A Faster Converging Negative Sampling for the Graph Embedding
Process in Community Detection and Link Prediction Tasks

Kostas Loumponias®?, Andreas Kosmatopoulos Y Theodora Tsikrika®®, Stefanos Vrochidis
and loannis Kompatsiaris

d

c

Information Technologies Institute, Centre for Research and Technology Hellas - CERTH, GR-54124, Thessaloniki, Greece

Keywords:

Abstract:

Skipgram Algorithm, Negative Sampling, Graph Embedding, Community Detection, Link Prediction.

The graph embedding process aims to transform nodes and edges into a low dimensional vector space, while

preserving the graph structure and topological properties. Random walk based methods are used to capture
structural relationships between nodes, by performing truncated random walks. Afterwards, the SkipGram
model with the negative sampling approach, is used to calculate the embedded nodes. In this paper, the
proposed SkipGram model converges in fewer iterations than the standard one. Furthermore, the community
detection and link prediction task is enhanced by the proposed method.

1 INTRODUCTION

Neural network applications have expanded signifi-
cantly in recent years in various scientific fields, such
as image classification (He et al., 2019), natural lan-
guage processing (Chowdhary, 2020), and network
analysis (Nguyen et al., 2018). A particularly suc-
cessful utility of deep learning is the embedding pro-
cess (Cai et al., 2018), which is used for mapping dis-
crete variables to continuous vectors. This technique
has found practical applications in graph embedding,
enabling the use of such methods for network anal-
ysis tasks, such as community detection (Rozember-
czki et al., 2019; Cavallari et al., 2017) and link pre-
diction (Grover and Leskovec, 2016).

Graph embedding is an approach that is utilised
to transform nodes, edges, and their features into a
lower dimensional vector space, while the properties,
like the graph structure and topological information,
are preserved. Graph embedding is a complex pro-
cess, since the graphs may vary in terms of their scale
and specificity. Therefore, a variety of approaches
for embedded graphs have been proposed (Goyal and
Ferrara, 2018), each with a different level of granular-
ity. In particular, the embedding methods can be cat-

a(https://orcid.org/0000-0002-6268-3893
5@ https://orcid.org/0000-0001-5334-741X
https://orcid.org/0000-0003-4148-9028
4@ https://orcid.org/0000-0002-2505-9178
¢ https://orcid.org/0000-0001-6447-9020

o

86

Loumponias, K., Kosmatopoulos, A., Tsikrika, T., Vrochidis, S. and Kompatsiaris, I.

egorised as follows: (a) factorization based, (b) deep
learning based, and (c) random walk based.

Factorization based algorithms aim to factorize
the matrix that represents the connections between
the nodes of the graphs, in order to obtain the em-
bedding. In the case where the obtained matrix is
positive semidefinite, such as the Laplacian matrix,
the eigenvalue decomposition can be utilized. Deep
learning-based algorithms attempt to preserve the first
and second order network proximities by using deep
autoencoders, due to their ability to model non-linear
structure in the data. Random walk based algo-
rithms are used to capture structural relationships be-
tween nodes, by performing truncated random walks.
Therefore, a graph is transformed into a collection of
node sequences, in which, the occurrence frequency
of a vertex-context pair measures the structural dis-
tance between them (Zhang et al., 2018). Some of
the most popular random walk based methods are
DeepWalk (DW) (Perozzi et al., 2014) and node2vec
(n2v) (Grover and Leskovec, 2016).

DW aims to learn embedded nodes via a ran-
dom walk sampling process and the word2vec algo-
rithm (Mikolov et al., 2013a). In word2vec, the Skip-
Gram model is applied by using sentences (series of
words) to train the embedded word. In a nutshell, the
training objective is to use the center word in order to
predict surrounding words of the sentence. Hence, the
DW process initially starts from an arbitrary node and
performs transitions to neighboring nodes in an uni-
form fashion (i.e. all neighbors of a node have equal

A Faster Converging Negative Sampling for the Graph Embedding Process in Community Detection and Link Prediction Tasks.

