemented by
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proof of knowledge of their private key, e.g., (Boneh
et al., 2018). Another method that supports key reuse
is the non-interactive key aggregation method pre-
sented in MuSig (Maxwell et al., 2019), which avoids
the attack by unpredictably altering the aggregate key
whenever any of the inputs changes.

If sequential signing can be enforced, the protocol
is secure, and the aggregate nonce does not even need
to be computed by the signer, as is the case in CoSi
(Syta et al., 2016). However, if the signing instances
with the same key can be executed concurrently (e.g.,
nonce contributions are shared in advance), the Dri-
jvers et al.’s attack can achieve signature forgery (Dri-
jvers et al., 2019). The attack relies on solving an
instance of the ROS problem (Schnorr, 2001), which
can be solved in subexponential (Wagner, 2002) or
polynomial time (Benhamouda et al., 2021), depend-
ing on the number of concurrent sessions.

2.3 Current Multi-party Schemes

In this subsection, we list and shortly describe all re-
cent Schnorr-based multi-party schemes that we con-
sider for the interoperability study.

CoSi (Syta et al., 2016) is a two-round Schnorr-
based multi-signature scheme designed for high-
speed signing by many parties organized into a tree
structure. The scheme has been proven secure only
for logarithmically many concurrent signing instances
in a later work (Drijvers et al., 2019).

Myst (Mavroudis et al., 2017) is a setup of a
large number of smartcards interconnected into a
grid performing multi-party computations to achieve
high guarantees of backdoor tolerance. Myst uses
a multi-signature scheme similar to CoSi, optimized
for limited devices. One of the optimizations (nonce
caching) was found vulnerable to an attack by Dri-
jvers et al. (Drijvers et al., 2019).

MuSig (Maxwell et al., 2019) was originally pre-
sented as a two-round scheme that was later found
vulnerable by Drijvers et al. (Drijvers et al., 2019).
Earlier MSDL (Boneh et al., 2018) used a preliminary
commitment round that avoided the problem, and the
same approach was also adopted to MuSig, resulting
in a three-round concurrently-secure scheme.

The first concurrently-secure two-round multi-
signature scheme resulting in standard Schnorr signa-
tures was MuSig-DN (Nick et al., 2020), which avoids
the Drijvers et al.’s attack by generating the nonce de-
terministically. The nonce needs to be supplemented
with costly non-interactive zero-knowledge proofs of
its correct construction to achieve security.

MuSig2 (Nick et al., 2021) and DWMS (Alper and
Burdges, 2021) made advances in secure two-round

multi-signature schemes with unlimited concurrency
and, independently of each other, introduced a tech-
nique preventing the Drijvers et al.’s attack. This
approach is much more efficient than deterministic
nonce derivation with zero-knowledge proofs but it
still presents a significant computation overhead, lim-
iting its usefulness for constrained devices.

Crites et al. (Crites et al., 2021) combined
MuSig2 with proofs of possession similar to MSDL
to construct the latest Schnorr-based scheme called
SpeedyMuSig. This combination brings faster key
aggregation to the MuSig2 scheme, resulting in the
fastest two-round concurrently-secure Schnorr multi-
signature scheme.

FROST (Komlo and Goldberg, 2021) is a thresh-
old signature scheme that is secure for an arbitrary
threshold t ≤ n and, as such, provides great flexibil-
ity to its applications. Its original version was also
vulnerable to the Drijvers et al.’s attack, but a later
version employed a variation of the technique used in
MuSig2 (Nick et al., 2021) and DWMS (Alper and
Burdges, 2021) to avoid the issue.

Garillot et al. (Garillot et al., 2021) presented
another deterministic scheme secure in the dishon-
est majority setting that has the benefit of not re-
quiring additional randomness nor state. Its con-
struction is conceptually similar to the MuSig-DN
scheme, as it uses deterministic nonce derivation sup-
plemented by non-interactive zero-knowledge proofs.
The computation of the proof is more efficient than in
MuSig-DN, but the proof size and thus communica-
tion requirements were significantly increased.

3 INTEROPERABILITY OF
SCHNORR-BASED SCHEMES

The Schnorr-based schemes mentioned in Section 2.3
exhibit different trade-offs. Some schemes are opti-
mized for a low number of communication rounds;
others are better suited for limited devices where the
computation is costly; some use only standard op-
erations available on legacy systems or can utilize
dedicated co-processors, and some need to use non-
standard cryptographic primitives. As a result, none
of the schemes is ideally suitable for all platforms.

