symmetric encryption with support for boolean queries.
In CRYPTO (1).
Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio,
D., Riviere, T., Shelat, A., Venkitasubramaniam, M.,
and Wang, R. (2021). Diogenes: Lightweight scalable
RSA modulus generation with a dishonest majority. In
S&P.
Choi, S. G., Hwang, K., Katz, J., Malkin, T., and Ruben
stein, D. (2012). Secure multiparty computation of
boolean circuits with applications to privacy in online
marketplaces. In CTRSA.
Choudhuri, A. R., Ciampi, M., Goyal, V., Jain, A., and
Ostrovsky, R. (2020). Round optimal secure multiparty
computation from minimal assumptions. In TCC (2).
Couteau, G. (2016). Efﬁcient secure comparison protocols.
IACR Cryptol. ePrint Arch., page 544.
Cramer, R., Damg
˚
ard, I., and Nielsen, J. B. (2001). Mul
tiparty computation from threshold homomorphic en
cryption. In EUROCRYPT.
Damg
˚
ard, I., Geisler, M., and Krøigaard, M. (2007). Efﬁcient
and secure comparison for online auctions. In ACISP.
Damg
˚
ard, I., Geisler, M., and Krøigaard, M. (2008). Ho
momorphic encryption and secure comparison. Int. J.
Appl. Cryptogr.
Damg
˚
ard, I., Jurik, M., and Nielsen, J. B. (2010). A general
ization of Paillier’s publickey system with applications
to electronic voting. Int. J. Inf. Sec.
Faust, S., Hazay, C., and Venturi, D. (2013). Outsourced
pattern matching. In ICALP (2).
Franklin, M. K. and Haber, S. (1996). Joint encryption and
messageefﬁcient secure computation. J. Cryptol.
Frederiksen, T. K., Lindell, Y., Osheter, V., and Pinkas, B.
(2018). Fast distributed RSA key generation for semi
honest and malicious adversaries. In CRYPTO (2).
Gamal, T. E. (1985). A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Trans. Inf. Theory.
Garay, J. A., Schoenmakers, B., and Villegas, J. (2007).
Practical and secure solutions for integer comparison.
In PKC.
Gilboa, N. (1999). Two party RSA key generation. In
CRYPTO.
Goldreich, O., Micali, S., and Wigderson, A. (1987). How
to play any mental game or A completeness theorem
for protocols with honest majority. In STOC.
Groce, A., Rindal, P., and Rosulek, M. (2019). Cheaper pri
vate set intersection via differentially private leakage.
PoPETs.
Hazay, C. and Lindell, Y. (2008). Efﬁcient protocols for set
intersection and pattern matching with security against
malicious and covert adversaries. In TCC.
Hazay, C., Mikkelsen, G. L., Rabin, T., Toft, T., and Ni
colosi, A. A. (2019). Efﬁcient RSA key generation and
threshold Paillier in the twoparty setting. J. Cryptol.
Hazay, C. and Toft, T. (2010). Computationally secure pat
tern matching in the presence of malicious adversaries.
In ASIACRYPT.
Hazay, C. and Venkitasubramaniam, M. (2017). Scalable
multiparty private setintersection. In PKC (1).
He, X., Machanavajjhala, A., Flynn, C. J., and Srivastava,
D. (2017). Composing differential privacy and secure
computation: A case study on scaling private record
linkage. In CCS.
Inbar, R., Omri, E., and Pinkas, B. (2018). Efﬁcient scalable
multiparty private setintersection via garbled Bloom
ﬁlters. In SCN.
Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. (2003).
Extending oblivious transfers efﬁciently. In CRYPTO.
Jarvis, R. A. (1973). On the identiﬁcation of the convex hull
of a ﬁnite set of points in the plane. Inf. Process. Lett.
Kolesnikov, V., Mohassel, P., Riva, B., and Rosulek, M.
(2015). Richer efﬁciency/security tradeoffs in 2PC. In
TCC (1).
Kolesnikov, V., Sadeghi, A., and Schneider, T. (2009). Im
proved garbled circuit building blocks and applications
to auctions and computing minima. In CANS.
Lindell, Y. and Pinkas, B. (2004). A proof of Yao’s protocol
for secure twoparty computation. Electron. Collo
quium Comput. Complex.
Lindell, Y., Pinkas, B., Smart, N. P., and Yanai, A. (2015).
Efﬁcient constant round multiparty computation com
bining BMR and SPDZ. In CRYPTO (2).
Lindell, Y., Smart, N. P., and SoriaVazquez, E. (2016). More
efﬁcient constantround multiparty computation from
BMR and SHE. In TCC (B1).
Mohassel, P. and Franklin, M. K. (2006). Efﬁciency tradeoffs
for malicious twoparty computation. In PKC.
Paillier, P. (1999). Publickey cryptosystems based on com
posite degree residuosity classes. In EUROCRYPT.
Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi,
S. G., George, W., Keromytis, A. D., and Bellovin,
S. M. (2014). Blind Seer: A scalable private DBMS.
In S&P.
Pinkas, B., Schneider, T., and Zohner, M. (2018). Scalable
private set intersection based on OT extension. ACM
Trans. Priv. Secur.
Rosulek, M. and Trieu, N. (2021). Compact and malicious
private set intersection for small sets. In CCS.
Schoppmann, P., Gasc
´
on, A., and Balle, B. (2018). Private
nearest neighbors classiﬁcation in federated databases.
IACR Cryptol. ePrint Arch.
Shelat, A. and Venkitasubramaniam, M. (2015). Secure
computation from millionaire. In ASIACRYPT (1).
Tiehuis, M. (2018). libhcs. https://github.com/tiehuis/libhcs.
Accessed: 29.11.2021.
Tueno, A., Kerschbaum, F., Katzenbeisser, S., Boev, Y., and
Qureshi, M. (2020). Secure computation of the k
th

ranked element in a star network. In FC.
UTD Data and Privacy Lab (2010). Paillier threshold en
cryption toolbox. http://cs.utdallas.edu/dspl/cgibin/
pailliertoolbox/index.php. Accessed: 29.11.2021.
Wang, X., Ranellucci, S., and Katz, J. (2017). Globalscale
secure multiparty computation. In CCS.
Yao, A. C. (1982). Protocols for secure computations (ex
tended abstract). In FOCS.
Yao, A. C. (1986). How to generate and exchange secrets
(extended abstract). In FOCS.
SECRYPT 2022  19th International Conference on Security and Cryptography
80