DOI: 10.5220/0011142000003277

In Proceedings of the 3rd International Conference on Deep Learning Theory and Applications (DeLTA 2022), pages 86-93

ISBN: 978-989-758-584-5; ISSN: 2184-9277

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

A Faster Converging Negative Sampling for the Graph Embedding Process in Community Detection and Link Prediction Tasks

probability of being selected). A walk process is ter-
minated upon reaching a maximum length which is
predefined (user-provided parameter). This process is
applied for all nodes and is repeated n times (number
of walks). It follows that a node and a series of nodes
can be treated as a word and a sentence, respectively,
enabling, the SkipGram algorithm to be naturally uti-
lized for generating node embeddings.

One of the disadvantages of DW is that it cannot
control the path generated by the random walk. In or-
der to address this limitation, the n2v approach has
been proposed. In particular, n2v uses random walks
(similarly to DW) with transition probabilities that are
governed by weights, i.e., n2v generates biased walks.
Instead of performing walking steps randomly, the
concepts of Breadth-First-Search (BFS) and Depth-
First-Search (DFS) sampling are introduced to control
random behavior.

An important characteristic of the original Skip-
Gram implementation is that it’s based in the use of
the softmax function which can result in a very ex-
pensive computational cost. To alleviate this problem
the negative sampling process is utilised which oper-
ates under a lower computational complexity cost and
typically offers better execution times. The negative
sampling process uses the sigmoid function to differ-
entiate the actual context nodes (positive) from ran-
domly drawn nodes (negative). The negative samples
are selected via the noise distribution (Mikolov et al.,
2013b). However, the main drawback of the sigmoid
function is the vanishing gradient problem (Hochre-
iter, 1998) which ultimately leads to a slower conver-
gence of the SkipGram model.

In this paper, a modified SkipGram algorithm
is proposed for the DW and n2v processes to
achieve faster convergence in community detection
and link prediction tasks compared to the standard
DW and n2v processes, preserving the accuracy in
both tasks.More specifically, a novel function, G5 (x),
with an additional trainable parameter is proposed to
tackle the limitations of a standard sigmoid function.
In addition, the new gradients in the backward propa-
gation process are calculated and explained in detail.
Finally, the calculated embedded nodes are used in
the community and link prediction task. More specif-
ically, and after producing the graph embeddings, the
k-means algorithm (Hartigan and Wong, 1979) is ex-
ecuted to obtain the final communities, while the lo-
gistic regression model (Hosmer Jr et al., 2013) with
the consideration of various similarity measures is
utilised to predict the existence of links between two
nodes in the graph. The experimental results in real
graphs show that the proposed method converges (i.e.
the k-means algorithm and logistic regression model

Input Layer Hidden Layer Output Layer

[
e
A Yie-w
[

Yi+w

One-hot vector

Figure 1: The SkipGram model.

achieve their optimal results) faster and provides more
coherent community detection and link predictions
results than the standard DW and n2v processes.

2 PROPOSED METHOD

A general overview and mathematical formulation of
the SkipGram algorithm under the negative sampling
approach is provided. Following that, the proposed
DW (and n2v) algorithm using a modified SkipGram
model is described.

2.1 SkipGram Model: The Negative
Sampling Approach

Let G = (V,E) be a graph, where V and E C (V x V)
correspond to the node and edge set of the graph, re-
spectively. Figure 1 illustrates the SkipGram model
where it can be seen that it corresponds to a fully
connected neural network with one hidden layer and
multiple outputs. The SkipGram model attempts to
predict the context nodes of a sentence (a series of
nodes) given the target node. The input vector uy is
the one-hot embedded vector of target node u € V,
w! e M\y|q is the embedding matrix, where |V| de-
notes the total number of the nodes and d the embed-
ding size. Each row of W! represents the embedded
vector of node u; € V. The vector z; € R stands for
the embedded vector of node u; and is equal with

7 =W u. (1

W? e Mg y| is the output embedding matrix, while
{¥iwr Y 1>Yks1s - Yipw) are the predicted con-
text nodes (one-hot vectors) when the input-target
node is uy, where w denotes the window size.