In this section, we attempt to address the prob-
lem of scheme heterogeneity. We surveyed current
multi-party Schnorr signature designs and classified
them based on their approach to the nonce agreement.
With this classification, we specify what is required
of the schemes from the same class to be compati-
ble with each other. Furthermore, we inspect the dif-
ferences among the classes and bridge them using an
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untrusted third party without any changes to the un-
derlying schemes. If this mediation is possible, we
call the schemes interoperable.

More precisely, we define interoperability as the
ability of two or more multi-party protocols to execute
jointly via an untrusted mediator in a way that results
in a valid signature on behalf of all of the parties and
none of the parties can distinguish such an execution
from the execution with its own instances.

With this definition, the security of interoper-
ability can be reduced to the security of individual
schemes. Since all of the considered schemes were
proven secure in the dishonest majority setting, their
security does not rely on the actions of other partici-
pants. In particular, the mediator can be considered as
the adversary in the security proofs of the schemes.

Nonce Agreement. The method of nonce agree-
ment is the main part in computing multi-party
Schnorr signatures. All signing parties need to
contribute to the nonce agreement with their fresh
nonce, which they later reflect in signing. After the
nonce is known, the signatures can be computed non-
interactively.

We have identified four main approaches to the
nonce agreement: 1) nonce exchange, 2) nonce com-
mitment, 3) nonce delinearization, and 4) determin-
istic nonce derivation. These methods differ in
the number of communication rounds, computational
complexity, and security assumptions. In the follow-
ing subsections, we analyze the approaches and de-
scribe the mediator for each interoperable approach.

3.1 Nonce Exchange

Nonce exchange (NE) features two communication
rounds and is the simplest and most efficient approach
to nonce agreement. It is used by applications focus-
ing on high performance (Syta et al., 2016; Mavroudis
et al., 2017), which utilize that its security does not
rely on a specific construction of the aggregate nonce.
Thus the signers do not even have to compute the ag-
gregate nonce themselves, allowing further decrease
of the computation requirements.

The disadvantage of this approach is that it is se-
cure only when executed sequentially, i.e., no concur-
rent signing sessions occur1. Otherwise, a practical
message forgery can be achieved by the Drijvers et
al.’s attack (Drijvers et al., 2019).

1Or more precisely, only a logarithmic number of con-
current sessions occur.

Principle. Each signer i uniformly samples a ran-
dom nonce ri ← Zq, computes the corresponding el-
ement Ri = riG, and transmits this element. The ele-
ments of all signers are then summed up into the ag-
gregate nonce R = ∑

n
i=1 Ri used in the signing.

Interoperability. Since there are no constraints on
the construction of the aggregate nonce, NE schemes
are convenient for achieving interoperability with
other nonce agreement approaches that are more re-
strictive but concurrently-secure.

3.2 Nonce Commitment

Nonce commitment (NC) is a three-round approach
that has been used by MSDL (Boneh et al., 2018) and
MuSig (Maxwell et al., 2019). It provides concur-
rent security with only a minimal computation over-
head over NE. If the additional communication round
is not too costly, e.g., the devices are co-located,
this approach is also quite efficient and suitable for
computationally-limited devices.

Principle. The Drijvers et al.’s attack requires the
attacker to be able to choose their nonce depending
on the nonces of other parties2. This precondition can
be broken by a preliminary communication round, in
which each signer i first outputs a commitment to
its nonce element Com(Ri), and only after receiving
commitments of all other parties reveals the nonce el-
ement Ri. The provided nonce elements need to be
verified against the commitments, and if an inconsis-
tency is discovered, the protocol must be aborted.

Interoperability. The need for commitment limits
interoperability among different instances of NC. To
be able to work together, the schemes have to use the
same Com function, which is a consequence of the
commitment properties, preventing the commitment
from being readjusted by a third party.

Nonetheless, NC is interoperable with NE-based
schemes via a translation layer that simulates the
commitment round on behalf of the NE schemes as
follows (see Figure 1): First, the NE schemes share
their Ri. The translation layer computes commitments
for these elements with an appropriate Com func-
tion and simulates the commitment round with NC
schemes. Afterward, the NC schemes and the trans-
lation layer (on behalf of NE schemes) reveal Ri that
successfully verify against the commitments. Hence
no party aborts and they all arrive at the same aggre-
gate nonce.

2Assuming other parts of the input are already fixed.
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Figure 1: Interoperability mediation between NC and NE schemes (left), and half-ND and NE schemes (right).

3.3 Nonce Delinearization

Nonce delinearization (ND) is the most recent ap-
proach to the nonce agreement that is secure under
concurrent execution with just two communication
rounds, the first of which can be precomputed. The
main downside of this approach is its high computa-
tional cost, as it requires each signer to generate mul-
tiple nonces and to perform multi-scalar multiplica-
tion in the second round. Nonetheless, the practical
benefits in many applications outweigh the cost, and
this technique has been used in the design of the latest
schemes (Alper and Burdges, 2021; Komlo and Gold-
berg, 2021; Nick et al., 2021; Crites et al., 2021).

