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Abstract: Deep learning (DL) has proven to be very effective for image recognition tasks, with a large body of research
on various models for object classification. The application of DL to side-channel analysis (SCA) has already
shown promising results, with experimentation on open-source variable key datasets showing that secret keys
for block ciphers like Advanced Encryption Standard (AES)-128 can be revealed with 40 traces even in the
presence of countermeasures. This paper aims to further improve the application of DL in SCA, by enhanc-
ing the power of DL when targeting the secret key of cryptographic algorithms when protected with SCA
countermeasures. We propose a stacked ensemble model, which trains the output probabilities and Maximum
likelihood score of multiple traces and/or sub-models to improve the performance of Convolutional Neu-
ral Network (CNN)-based models. Our model generates state-of-the art results when attacking the ASCAD
variable-key database, which has a restricted number of training traces per key, recovering the key within 20
attack traces in comparison to 40 traces as required by the state-of-the-art CNN-based model with Plaintext
feature extension (CNNP)-based model. During the profiling stage an attacker needs no additional knowledge
of the implementation, such as the masking scheme or random mask values, only the ability to record the
power consumption or electromagnetic field traces, plaintext/ciphertext and the key is needed. However, a two
step training procedure is required. Additionally, no heuristic pre-processing is required in order to break the
multiple masking countermeasures of the target implementation.

1 INTRODUCTION

Since SCA was introduced in 1996 (Kocher, 1996)
based on the difference in the power consumption of
bit transitions, much research has been conducted on
efficient methods to both break and protect crypto-
graphic implementations. Common attack methods
such as differential power analysis (DPA) (Kocher
et al., 1999), correlation power analysis (CPA) (Brier
et al., 2004), or differential frequency-based analy-
sis (DFA) (Gebotys et al., 2005), allow divide and
conquer strategies to significantly reduce the compu-
tational complexity of key recovery when additional
power (or electromagnetic) information is available.
For example, in the case of the AES-128, it is re-
duced from O

(
2128

)
to O

(
16×28

)
. In order to pro-

tect against such attacks a number of countermeasures
have been proposed, many of which are now standard
in commercial security products such as credit cards
etc. At the hardware layer techniques such as dual-
rail logic (Tiri et al., 2002; Popp and Mangard, 2005;
Chen and Zhou, 2006; Hoang and Fujino, 2014) at-
tempt to equalise the power consumption of the un-
derlying algorithm regardless of the data being pro-

cessed, while at the algorithmic layer techniques such
as masking (D and Tymen, 2002; Goubin L., 2011;
Nassar et al., 2012) introduce fresh randomness to re-
duce the useful leakage available to an attacker. All
countermeasures techniques come with various trade-
offs for the level of protection provided in terms of ex-
ecution time, randomness required, silicon (or mem-
ory) size etc.

While statistical and machine learning (ML) have
a long history, recent progress in DL in particular, has
led to such techniques being applied in the SCA con-
text for key recovery in the presence of countermea-
sures. These attacks fall under the profiling adversar-
ial model, where it is assumed that the attacker has a
similar (or identical) training device(s) to measure a
large quantity of traces in order to build an accurate
power model, which then allows key recovery from
the target device in relatively few traces. Among the
DL approaches, convolutional neural network (CNN)
based models seem most promising (Maghrebi et al.,
2016; Picek et al., 2018; Timon, 2019; Hoang et al.,
2020) due to their effectiveness when training with
raw data, with the convolutional layer acting as a fil-
ter to pick out the relevant features for classification.
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1.1 Related Work

There are a large number of available ML and DL al-
gorithms and models, as well as more general statis-
tical learning techniques that can be applied to SCA.
Some initial DL based SCA attacks have been pro-
posed by (Markowitch et al., 2013; Gilmore et al.,
2015; Martinasek et al., 2016). However, these at-
tacks are based on an assumption that the number of
masks are either very limited, or an adversary is able
to fully access the internal values of the target devices
when profiling, including the values of the random
masks, which is generally not feasible in practice.