In the vanilla SkipGram model, the cost function
J is calculated via the softmax function as

C exp (Wf, -zk)
J(8)=—Y log i >
e=1 Y, | €exp (Wi ~zk)

(@

87

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

where 6 = [W!, W?] and W? stands for the i-th col-
umn of the output embedding matrix W? and C de-
notes the total number of context nodes. Furthermore,
the term
exp (W%’ -zk)

£ exp (W2 -2
represents the conditional probability of observing a
context node u, given the target node uy.

From (2), it follows that the softmax function is
computationally expensive, as it requires scanning
through the entire output embedding matrix W? to
compute the probability distribution of all nodes € V.
Furthermore, the normalization factor in the denom-
inator (2) also requires |V| iterations. Due to this
computational inefficiency, softmax function is not
utilised in most implementations of SkipGram.

Thereafter, the negative sampling process with
sigmoid function is used, which reduces the complex-
ity of the algorithm. More specifically, for each posi-
tive pair, {uy and u, } in the training sample, K number
of negative samples are drawn from the noise distribu-
tion P, (w) (Mikolov et al., 2013b), and the model will
update (K + 1) x d neurons in the matrix W2, where
K is usually set equal to 5. Thus, the logarithm of the
conditional probability (3) is approximated by

log P(uc|ug;0) = logo (Wf, -zk)

P(uc|ui;0)

3)

K /
+Y logo (~W2 i om), @
i=1

where o(x) is the sigmoid function, while
(W2, g(i)}tK: , is the set of columns W? (vectors
d x 1) which are randomly selected from the noise
distribution P,(w). The first term of (4) indicates
the logarithmic probability of the positive sample u,
to appear within the context window of the target
node uy, while, the second term indicates the sum of
the logarithmic probabilities of the negative samples
Uneg(i) DO appearing in the context window.

In the negative sampling process, only K + 1
columns of the output embedding matrix W? are up-
dated, while in the embedding matrix W' only one
row is updated (let W} € RY), since the input uy is
one-hot vector. Then, the update equations, through
the backward propagation, are

¢j=¢j—N-(0(x)) 1))z, 5)
] | K+1
Wy =W;—n-) (o(x))=1))-¢; (6)
j=1
where
! Wieg(qu j=2,.,K+1 "’

88

{ 1, j=1

tj = .)
0, j=2,..,.K+1
xj= c,j -2; and M is the learning rate.

In the case where j = 1 (positive sample) and x; —
—oo, the term — (0(x;) —¢;) is maximized. Therefore,
the SkipGram model updates-corrects the weights 0 =
[W! W2] for low values of x;, otherwise, when the
values of x; are high, the updates, — (c(x;) —¢;) are
negligible. In the same way, for j # 1 (negative sam-
ples), it turns out that for low values of x;, the updates
are negligible. Thus, the inner product x; = c,j -Zy de-
fines a proximity between the nodes u; and u,.

2.2 SkipGram with a Modified Negative
Sampling Process

The main drawbacks of the sigmoid function are the
vanishing gradient of log6(x) (V1ogco(x)) and its sat-
urated values. More specifically, as it can be seen
in Figure 2, the gradient V1ogc(x) (blue curve) con-
verges to 0 for x — +o0 and to 1 for x — —oo. Thus,
in the case where j = 1 (positive sample) for every
low value of x; the gradient is approximately equal to
1. Hence, the range of the updates is limited and the
highest value that it can reach is equal to 1. This can
cause a lot of computational burden until the weights
0 converge.

In order to overcome the above limitation, the sig-
moid b function is proposed

1

~ 1+4exp(—=b-x)’
where b > 1. It is worth noting that the range of the
proposed function is the interval [0, 1], since it ap-
proximates the probability (4). In Figure 2, the deriva-
tive of log G, (x) (9) for b = 2 is illustrated. As it can
be seen the range of the proposed derivatives is [0, 2].

The logarithm of the conditional probability (3) in
the proposed method is equal to

log P(uc|ug;0) = logoy (Wf/ . zk)

@)

Gp(x)

K /
+Y logo, (~W2m). ®
i=1

0 L L L
-10 -5 0 5 10
X

Figure 2: The derivatives of log6(x) and log 65—5 (x).