Principle. Each signer i uniformly samples ν

nonces ri, j and reveals the corresponding elements
Ri, j = ri, jG (possibly in advance). When the message
to be signed is known, the nonce elements are used to
compute the aggregate nonce

R =
n

∑
i=1

ν

∑
j=1

βi, jRi, j,

where βi, j are delinearization coefficients. The delin-
earization coefficients are non-linearly dependent on
all nonce elements and the message via a hash func-
tion, which causes the aggregate nonce to change un-
predictably whenever any of the inputs changes, and
thus thwarts the Drijvers et al.’s attack.

Interoperability. The requirement of specific
nonce aggregation based on pre-shared nonce ele-
ments and the message limits the interoperability
with other instances of ND schemes, as the same co-
efficients βi, j and ν would need to be used. Schemes
using, e.g., a different hash function in the coefficient
computation, do not arrive at the same aggregate
nonce.

Interoperability with NE schemes is a bit more nu-
anced and cannot be achieved in general. Equations

(1) and (2) show a signature by an NE scheme and an
ND scheme, respectively (ν = 2 for brevity).

s = ri + exi (1)
s = βi,1ri,1 +βi,2ri,2 + exi (2)

The mediator cannot reconcile the difference between
(1) and (2) because it cannot multiply the nonce ri
without also changing the exi component. However,
if βi,1 = 1, the interoperability is achievable via the
following mediation (see Figure 1).

First, all signers begin by sharing their nonce el-
ements. The single nonce element provided by NE
schemes is used as their first nonce element, and the
mediator computes the other nonce elements instead
of the signers. These simulated nonce elements can be
sent to ND-based signers, who can now compute the
aggregate nonce. The aggregate nonce R is also com-
puted by the mediator who provides it to NE-based
signers, which reply with their signatures si = ri+exi.
The mediator then augments the signatures by the
simulated nonces si + βi,2ri,2 + · · ·+ βi,νri,ν, making
them compatible with signatures of ND schemes. Fi-
nally, the signatures can be combined into a valid sig-
nature without any change of the underlying schemes.

Having βi,1 = 1 has been suggested as an opti-
mization of MuSig2 (Nick et al., 2021) that became
the default choice in a later revision of the scheme
and was since then adopted by other works (Komlo
and Goldberg, 2021; Crites et al., 2021). We call this
variation, where the first nonce is not multiplied by
the coefficient, half-nonce delinearization. This vari-
ant is not a mere performance optimization (as pre-
sented in the original paper), but importantly, it also
enables interoperability with NE schemes, as illus-
trated above. For this reason, we suggest preferring
the designs of schemes with half-ND. This choice still
allows for adding arbitrarily many nonces to tweak
the problem3 while remaining interoperable with NE
schemes and incurring no additional cost to them.

Achieving interoperability is not possible with NC
schemes, as those schemes need to receive a commit-

3A MuSig2 variant suggested four nonces.
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ment to the single nonce produced by each party be-
fore revealing their own nonce, but ND schemes use
multiple nonces and cannot combine them before all
other nonces are known.

3.4 Deterministic Nonce

Deterministic nonce (DN) derivation is another ap-
proach to concurrently-secure two-round scheme con-
struction. DN derivation has been used in standard
signature schemes, preventing attacks due to biased
randomness in the nonce generation. However, it can-
not be directly applied to a multi-party setting as a
malicious party that diverges from the correct compu-
tation could force an honest signer to reuse a nonce,
which would result in a key compromise. To deal
with this problem, MuSig-DN (Nick et al., 2020) and
a scheme by Garrilot et al. (Garillot et al., 2021)
use non-interactive zero-knowledge proofs. The dis-
advantage of this approach is its computational cost,
which is the highest among the presented approaches.

Principle. Each signer derives its nonce using a de-
terministic approach and computes a non-interactive
zero-knowledge proof of its correct construction. The
proof is output along with the nonce element, and
other protocol participants need to verify the proof.
If the verification fails, the signing must be aborted.

Interoperability. The need for a zero-knowledge
proof severely limits the interoperability of the
scheme. Different implementations of DN schemes
require a consensus on the used derivation function
and the proof construction to work together. Interop-
erability with schemes using a different approach to
the nonce agreement is not possible, as it contradicts
the requirement of deterministic nonce derivation.

3.5 Summary

Table 1 displays the interoperability matrix of the
nonce agreement approaches. Schemes based on NE
stand out among others as the most flexible ones due
to their ability to accept an externally provided nonce
without any knowledge of its construction and remain
secure with a sequential execution. Interactions of NE
and ND schemes are interoperable when the half-ND
method is used. Even though NE schemes are interop-
erable with NC schemes and half-ND schemes sepa-
rately, they cannot be used together since NC schemes
and ND schemes are not interoperable. DN is inter-
operable only with its own instances.