The effectiveness of using CNN models is shown
in (Weissbart et al., 2019), with no dimensionality re-
duction required when attacking implementations of
public-key cryptography when compared to other pro-
filing attack algorithms such as support vector ma-
chine (SVM), template attack (TA) or random forest
(RF). In efforts to increase the effectiveness of DL
performance in the context of SCA, an in-depth anal-
ysis in (Prouff et al., 2018; Maghrebi, 2019) noted
that the size of filter in a CNN model is an important
factor as its length should cover the most interesting
points of interest (PoI) to enable the combination of
the corresponding leakage while (Kim et al., 2019)
shown that adding artificial noise to the source traces
was found to greatly reduce over-fitting the model to
the training set, improving classification accuracy.

State of the art efforts in profiling attack seen to in-
clude SCA domain knowledge into DL architectures
as proposed by (Hettwer et al., 2018; Hoang et al.,
2020), in which the plaintext was given as an addi-
tional input to increase the accuracy when directly
training on the key value. Additional efforts to im-
prove CNN models for SCA were presented by (Perin
et al., 2020), in which the Maximum likelihood score
is applied to a number of simple CNN or multilayer
perceptrons (MLPs) models and traces with classifi-
cation based on Hamming weight. Raw traces are also
used by (Lu et al., 2021) to find the leakage informa-
tion not only from AES computation but also from
other execution like the preparation of the masked
SBox to attack AES implementation.

While this paper shares a similar approach to in-
putting domain knowledge as in (Hoang et al., 2020)
and the use of multiple models as in (Perin et al.,
2020), there is a significant difference with regards
to architectural aspects such as the structures and the
way multiple models and/or traces are combined for
re-training from error , enabling our model to further
reduce the number of traces in an attack. Different
from those research, our proposed model combines
the outputs of multiple traces from multiple CNN-

based model with Plaintext feature extension (CNNP)
models and their maximum likelihood score (MLS) in
stacked ensemble model for re-training from error to
increase the accuracy with smaller number of traces.

The main finding of the proposed research are as
follows:

• The use of multiple models and trace combination
increases the accuracy of a ML model.

• MLS is an efficient method for models and trace
combination and should be included in the ensem-
ble model.

• Classification based on byte values should be used
instead of hamming weight to avoid many hy-
pothesis keys statistically located in the same high
rank (probability).

• The probability outputs of multiple traces and
models should be trained (in a stacked ensemble
model) to increase the accuracy rather than simply
summing up using the MLS method.

Given these findings, we built a complex model
with multiple sub-models working together on the
same group of traces to generate inputs for the pro-
posed stacked ensemble model. Additionally, the
MLS of those outputs are also considered as input fea-
tures. We label the traces using the output values of
the SBox in round 1 so that no projection issues be-
tween byte values and hamming weights occurs.

1.2 Our Contributions

This paper shows the limitations of applying MLS
when combining sub-models for an ensemble model
in the field of SCA (based on traces from a protected
AES implementation). We propose stacked ensemble
models developed from CNN model with Plaintext
extension (CNNP at (Hoang et al., 2020)) that looks
to enhance DL from a side-channel aspect, taking the
strength of number of models (Perin et al., 2020),
MLS and re-training from error into consideration.
Our proposed models allow key recovery when target-
ing an AES implementation protected with multiple
masking scheme, outperforming previous research on
TAs, MLs or current CNN and CNNP models in terms
of required traces for key recovery (24 on the ASCAD
(Prouff et al., 2018) variable key database).
Our main contributions include:

1. Demonstrating the advantage of using the stacked
ensemble model as a method for combining multi-
ple models and traces over the ordinary MLS and
MLS-based ensemble method.

2. Propose a novel stacked ensemble convolutional
neural network with Plaintext feature extension
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(SECNNP) model architecture for side channel
analysis. SECNNP model exploits the advantage
combining multiple models and traces over the or-
dinary MLS and MLS-based ensemble methods.