A Faster Converging Negative Sampling for the Graph Embedding Process in Community Detection and Link Prediction Tasks

Then, it is proved that the derivative of logc,(x) is
equal with

e ©)

Thus, using (8) and (9) the update equations for the
proposed SkipGram model (SkipGramy) are defined
as

Vlogoy,(x) =

¢j=¢;—n-b-(0p(x)) —1)) 2, (10)

K+1
W =W.-n-b-Y (op(x;)—1;)-¢c;. (11)

j=1
It is important to note that, in the proposed process,
the additional parameter b is trainable and the update
equation (using (8) and (9)) is proved to be equal with

K+1
b=b—"m- Y (0p(x;) —1;)-xj, (12)

Jj=1

where 1, is the learning rate for the parameter b.
From (12), it can be straightforwardly deduced that
the updates of parameter b will be negligible when the
error (0p(x;) —t;) is reduced. It is derived from the
above results that the proposed sigma function can be
applied to any machine learning model instead of the
standard sigma function, however the updates equa-
tions (10)-(12) need to customized to the applicable
machine learning model.

It is worth mentioning that in literature there have
been alternative activation functions proposed aiming
for better performance in various scientific fields. In
(Banerjee. et al., 2021), the SM-Taylor softmax func-
tion has been applied for image classification tasks
and the results showed that it outperforms the normal
softmax function.

Next, the proposed process (Algorithm 1) for
community detection is presented. The proposed
method, DeepWalk, (DW},) has similar framework to
DW, with the main difference being the use of the
SkipGram,, model instead of the standard one. In the
following, lines 1 —7 in (Algorithm 1) represent the
DW),, process. Then, the k—means algorithm is used
to detect the communities of the graph (Com). As
a final remark, we note that the proposed SkipGram,,
model can be also applied to the n2v process, since the
only difference between DW and n2v is the way that
random walks are performed (line 4 of Algorithm 1).

In Algorithm 2 the process of link prediction as
well as the evaluation process is presented. More
specifically, three sub-graphs Gy, G;0¢ and Gy are
derived from the initial graph G. Initially, the train
graph Gy, is used to calculate the embedded nodes
0;,. Then, the similarities between embedded nodes
are calculated using various operators (oprtr), such as
Hadamard product, L1, L2 norm (Luo et al., 2016)

etc., afterwards the logistic regression model is used
to calculate the classifiers (whether the nodes are con-
nected or not). Next, the classifiers (one for each op-
erator) are evaluated considering the model selection
graph G, and the embeddings 6. Finally, the op-
erator with the highest accuracy score is utilised to
evaluate the classifier for the fest graph Gy;.

Algorithm 1: DeepWalk;, for community detection.

Require: Graph G, number of communities k, window size
w, embedding size d, walk length 7, number of walks n
: for i=1:ndo
O = Shuffle(V)
for u; € O do
RW,, = RandomWalk(G, u;, 1)
0 = SkipGramy,(RW,,,,w)
end for
7: end for
8: Com = k-means(0,k)
9: return Com

AUk

Algorithm 2: DeepWalk;, for link prediction.

Require: Graph G, window size w, embedding size d, walk
length ¢, number of walks n

t Gir. Gogs Gys = split(G)

. 0; = DWy(Gyr, w, d, t, n)

: for i=1:v,ppr do
clsfr(i) = Logistic Regression(6;,, operator(i))
AccScore(i) = evaluate(clsfr(i), G4, s, oprtr(i))

end for

* Imax = argmax(AccScore)

2 elsfrmax, oprtrmax = clsfr(ingy), oprtr(ingy)

9;3 = ow(Glsr, w, d, t, n)

: Test Score = evaluate(cls frmuayx, Gis, Ors, OPTtimayx)

SYXRUE DN

—

3 EXPERIMENTAL EVALUATION

In this section, we conduct experimental evaluation
on the proposed methods, DWW and n2v, (n2v using
SkipGram,, algorithm) against the standard DW and
n2v process, respectively. To that end, real datasets
with ground-truth communities are used. We use
publicly available graphs Cora, Pubmed and Cite-
Seer (Sen et al.,, 2008) for evaluation, which are
provided with ground-truth communities. The Cora
dataset consists of 2708 publications, classified into 7
classes, and 5429 links. The PubMed dataset consists
of 19717 publications, classified into 3 classes, and
44338 links. The CiteSeer consists of 3312 publica-
tions, classified into 6 classes, and 4732 links.