Based on the study of interoperability, we propose
to focus on three designs of Schnorr-based schemes:

Table 1: Interoperability of nonce agreement approaches.
The icons ✓, ✗, and ∼∼∼, denotes possible interoperability
always, never and under certain preconditions, respectively.

NE NC ND DN

NE ✓ ✓ ∼∼∼ ✗
NC ✓ ∼∼∼ ✗ ✗
ND ∼∼∼ ✗ ∼∼∼ ✗
DN ✗ ✗ ✗ ∼∼∼

1. The sequentially constrained NE schemes for
computationally restricted devices, which benefit
the most from the efficiency;

2. the half-ND schemes for devices where the com-
putation is not a limiting factor, and that could
benefit from interoperability;

3. the DN schemes for the cases where the perfor-
mance is not an issue, determinism is crucial, and
a setup of homogenous instances is guaranteed.

We followed up on our first recommendation and
used NE to design SHINE, a multi-signature scheme
optimized for cryptographic smartcards and similar
resource-constrained devices, which is interoperable
with other nonce agreement approaches. We present
the design in the next section.

Lastly, it remains to comment that the theoretical
interoperability does not automatically imply interop-
erability of corresponding implementations. For that,
the implementations need to use compatible group
key aggregation and produce compatible signatures
– not only Schnorr signatures but the same instance
of Schnorr signatures, e.g., Ed25519 (Bernstein et al.,
2012) or BIP-Schnorr (Wuille et al., 2020a).

4 MULTI-SIGNATURE SCHEME
SHINE

This section describes SHINE (Smartcard Highly-
Interoperable Nonce Encryption scheme) – a multi-
signature scheme optimized for computations on
cryptographic smartcards while being interopera-
ble with many pre-existing Schnorr multi-signature
schemes. The design includes a central party that me-
diates communication among individual signers. We
utilize this central party for the precomputation of in-
puts, data storage, and also for achieving interoper-
ability, as described in the previous section.

SHINE can create a signature in two communica-
tion rounds, the first of which can be securely precom-
puted. The scheme uses a variant of NE that enables
interoperability with all classes except DN. But it also
requires sequential execution to be secure, which we
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enforce by design. Additionally, to avoid random-
ness generation failure attacks and minimize storage
requirements, we derive nonce using a secret pseudo-
random function that depends on an internal counter.
Security proof is provided in the Appendix.

In the following subsections, we describe the at-
tacker model and the group establishment of SHINE.
Next, we introduce the technique of nonce caching
with encryption and discuss its differences from plain
nonce caching. Finally, in Section 4.4 we describe the
signing protocol. The last subsection presents an im-
plementation of SHINE on cryptographic smartcards
and an evaluation of its performance.

4.1 Attacker Model

We assume that the attacker is able to control the cen-
tral party and n− 1 of the signing parties. Since the
central party is under the control of the attacker, it can
drop or alter messages, and as a result, cause a denial
of service. We also make the standard assumptions
that the number of computation steps the attacker can
make is bound by a polynomial and that a variant of
the discrete logarithm problem is hard.

4.2 Group Establishment

Before SHINE can be used to sign messages, the sign-
ing group needs to be established. The signing group
consists of a set of signers, who generate their private
key shares, compute the group key, and initialize con-
text information. In this process, we assume that the
central party included all participants in the key ag-
gregation, i.e., did not ignore or simulate messages by
some parties. In practice, the validity of this assump-
tion can be later verified by querying participants for
their key contributions by secondary channels.

SHINE can use different key aggregation ap-
proaches depending on which schemes it should be
interoperable with. As the default option, we have
selected proofs of possession like in (Crites et al.,
2021), as it allows efficient group key aggregation and
low communication. Alternatively, MuSig key aggre-
gation (Maxwell et al., 2019) or some form of dis-
tributed key generation can be used instead.

After a new group key is successfully computed,
each party i finalizes the group establishment process
by initializing its signing context. The signing con-
text consist of a λ-bit secret pi that is used for deter-
ministic nonce and encryption key derivation, and an
increase-only counter ci that tracks the index of the
most recently used nonce. The former value is uni-
formly sampled, and the latter is initially set to zero.
These values are later used in the signing protocol.

4.3 Nonce Caching with Encryption

Nonce caching is a technique used in Myst
(Mavroudis et al., 2017) for a setup of smartcards. It
optimizes the signing speed by generating nonces in
advance, computing the corresponding elements, and
storing them at a server. Thus the costly scalar mul-
tiplication can be performed during downtime when
there are no signing requests, and the precomputed
nonce can be provided to signers when needed.