3. Provide an evaluation and verification of our pro-
posed SECNNP model on the ASCAD database.
While the ASCAD masked AES design is an ex-
ample target of the architecture, it can be applied
to any AES implementation. We demonstrate
a reduction in the requirements of applying DL
in SCA, particularly when attacking implementa-
tions with countermeasures, in which thousands
of traces can be required to break protected AES
implementations using DL. SECNNP enables a
key recovery with only 24 traces, which is a half
the reduction of 42 traces required by the state of
the art models.

4. Discussion on the optimal number of sub-models
and traces required in the SECNNP model as well
as the trade-off between accuracy and training
time for single and multiple convolutional filter
kernel size models.

2 BACKGROUND

2.1 SCA, Countermeasures and
ASCAD Database

Side channel attacks work on the principal that the
power consumed by a device is dependent on the op-
eration being performed and the data being processed.
This allows an adversary to estimate what the power
consumption should be for some intermediate value
that is a function of some known data (e.g. a plaintext
or ciphertext byte), and some unknown data (e.g. a
secret key byte). In a profiled attack, as in this paper,
it is assumed that an attacker has a similar or identi-
cal device on which they can record a large number
of acquisitions, allowing an accurate profiling of the
actual power leakage of the device. Leakage mod-
els can be Hamming weight (HW) or Identity (ID). In
the HW leakage model, the sensitive variable’s Ham-
ming weight of the 8-bit Sboxes is considered as the
leakage information. In the ID leakage model, as in
this paper, an intermediate value of the cipher is con-
sidered as the leakage. It allows the model to learn
a broad range of features at different points in time
but results in a high volume of classes (256 classes
for 8-bit data) in the training and attacking process
but the data is more balanced in training and there is
a low probability that many hypothesis keys achieve
a high-rank even with single trace attacks, and so it

is applicable with a small number of traces, e.g. less
than 100.

While a number of SCA countermeasures in both
hardware and software have been proposed in the lit-
erature (such as dual-rail logic, dummy operations,
threshold implementations etc.), here we focus on
masking as this is the countermeasure that is applied
to the traces under consideration. Masking (includ-
ing higher-order variants) applies one or several ran-
dom masks to the sensitive data such as to the input
of the S-Box or the S-Box itself, respectively forming
1st-order or higher-order masking schemes (Reparaz
et al., 2015).

Multi additive masking for AES implementations
can be seen as masking of the plaintext by:

pi = pi⊕mi (1)

and masking the S-Box for value i∈ [0 . . .255], which
can be prepared in advance:

S-Box(x) = S-Box(x⊕mi,in)⊕mi,out (2)

in which, p and m are the plaintext and mask, respec-
tively in equation 1 and x is the masked input for the
S-Box, ⊕mi,in and ⊕mi,out are the masks used to un-
mask the input and mask the output of S-Box in equa-
tion 2. Equation 1 ensures that the linear AddRound-
Key operation which follows the S-Box works as ex-
pected on the masked data, but no unmasked data is
processed. Equation 2 ensures that the non-linear S-
Box operation will be masked by unknown pair val-
ues mi,in and mi,out so that on every execution different
data will be processed regardless of the input value.

In our experiment on ASCAD database (Prouff
et al., 2018), the target implementation on 8-bit AVR
ATMega8515 embedded device has a multi masking
scheme, in which the plaintext and SBox are masked
by two independent masks as shown in equations 1
and 2. Even though a new ASCAD-v2 implementa-
tion is provided with affine masking, this paper aims
to ASCAD-v1 due to the availability of dataset and
reference models like CNNP (Hoang et al., 2020),
TA, MLP and ASCAD-CNN (VGG16 like) models
(Prouff et al., 2018). There are two sub-datasets of
fixed and variable key in ASCAD-v1 but due to the
availability of bijection of S[(.)⊕K] into fixed K, we
will not take the ASCAD fixed key dataset into our
consideration. The ASCAD variable-key dataset has
a set of 200,000 traces for training and 100,000 traces
for testing. The training traces have random variable
keys, as well as random plaintext and mask values.
The 100,000 testing traces have the same key with
random plaintext and mask values. Each trace has
1,400 features and is again labelled by the output of
the 3rd S-Box in the first round, giving ≈ 781 traces
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per label. Even though a number for reference models
of TA, MLP, and CNN are provided as part of the AS-
CAD database (Prouff et al., 2018), CNNP (Hoang
et al., 2020) shows its advanced performance in at-
tacking the database. We utilize CNNP as sub-models
in building our proposed SECNNP model.