The parameters used in methods DWWy, n2v;,, DW
and n2v are w = 10 (window size), d = 128 (embed-
ding size), ¢t = 80 (walk-length) whereas the number
of epochs and the batch-size are equal to 10 and 1000,

89

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

respectively. Parameters p and g used in n2v, and n2v
were evaluated using a grid search over [0.25, 0.5, 1,
2, 4] (Grover and Leskovec, 2016). The experimen-
tal sets are conducted considering different values of
learning rate, 1 € {0.05,0.2,0.6,1.0,2.0}. Further-
more, in the proposed processes, the learning rate of
the parameter b is set equal to 1, = 0.01 for all exper-
imental sets. This value is often considered as a typi-
cal value for the learning rate, while our experiments
with 1, values close to it provided a stable training
in the experimental sets; in future work, further val-
ues of 1M, will also be considered. Finally, all meth-
ods use the stochastic gradient descent technique with
momentum 0.9 for the back propagation process.

Regarding the community detection task, in each
experiment, the Adjusted Rand Index (ARI), the Nor-
malized Mutual Information (NMI) and the graph’s
modularity (Mod) (Vinh et al., 2010) are calculated,
while, for the link prediction task the Area Under
the Curve (AUC) score (Fawcett, 2006) is calcu-
lated. Furthermore, the StellarGraph tool (Grover
and Leskovec, 2016) is used to split the input graph
G = (V,E) to G,y = (V,E;), Gioa = (V,Epoq) and
G;s = (V,Ei). In all datasets, E;; includes 90% of the
total edges (E), while the E;, and E,,,; include 75%
and 25% of E, respectively.

3.1 Evaluation of the Modified
DeepWalk and Node2vec

In this section, the performance of the DW, DW,,
n2v and n2v;, methods is presented. Figure 4 illus-
trates the performance of DW and DW,, considering
the metrics ARI, NMI, Mod and AUC (y axis) for dif-
ferent values of 1 in the CiteSeer, Cora and PubMed
graph. Moreover, the x axis in the sub-figures stands
for the number of epochs. It is clear, that the pro-
posed method, DW,,, converges faster than the stan-
dard one, DW, in all datasets for all the different val-
ues of M. Additionally, it can be observed that the
DW process for n = 0.05, does not converge within
10 epochs (i.e more than 10 epochs are required) in
any of the datasets.

In case of a lower value of m, the convergence
speed will be further reduced, therefore, lower learn-
ing rates are not considered in this paper. As an ex-
ample, a learning rate equal to 0.005 is used for the
CiteSeer graph to verify the above statement. Figure
3 illustrates the loss values of DW and DW,, in the
community detection task for each epoch. It is clear
that the DW process is not able to converge within
100 epochs, while DW;, can converge to 30 epochs,
due to the trainable parameter b.

More details about the convergence speed in com-

90

[-DW Loss.
af . Seo. +-DW, Loss|

\ e,
250 \ Heoayresen,

B SN S P A A SRS e

[10 20 30 40 50 60 70 80 90 100
Epochs

Figure 3: The loss values of DW and DW),, in community
detection task, for the CiteSeer graph with = 0.005.

munity detection and link prediction task for DW
and DW,, are provided in Table 1. The columns cd
epochs and Ip epochs stand for the required number
of epochs in order for the community detection met-
rics (i.e. ARI, NMI, Mod) and link prediction metric
(AUC) to converge. It is demonstrated that the DW,,
process outperforms the standard DW, considering the
convergence speed (in both tasks) in all experimental
sets apart from one. More specifically, only in the
PubMed graph for n = 2.0, the two methods require
the same number of epochs. Moreover, it is worth not-
ing that DW,, is more robust in terms of converging
speed at different values of 1 than the standard DW,
since DW, uses the introduced trainable parameter b.