This approach was later shown to be vulnerable
to the Drijvers et al.’s attack (Drijvers et al., 2019).
Since the properties of nonce caching are beneficial
for resource-limited devices like smartcards, we de-
signed a technique called nonce caching with en-
cryption or nonce encryption for short, which avoids
the Drijvers et al.’s attack and still allows for nonce
caching with some restrictions.

The vulnerability to the Drijvers et al.’s attack oc-
curs only if the scheme is used concurrently, e.g., an
adversary can open multiple signing sessions in par-
allel or cache multiple nonces before they are used
for signing. Nonce encryption leverages this property
and enforces sequential execution to ensure at most a
single cached nonce is revealed at a time while still
being usable for signing.

Nonce encryption consists of two phases – Cache
(Figure 2) and Reveal (Figure 3). The smartcard com-
putes the nonce element during the caching phase and
sends it encrypted4 using a fresh key to the central
party. The reveal phase is then used to reveal the cor-
responding decryption key and thus reveal the cached
nonce while invalidating previous nonces.

The Cache phase is initiated by the central party,
which sends a signing instance identifier j. The
smartcard i uses a pseudorandom function, keyed
with a secret pi (generated during the group estab-
lishment), to derive a nonce ri, j corresponding to the
signing instance j. Then the smartcard computes
Ri, j ← ri, jG, the demanding operation that would be
the bottleneck during the signing.

In the standard nonce caching, Ri, j would be sim-
ply transmitted to the central party; however, if this
step was repeated, it would lead to the vulnerability
to the Drijvers et al.’s attack. With nonce encryption,
the nonce is not transmitted in plaintext but rather en-
crypted with symmetric key ki, j derived from the sign-
ing instance identifier j using a key derivation func-
tion known only to the signer i. The central party
stores the received value for future use.

4We use encryption only to securely store the cached el-
ement on the central party to minimize storage requirements
on the signing device (as memory on smartcards is limited).
We do not want the signer to bind to the encrypted value.
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Algorithm 1: Cache
Input: Session index j
Output: Encrypted nonce Ei, j
ri, j← PRFpi( j)
Ri, j← ri, jG
ki, j← KDFpi( j)
Ei, j← Encki, j(Ri, j)

return Ei, j

Figure 2: SHINE nonce caching algorithm.

Algorithm 2: Reveal
Input: Session index j
Output: Decryption key ki, j
if j ≥ ci then ci← j fi
ki, j← KDFpi(ci)
return ki, j

Figure 3: SHINE nonce revealing algorithm.

The Reveal phase uses the smartcard internal
increase-only counter ci to track which nonce ele-
ments were already revealed. When prompted by the
central party to send ki, j for a signing instance j ≥ ci,
the smartcard derives ki, j and sends it back, but at the
same time increases its inner counter ci← j. With the
knowledge of ki, j, the central party can decrypt the
cached nonce Ri, j, possibly combine it with nonces of
other parties, and use it in a subsequent signing.

So far, the counter ci did not limit the attacker in
any way. It plays a role only during the signing, where
the smartcard must not produce a signature for a sign-
ing instance j < ci. This restriction ensures that only
the signing instance j = ci can succeed since nonces
for j > ci are not known yet. The technique already
enforces the signing of non-decreasing sequences,
and it only remains to avoid nonce reuse, which is
achieved by incrementing the internal counter ci when
producing a signature.

Comparison to Plain Nonce Caching

Just as in plain nonce caching, we manage to avoid
costly group operations during the signing. In this
subsection, we highlight the differences.

Storage-wise, nonce encryption still requires only
constant memory on smartcards, but the central party
cannot pre-aggregate nonces anymore as only a sin-
gle nonce is known at a time. Therefore, the space
required by the central party grows linearly in n.

Communication-wise, nonce encryption seem-
ingly needs one additional round to transmit the de-
cryption key. However, this transmission can be au-

Algorithm 3: Sign
Input: Aggregate nonce R j, message m,

session index j
Output: Partial signature si, j
if j < ci then abort fi
ci← j+1
ri, j← PRFpi( j)
si, j← ri, j +H(R j,X ,m)xi
return si, j

Figure 4: SHINE signing algorithm.

tomatically piggybacked with the previous signing,
where the decryption key for ci + 1 can be revealed,
as ci was already invalidated. As a result, the number
of communication rounds can remain the same; only
the additional decryption key is transmitted.