2.2 Convolutional Neural Networks
with Plaintext Feature Extension

2.2.1 Convolutional Neural Networks

CNNs are a DL architecture that incorporates several
different types of layers for detecting features for clas-
sification as follows.

1. Convolutional layers are based on a convolution
process, where a small array of small size, known
as filter is passed over the input sequence signal
(i.e. in our case the trace). The filter runs or strides
over the traces so that if the same feature (i.e. leak-
age) appears in a different position, it can still be
detected.Convolutional layers can be stacked to
find higher abstractions of feature.

2. A pooling layer is often used in conjunction with
the convolutional layer to reduce the size of the
parameters to be learned and the subsequent com-
putational requirements. MaxPooling layer con-
siders the maximum value in a region as the most
important feature of that region.

3. A fully-connected layer flattens the output of the
previous layer, combining all previous nodes (or
input features) together by multiplying those input
nodes with corresponding weights and summing
with the bias to calculate each output node.

4. Dropout is known as a simple way to prevent neu-
ral networks from over-fitting.Dropout is imple-
mented by randomly disconnecting a percentage
of neurons in the network, preventing any particu-
lar feature having a disproportionate effect on the
model as a whole.

5. Rectified Linear units (ReLu) are used as the acti-
vation function in intermediate layers, i.e. the con-
volutional and fully-connected layers by replacing
a value by itself if positive or else zero is negative.
This helps mitigate the vanishing gradients prob-
lem which can happen in large networks.

6. Softmax is used for the activation function in
the last fully-connected layer. This function is
also known as a normalised exponential function,
which converts the raw logistic scores into corre-
sponding probabilities.

2.2.2 Convolutional Neural Network with
Plaintext Feature Extension

It is clearly shown in (Hoang et al., 2020) that the
plaintext (or ciphertext) is an important factor in
building leakage models as it is XORed with the key
prior to the S-Box in the first round. The output of
this operation is used for labelling traces when train-
ing DL models.

y = S-Box(pi⊕ ki) (3)

in which, p and k are the plaintext and key, respec-
tively.

Regardless of the countermeasure utilised, the de-
signer needs to modify the plaintext in some way in
order to hide the sensitive value input to the S-Box.
Whatever the designers do to protect the sensitive data
from side-channel leakage, they will need to modify
some signal or variable related to plaintext, and this
processing will leave either first or higher-order leak-
age. The model for Convolutional Neural Network
with Plaintext input (CNNP) with a single convolu-
tional filter kernel size can be given by the following
formula:

s◦ [λ3]◦β◦ [λ2]◦ [Pext ◦ [δ◦ [α◦ γx]]
3] (4)

in which, s, λ, β, Pext, δ, α, and γ are the softmax,
fully-connected, dropout, plaintext feature extension,
MaxPooling, activation, and convolutional layers, re-
spectively. γx is a convolutional layer with filter kernel
size of 3. CNNP with one-hot encoding (Hoang et al.,
2020) is used as sub-models in our Stacked Ensemble
CNNP (SECNNP) and is shown in figure 1.

Figure 1: CNNP sub-models.

2.2.3 Maximum Likelihood Scores

Maximum likelihood scores (MLS) can be used for
combining results of attacks from multiple different
traces (Standaert et al., 2009) and/or different models
(Perin et al., 2020) with the same key. It estimates the
likelihood of each hypothesis key by multiplying the
classification probability given by independent traces
and/or models to create a scores vector. Values in this
scores vector are then sorted according to probability
for ranking. Accuracy is considered as the location
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of the correct key in the ranked scores vector. The
closer the rank of the correct key is to 1, the higher
the accuracy of the evaluated model.