In addition, the proposed method provides the
same (or better) performance as DW in the com-
munity detection and link prediction tasks in fewer
epochs. In Table 1, the best performances of all met-
rics, within 10 epochs, for both methods are provided.
As it can be seen, the best performances of the met-
rics, regardless of the learning rate, are similar (the
differences are less than 10~2) for both methods in
most experiments. However, in the CiteSeer graph,
DW,, has ARI score equal to 0.1409 (n = 2.0), while
the highest ARI score for DW is equal to 0.1235
(M = 2.0). In addition, the highest Mod and AUC
score for DW,, are equal to 0.7358 (n = 1.0) and
0.9207 (n = 0.6), respectively, while the highest val-
ues of DW are equal to 0.7224 (n = 2.0) and 0.9105
(n = 2.0). Finally, in Pubmed graph, DW,, has AUC
score equal to 0.8674 (n = 0.6), while the highest
AUC score for DW is equal to 0.7779 (n = 2.0).

The performances of n2v and n2vj in the commu-
nity detection and link prediction tasks are provided
in Table 2 and Figure 5, in a similar way as in Table 1
and Figure 4, respectively. It can be observed that the
n2v, process outperforms the standard n2v process,
considering the convergence speed (in both tasks), in
all experimental sets, apart from the PubMed graph
for n = 2, where both n2v and n2v,, require 1 epoch
to converge. As it can be seen in Table 2, n2v;, pro-
vides a more robust converging speed (for both tasks)
at different values of 1 than the standard n2v.

A Faster Converging Negative Sampling for the Graph Embedding Process in Community Detection and Link Prediction Tasks

Table 1: The best performances of DW and DW,, regarding the metrics ARI, NMI, Mod and AUC. The columns cd epochs
and Ip epochs contain the required number of epochs in order for the community detection metrics (i.e. ARI, NMI, Mod) and

link prediction metric (AUC) to converge.

DW DW, ARI ‘ NMI Mod ‘ AUC ‘ cd epochs ‘ Ip epochs
n=005 0003 ——0.1240 | 09557 ——02565 | (1697—07193 | 0.41a0—090% | 7o 6 | 10 5
CiteSeer n=02 017183 —L1276 | 0258702628 | (.7085—L7266 | 06478 —02137 N N
n=06 OTT0R—0.1246 [03577~0.2551 [(7739~07308 [07505~ 09207 N m)\l
n=10 0121301323 | 02659—0.2604 | 77g5—0.7358 | 957009148 N ‘ N
n=20 0135—0.1409 [5em—02623 [0755707233 [(5705—0.9172 N ‘ N
DW DW, ARI ‘ NMI ‘ Mod ‘ AUC ‘ cd epochs ‘ Ip epochs
n=005 0.0368—04019 | 05773—04751 | (7e05~—07449 | 0o677—08856 | STt | o7 5
Cora n=02 0408504001 | 0.4703—~04747 | 0746207426 | 0831708975 N W
n=06 0405303964 | 0476704667 | 0743707434 | 385708947 N ‘ N
n=10 0373703786 [0.4550~—04560 [o 7agT—0.7401 [(5550~0.9009 N ‘ N
n=20 03833—03815 | (437—04504 | (7300—0.7417 | () 95T0—0.8983 N ‘ N
DW bW, ARI ‘ NMI Mod ‘ AUC ‘ cd epochs ‘ Ip epochs
n=005 -0.000r—L3116 | 0000302954 | 0.1200—L28014 | 0777407663 | > 3| T 2
PubMed n=02 ‘N 0.3027—23000 | 060773986 | 7727 —L7661 N ‘ N
n=06 ‘M 0.3077—02987 | 50856004 | 7773 —0.8674 N ‘ N
n=10 ‘N 0.3008 L2997 | 0599703994 | 0777707392 N ‘ N
n=2.0 ‘N 0.3003—L2979 | 0.6013—&6001 | ¢7779—08118 N ‘ N

PubMed Performance Cora Performance CiteSeer Performance

Epochs

Epochs

—&— DW ARI —5— DW, ARI —6— DW NMI

Epochs
—=— DW;, NMI

Epochs
—=— DW, Mod

Epochs

—e— DW Mod —— DW AUC —8—- DW,; AUC

Figure 4: The performances of DW and DW,, in community detection and link prediction task, considering the CiteSeer, Cora

and PubMed datasets, for different values of learning rate.