Finally, computation-wise, symmetric encryption
can be realized efficiently, minimizing the additional
demands on the smartcards. The only new concern is
the aggregate nonce computation by the central party
– which cannot be precomputed, as only a single de-
cryption key is known at a time. In the case of burst
signing requests, the overall solution would result in
a performance decrease compared to the vulnerable
nonce caching. But assuming the central party is sig-
nificantly more capable than the smartcards (which in
practice is), the aggregation can be performed rela-
tively quickly and is not a limiting factor.

4.4 Signing Protocol

Figure 4 shows the signing algorithm. The central
party initiates the signing of a message m by com-
puting the aggregate nonce. If it already has all ap-
propriate decryption keys, it sums the cached nonces
as R j = ∑

n
i=1 Ri, j. Otherwise, the central party might

need to exchange an additional Cache or Reveal mes-
sage with some smartcard(s) prior to the aggregation.
When the aggregate nonce is computed, the central
party sends a signature request to every participating
smartcard with the given signing index j, the aggre-
gate nonce R j, and the message m.

When a smartcard receives a signing request, it
first checks whether the signing index is greater or
equal to its internal counter. If not, it aborts the
protocol. Otherwise, the smartcard sets its internal
counter ci ← j + 1 and continues with the signing.
It derives its nonce ri, j and computes its signature
si, j ← ri, j +H(R j,X ,m)xi, which it outputs. Option-
ally, the decryption key for index j+1 can be revealed
together with the signature. Finally, the central party
sums the signatures to obtain the resulting (R j,s j).
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4.5 Implementation and Evaluation

We implemented SHINE for the JavaCard platform
using a modified version of the JCMathLib library
(Mavroudis and Svenda, 2020) that provides the nec-
essary low-level operations without relying on propri-
etary smartcard API and thus enables our results to be
reproduced on a wide variety of supported smartcards.
While the solution achieves a decent speed with JC-
MathLib, using proprietary API calls would signifi-
cantly increase its performance in practice, especially
for nonce computation and caching operations.

We tested and evaluated our implementation on
five JavaCards: (1) NXP J2E145G, (2) NXP J3H145,
(3) GD SmartCafe 6.0, (4) GD SmartCafe 7.0,
and (5) NXP J3R180. We measured the time required
to compute each phase of the protocol and also their
counterparts in a variant without nonce caching so
that we would be able to assess its impact. We re-
peated each measurement 100 times and averaged the
results. Table 2 presents a summary of the results.

The implementation achieves an average signing
speed of around 700 ms, comparable to the perfor-
mance of the Myst implementation from (Mavroudis
et al., 2017). The signing slowdown caused by key
derivation for piggybacking did not exceed 45 ms for
any of the cards and thus increased signing latency by
6% at most. Encryption operation added to the nonce
caching resulted in less than 36 ms slowdown, which
was at most 23% (but mostly only 1%) of the time
required to perform the nonce computation.

The differences in time required to compute
the nonce are caused by different native algo-
rithm support. JavaCards (2) and (5) supported
ALG EC SVDP DH PLAIN XY algorithm, which made
the nonce computation quite close to the native per-

Table 2: Time (ms) required to compute steps of SHINE on
different JavaCards.

(1) (2) (3) (4) (5)

Compute 2826 194 2764 1962 60
+ Cache 2854 217 2801 1984 74
Overhead 28 24 36 23 14
(%) 1 12 1 1 23

Sign 802 737 768 637 457
+ Reveal 842 756 813 660 472
Overhead 28 19 45 23 15
(%) 5 3 6 4 3

W/O cache 3627 931 3532 2599 518
W/ cache 842 756 813 660 472
Speedup 2785 175 2719 1938 46
(%) 77 19 77 75 9

formance of the hardware, while on other cards, addi-
tional transformations had to be made. This compu-
tation is the precomputed part; thus, it influences the
speedup over signing without caching the most.

We estimate that implementing the signing part
using native low-level operations instead of slower
software emulation via JCMathLib would achieve
performance comparable to ECDSA on a given plat-
form, e.g., around 200 ms for common smartcards
(Dzurenda et al., 2017). Nonce caching with encryp-
tion would provide an overall speedup of around 50%
in such implementations.

Our implementation of SHINE uses a central party
(written in Rust), which mediates communication
among different devices and serves as a storage of
the cached nonces. It contains NE, NC, and ND
schemes, which can be used by themselves or jointly
with the SHINE applet, demonstrating its interoper-
ability. Both open-source implementations are avail-
able in GitHub repositories5.

5 CONCLUSION

We studied the possibility of interoperability of
Schnorr-based multi-party signature schemes and
classified the existing schemes based on their ap-
proach to the nonce agreement – a key component
in signature computation. We identified four classes
of nonce agreement approaches – nonce exchange
(NE), nonce commitment (NC), nonce delinearization
(ND), and deterministic nonce derivation (DN).