3 STACKED ENSEMBLE
METHOD FOR DL BASED SCA

3.1 Ensemble Methods

Deep learning relies on minimizing some loss func-
tion in a given environment, and so, the algorithm will
decide the type of patterns it can learn. Hence, for
given traces, different algorithms (or different mod-
els) will be able to capture different SCA leakage
and in many cases, their predictive power complement
each other, making a model fails to find the good fea-
tures in a trace but another succeeds. Ensemble mod-
els learn the optimal combination of the base model
predictions to increase accuracy.

3.2 CNNP based Stacked Ensemble
Model (SECNNP)

3.2.1 Model Development Assumptions

When building a model of the power consumption for
the target device, the following assumptions hold:

• The attacker cannot access the design or values
used for random number generation but can pro-
file keys on the device as well as access the plain-
text and/or ciphertext for a profiling attack.

• The attacker does not know any implementation
details except the algorithm being targeted.

• The CNNP model is capable of attacking the AES
implementations due to the reduction in the num-
ber of unknown factors in training and attacking.

• Multiple models and/or trace combination in a
trained model would increase the performance
better than that of MLS.

3.2.2 Attack Model

The proposed SECNNP model attacks AES imple-
mentations based on recovering the unmasked value
of the S-Box output (even where that value is masked)
which allows key recovery given knowledge of the
plaintext. In particular, we trained the proposed
CNNP model by labelling the traces by the 3rd S-
Box byte, which is computed from values known to
the attacker during the profiling process as given in
equation 3. The trained CNNP models then are used

as sub-models in the SECNNP model, in which the
same labelling is used but the inputs are the hypoth-
esis key probabilities predicted by those sub-models.
This labelling method follows that used by the refer-
ence models in the ASCAD databases (v1) and by the
CNNP models in (Hoang et al., 2020). In order to at-
tack the remaining key bytes, the traces would have to
be relabelled for each S-Box output and the model re-
trained. However the same power traces can be used
to attack the other key bytes.

3.2.3 Two Step Stacked Ensemble Model
Training

Different from (Perin et al., 2020), who applied MLS,
in which the probability of hypothesis keys corre-
sponding to the hamming weight class are multiplied,
we apply a two step training method to build our pro-
posed stacked ensemble model.

• The first training step is the training of a number
of general machine learning models, in which a
number of CNNP (Hoang et al., 2020) instances
are trained. The accuracy of those instances must
be diverse (Wang, 2008), and so different num-
bers of epochs, hyperparameters and dropout lay-
ers are used in the CNNP sub-models training.

• The use of a second training step is proposed
in this paper, in which a number of traces with
the same class (from the same plaintext in other
words) are provided to the model(s) trained in the
first step for their probability of hypothesis key
outputs. The MLS of the same trace on multiple
models, the MLS of multiple traces on each model
and the MLS of all traces on all models are calcu-
lated. The output probabilities of each hypothesis
key by each sub-model, together with the MLSs
calculated above are grouped together as inputs to
a MLP. The MLP is trained by the corresponding
class given by the trace(s) at the first step. Even
though, there is no limitation on the number of
traces and models involved in the MLP, we limit
the number of models and traces to 3 and 6 due to
the computational complexity.

Since the MLSs of traces and models received
from the first step are used as an additional input for
the MLP, they will be called inner-MLS. The pro-
posed stacked ensemble model will need either mul-
tiple traces or multiple sub-models or both for the
availability of the inner-MLS. Due to the limitation
in the number of traces and sub-models given above,
an outer-MLS is used to combine the attacking results
from more traces than a input together. Differing from
the first and second training step, where the traces are
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from the same classes, traces in this MLS combina-
tion can come from different classes. Hence, we have
two kinds of attack: a single plaintext attack, where
all traces come from the same plaintext in the SEC-
NNP model and the final MLS and a multiple plain-
text attack, where all traces in the SECNNP model
come from the same plaintext, but different plaintexts
are used in the final MLS.

3.2.4 Multi-trace Multiple CNNP Sub-models
Stacked Ensemble Model

The multi-trace multiple CNNP sub-models stacked
ensemble model utilizes key probabilities result from
multiple CNNP sub-models with multiple trace for
hypothesis key probability calculation independently.
Since two independent hypothesis key probability
outputs are given from different CNNP instances and
different traces, two inner MLSs are used as addi-
tional inputs for the SECNNP model. One is the MLS
from multiple traces predicted by each CNNP sub-
model and the other is the MLS of all traces and all
sub-models.