As can be observed in Table 2, the best perfor-
mances of the metrics, regardless of the learning rate,
are similar for both methods in most experimental
sets. However, in the CiteSeer graph, the highest

ARI score for n2v, is equal to 0.1624 (m = 0.6),
while the highest ARI score for n2v is equal to 0.1471
(M = 2.0). In the Cora graph, the highest AUC score
for n2vy is equal to 0.9284 (m = 2.0), while the high-

91

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

Table 2: The best performances of n2v and n2v,, regarding the metrics ARI, NMI, Mod and AUC. The columns cd epochs
and Ip epochs contain the required number of epochs in order for the community detection metrics (i.e. ARI, NMI, Mod) and
link prediction metric (AUC) to converge.

n2v n2v, ARI ‘ NMI ‘ Mod ‘ AUC ‘ cd epochs ‘ Ip epochs

n=005 0003 L1368 | 053702634 | o17i—02483 | ozorr—L08861 | Sjo—d [Sjo—t
CiteSeer ~ M=02 [018301567 [T936057—02709 | "073mr—033 [To7mo—09079 | T—~2 [Sio—2_
n=06 0-TIAT—L1624 [70555—02617 | To733—07404 [To51ee—L09129 | 31 | 51
n=1.0 001377 [To5g3T—02584 [07376024116 [gomip—09170 | 7~ | i1
n=20 0123001411 [7055702600 | o73pe—07354 [Toozss—09120 | T~ | 1
n2v n2y, ARI ‘ NMI ‘ Mod ‘ AUC ‘ cd epochs ‘ Ip epochs
n=005 0.026T—L4114 | 00608024789 | 0129707475 M ’N’N
Cora n=02 0470704085 | 0 4560—04772 | (748907446 M‘ N N
n=06 0401804035 | 0 4669—04710 | ¢ 7330—07402 M‘ N ‘N
n=10 [03—0400! [Gaer—04667 [o7amm—07442 o507 | 51 | T—~1__
n=20 0397704085 | 04505 —04772 | (726907446 M‘ N ‘ N

n2v n2v, ARI ‘ NMI ‘ Mod ‘ AUC ‘ cd epochs ‘ Ip epochs

n=005 0.000—03185 | 0.0000—03016 | (1357—0.6014 | a1eT—0.8669 | =7 4 [5—1

PubMed n=02 | 0308 —03201 [T0356r—029% [ggoor—06028 [o7ggo—L0I535 | g1 [5—L
n=06 | 03mo—03183 [030102997 [Teorr—05992 [To7gor—0533 | T~ [T—~1_
n=10 ‘M 0303702998 | 0602306016 | (785307533 N N
n=20 ‘ M 0303502997 | 060130004 | (785508212 N N

Ir=0.05 Ir=0.2 Ir=0.6 Ir=1.0 Ir=2.0

o

PubMed Performance Cora Performance CiteSeer Performance

S}
v
o
e}
o
w
S}
v

0 5
Epochs Epochs Epochs Epochs Epochs

—e— DW ARI —5— DW, ARI —6— DW NMI —=— DW, NMI —e— DW Mod —=— DW, Mod —— DW AUC —=- DW, AUC

Figure 5: The performances of n2v and n2v;, in community detection and link prediction task, considering the CiteSeer, Cora
and PubMed datasets, for different values of learning rate.