NE-based schemes are secure only with limited
concurrency, but they are the most efficient and the
most interoperable. For these reasons, we suggest
that schemes of this class should be considered for the
use-cases where computation is costly and sequential
execution is acceptable. One such case includes cryp-
tographic smartcards, for which we designed a new
multi-signature scheme called SHINE.

Schemes based on DN are the most rigid, the least
interoperable, and the most computationally demand-
ing. However, in return for these downsides, they
gain the benefits of stateless execution and no need
for additional randomness. Therefore, these schemes
should be considered for the scenarios where compu-
tation is not a limiting factor, the sources of random-
ness are limited, and a setup of homogeneous imple-
mentations can be guaranteed.

ND schemes schemes lie in the middle between
NE and DN with regard to both their computational

5https://github.com/crocs-muni/SHINE/
https://github.com/crocs-muni/SHINE-mediator/
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complexity and their interoperability. In the half-
ND variant, these schemes are interoperable with NE
schemes without compromising their concurrent se-
curity. We thus propose the half-ND schemes to
be considered in the most common scenario featur-
ing reasonably fast devices like smartphones, which
could benefit from interoperability with more con-
strained devices, while enjoying the benefits of secu-
rity under concurrent execution.

The class of NC-based schemes is the only one
that currently does not display any apparent addi-
tional utility. It provides concurrent security achiev-
able even for computationally restricted devices, but
such devices could easily rely on the more efficient
NE, which would also allow them to be interoperable
with half-ND schemes.

We designed the scheme SHINE to benefit from
interoperability while being efficiently executable on
cryptographic smartcards. The scheme is based on
NE complemented by a novel approach to nonce
caching – featuring encryption and avoiding the pre-
vious attack by Drijvers et al. (Drijvers et al., 2019).

We implemented SHINE as an applet for the
JavaCard platform and evaluated its performance on
five different smartcard models. The experiments em-
pirically confirmed the performance improvement of
nonce caching on computationally restricted devices
over a variant without caching. Furthermore, we
provided a Rust implementation of the central party
that practically demonstrates the interoperability of
SHINE with NE, NC, and half-ND schemes.

We view the interoperability of multi-party pro-
tocols as a meaningful and practical way to increase
resilience and flexibility of multi-party systems. Fol-
lowing this path, future research could investigate
the possibility of interoperability among other types
of multi-party protocols, e.g., the recent designs of
threshold ECDSA signatures.
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APPENDIX

The Security of SHINE

We aim to reduce the security of SHINE (Figure 5) to
the OMDL problem; we use the following algorithms:

• GrGen that outputs a group description (G,q,G)
for a given security parameter λ,

• KeyGen that outputs a standard, uniformly sam-
pled key pair (x1,x1G),

• KeyAgg that performs key aggregation according
to the selected group establishment method,

• Verify that performs standard Schnorr signature
verification.

The security reduction relies on the one-more
discrete logarithm (OMDL) problem (Bellare et al.,
2003): the adversary has access to an oracle ODLog

providing them with up to qd discrete logarithms,
while the goal is presenting discrete logarithms of
qd +1 challenges received from the OChall oracle.

Theorem 1. If a polynomial adversary A against the
SHINE unforgeability game (Fig. 5) wins with prob-
ability ε while making qS reveal oracle queries and
qH−qS random oracle queries, then the OMDL prob-
lem can be solved in polynomial time with probability
ε′ in the ROM with the KOSK assumption, such that:

ε
′ ≥ ε

8qHqS
−

q2
Sk2

max

q
,

where kmax = 8qH/ε · ln(8n/ε).

Proof. The proof adapts the main idea of the reduc-
tion given by Drijvers et al. (Drijvers et al., 2019)
for the restricted version of CoSi. Given the adver-
sary A from the theorem statement, we construct an
algorithm B that simulates the SHINE unforgeability
game for A , and succeeds when it does not abort and
A succeeds. The algorithm B is constructed in a way
compatible with the forking lemma, which we then
apply to B to solve the OMDL problem.

The algorithm B is started with elements from
Zq for the random oracle outputs (h1, . . . ,hqH ) and is
given access to oracles OChall and ODLog. We sequen-
tially order the OReveal and OH oracle queries made
by A . If the k-th query is a random oracle query, B
replies with hk. If k-th query is a reveal query, we set
k j = k, where j is the input to the query. We also mod-
ify OChall to accept an input element from Zq. When
the oracle is queried on a previously unseen element,
it invokes its inner OChall oracle; otherwise, it outputs
the previously output value. Without loss of general-
ity, we assume that A makes all random oracle queries
needed to verify the produced signatures.

First, B makes a minor modification of nonce
caching in the simulation, allowing us to defer nonce
sampling to the time when the corresponding decryp-
tion key should be revealed – as per SHINE’s sequen-
tial nature. The change is sampling a random string
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GameEUF−CMA
A (λ)

(G,q,G)← GrGen(1λ)

p1← Zq; c← 0; Q←{}
(x1,X1)← KeyGen()

X2, . . . ,Xn← A(X1)

X ← KeyAgg(X1, . . . ,Xn)

(m∗,σ∗)← AOCache,Reveal,Sign,H
(X1)

return m∗ /∈ Q∧Verify(X ,m∗,σ∗)

OCache( j)
r1, j← PRFp1( j)
R1, j← r1, jG
k1, j← KDFp1( j)
E1, j← Enck1, j(R1, j)

return E1, j

OReveal( j)
if j ≥ c then

c← j
fi
k1, j← KDFp1(c)
return k1, j

OSign(R,m, j)
if j < c then

abort
fi
c← j+1
r1, j← PRFp1( j)
s1, j← r1, j +H(R,X ,m)x1

Q← Q∪{m}
return s1, j

Figure 5: The SHINE unforgeability game. OH is the random oracle.

E1, j in the OCache oracle instead of computing and en-
crypting R1, j . The value R1, j is computed only when
the corresponding decryption key should be revealed,
i.e., in the corresponding OReveal call, and the decryp-
tion key is chosen so that the decrypted value corre-
sponds to the sampled R1, j. For that, we need the en-
cryption to be non-binding. This change is indistin-
guishable by A , does not introduce additional aborts,
and B succeeds whenever A succeeds.

Another change that B makes is setting an out-
put of OChall as X1, instead of using the KeyGen algo-
rithm. Because of this change, x1 is not known any-
more, but we still need to be able to correctly simulate
the signing queries, which we do as follows.

Before running A , B tosses a biased coin coin j
that turns out 1 with probability 1/qS for every sign-
ing instance j ∈ {1, . . . ,qS}. Whenever coin j = 1, B
samples g j ∈ {1, . . . ,qH}. The simulation of OReveal

and OSign oracles for session j then depends on coin j.
If coin j = 0, B invokes OChall(hk j) to get the el-

ement R1, j when revealing the decryption key. To
successfully answer a signing query, the simulator
queries its ODLog oracle with R1, j +H(R,X ,m)X1.

If coin j = 1, B samples a random s1, j from Zq
and computes R1, j = s1, jG−hg j X when revealing the
decryption key. The signing query might not always
succeed in this case. If H(R,X ,m) ̸= hg j for the input
provided in the signing query, B aborts. Otherwise, it
outputs s1, j in the corresponding OSign call.

Due to SHINE’s design, at most one correspond-
ing OSign query has not been made, nor has the ses-
sion been invalidated by querying OSign with a higher
index. If a session was open when the query for the
forgery was made and coin j = 0, B aborts.

When B does not abort, the changes are indistin-
guishable by A , and B succeeds whenever A suc-
ceeds. B does not abort when the session index
is guessed correctly, which happens with probabil-
ity 1/qS, and the corresponding hash oracle query is
also guessed correctly, which happens with probabil-
ity 1/qH . Furthermore, B does not abort when no ses-

sion was open when the fork occurred. From that, we
get that the success probability of B is at least ε/qSqH .

Now, we apply the Generalized Forking Lemma
(Bagherzandi et al., 2008) to B . By the construction
of B , no challenge that is still being usable for sign-
ing is known at the time of the fork; thus, the applica-
tion of the forking lemma does not result in multiple
ODLog queries for the same challenge. If the forking
of B succeeds and it outputs two forgeries s and s′ for
hashes h and h′, respectively, we use them to solve
the OMDL problem in the following way. First, we
compute the discrete logarithm of the group key X as
x = (s− s′)/(h− h′). In the KOSK model, we can
compute the discrete logarithm of X1 directly from x,
as A has to output its private keys (x2, . . . ,xn), and x is
a linear combination of (x1, . . . ,xn). To compute an-
swers to the other challenges, we use x1 to solve linear
equations in the form r1, j = s1, j −H(R j,X ,m)x1; if
some outputs of OChall were not used during signing,
we apply ODLog on them.

The probability of solving the OMDL is the prob-
ability that the forking succeeded and no collisions
occurred among any of the qS values that B submits
to its OChall in any of its runs. Thus, we have

ε
′ ≥ ε

8qHqS
−

q2
Sk2

max

q
.

We needed the KOSK model only at the end of
the proof – to extract the private key x1. The KOSK
model can be avoided in settings with a separate group
establishment where the group key is fixed prior to
issuing signatures; and the proof can be extended to
MuSig-like and proof of possession group key aggre-
gation by extracting the key correspondingly.
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