est AUC score for n2v is equal to 0.9125 (n = 2.0). 4 CONCLUSIONS

Finally, in the Pubmed graph, the highest AUC score

for n2v,, is equal to 0.8669 (= 0.05), while for n2v The aim of this paper was to improve the SkipGram
is equal to 0.8161 (n = 0.05). model so that it converges faster. To that end, the sig-

92

A Faster Converging Negative Sampling for the Graph Embedding Process in Community Detection and Link Prediction Tasks

moid b function with the additional trainable param-
eter b was introduced to tackle the limitations of the
standard sigmoid function used in the negative sam-
pling process. The improved update equations of the
SkipGram;, model were used in the processes of DW
and n2v for generating graph embeddings, while the
k-means algorithm and the logistic regression model
were utilised to detect the communities of the graph
and to predict links between the nodes, respectively,
using the (calculated) embedded nodes. The experi-
mental results in real datasets showed that DW;, and
n2v, converged faster than DW and n2v, respectively,
and attained higher ARI, Mod and AUC score in
the CiteSeer graph, as well as higher AUC score in
the Cora and PubMed graphs. Finally, the proposed
SkipGram;, provided a more robust performance in
convergence speed than the standard SkipGram algo-
rithm, considering different values of learning rates.

ACKNOWLEDGEMENTS

This research is part of projects that have received
funding from the European Union’s H2020 research
and innovation programme under AIDA (GA No.
883596) and CREST (GA No. 833464).

REFERENCES

Banerjee., K., C.., V., Gupta., R., Vyas., K., H.., A., and
Mishra., B. (2021). Exploring alternatives to soft-
max function. In Proceedings of the 2nd International
Conference on Deep Learning Theory and Applica-
tions - DeLTA,, pages 81-86. INSTICC, SciTePress.

Cai, H., Zheng, V. W, and Chang, K. C.-C. (2018). A com-
prehensive survey of graph embedding: Problems,
techniques, and applications. IEEE Transactions on
Knowledge and Data Engineering, 30(9):1616-1637.

Cavallari, S., Zheng, V. W., Cai, H., Chang, K. C.-C., and
Cambria, E. (2017). Learning community embed-
ding with community detection and node embedding
on graphs. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,
pages 377-386.

Chowdhary, K. (2020). Natural language processing. In
Fundamentals of Artificial Intelligence, pages 603—
649. Springer.

Fawcett, T. (2006). An introduction to roc analysis. Pattern
recognition letters, 27(8):861-874.

Goyal, P. and Ferrara, E. (2018). Graph embedding tech-
niques, applications, and performance: A survey.
Knowledge-Based Systems, 151:78-94.

Grover, A. and Leskovec, J. (2016). node2vec: Scal-
able feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 855—
864.

Hartigan, J. A. and Wong, M. A. (1979). Algorithm as
136: A k-means clustering algorithm. Journal of the
royal statistical society. series c¢ (applied statistics),
28(1):100-108.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li,
M. (2019). Bag of tricks for image classification
with convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 558-567.

Hochreiter, S. (1998). The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107-116.

Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X.
(2013). Applied logistic regression, volume 398. John
Wiley & Sons.

Luo, X., Chang, X., and Ban, X. (2016). Regression and
classification using extreme learning machine based
on I1-norm and 12-norm. Neurocomputing, 174:179—
186.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. Advances
in neural information processing systems, 26:3111—
3119.

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh,
E., and Kim, S. (2018). Continuous-time dynamic net-
work embeddings. In Companion Proceedings of the
The Web Conference 2018, pages 969-976.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk:
Online learning of social representations. In Proceed-
ings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages
701-710.

Rozemberczki, B., Davies, R., Sarkar, R., and Sutton, C.
(2019). Gemsec: Graph embedding with self clus-
tering. In Proceedings of the 2019 IEEE/ACM inter-
national conference on advances in social networks
analysis and mining, pages 65-72.

Sen, P, Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. (2008). Collective classification in
network data. Al magazine, 29(3):93-106.

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information the-
oretic measures for clusterings comparison: Variants,
properties, normalization and correction for chance.
The Journal of Machine Learning Research, 11:2837—
2854.

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2018). Network
representation learning: A survey. IEEE transactions
on Big Data.

93