Figure 2 shows the proposed SECNNP model with
n input traces and m CNNP sub-models. The number
of CNNP sub-models and traces can change within
the limitation of computational power.

Figure 2: SECNNP model with multiple traces and multiple
CNNP sub-models.

The first MLS (MLS1) is used to combine the
probabilities of the hypothesis keys predicted by each
CNNP sub-model while the second MLS (MLS2)
layer is used to combine the prediction of all n traces
predicted by all CNNP sub-models. The computa-
tion of the MLS1 and MLS2 for a hypothesis key i

are given by equations 5 and 6, respectively:

MLS1[i] =
n

∏
l=1

(prob[l][i]); i ∈ [0..255] (5)

MLS2[i] =
m

∏
p=1

n

∏
l=1

(prob[p][l][i]); i ∈ [0..255] (6)

in which, l is the input trace number, p is the
CNNP model number, i is the hypothesis key, and so,
prob[p][l][i] is the probability of hypothesis key i of
the input trace l predicted by the CNNP sub-model p.

The fully-connected layer with m CNNP sub-
models and n traces receives m×n probability inputs.
The formula for that layer with M nodes is now:

Dense11024[ j] =
m

∑
p=1

n

∑
l=1

256

∑
i=1

(b[ j]+ prob[p][l][i]

×w[ j][p][l][i]); j ∈ [1..M]

(7)

in which Dense11024[ j] is the jth output of the
fully-connected layer, prob[p][l][i] and w[ j][p][l][i] are
the probability and corresponding weight of the hy-
pothesis key i of the input trace l predicted by the
CNNP sub-model p.

The fully-connected layer Dense2(1024) receives
m inputs, which are the MLS of the CNNP sub-
models (MLS1). The formula of that layer with M
nodes is now:

Dense21024[ j] =
m

∑
p=1

256

∑
i=1

(b[ j]+MLS[p][i]

×w[ j][p][i]); j ∈ [1..M]

(8)

in which Dense21024[ j] is the jth output of the fully-
connected layer, MLS[p][i] and w[ j][p][i] are the prob-
ability and corresponding weight of the hypothesis
key i of all n input traces predicted by the CNNP sub-
model p and combined by MLS1.

The fully-connected layer Dense3(1024) receives
3 inputs, which are the three 256 hypothesis keys
probabilities given by Softmax1, Softmax2 and the
combined MLS2 of all n traces predicted by all m
CNNP sub-models (MLS2). The formula of that layer
with M nodes is now:

Dense31024[ j] =
256

∑
i=1

(b[ j]+MLS2[i]×wMLS2 [ j][i])+

256

∑
i=1

(b[ j]+ probSo f tmax2 [i]×wSo f tmax2 [ j][i])+

256

∑
i=1

(b[ j]+ probSo f tmax1 [i]×wSo f tmax1 [ j][i]);

j ∈ [1..M] (9)
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in which Dense31024[ j] is the jth output of the fully-
connected layer Dense3(1024), MLS2[i] is the output
probability of hypothesis key i from module MLS2
and wMLS2 [j][i] is the weight of the corresponding in-
put MLS2[i] for the node j. Similarly, probSo f tmax1 [i],
wSo f tmax1 [j][i], probSo f tmax2 [i] and wSo f tmax2 [j][i] are
the output probability of hypothesis key i and its
weight from the Softmax1 and Softmax2 modules.

The structure given in the figure 2 can be sim-
plified by limiting the number of input or the num-
ber of CNNP sub-model to one, making single trace
multiple CNNP sub-moldes and multi-trace single
CNNP sub-model stacked ensemble models. How-
ever, only the multiple CNNP sub-models stacked en-
semble model will be discussed due to the significant
performance compared with the reference.

4 EXPERIMENTAL RESULTS

Even though (Prouff et al., 2018) provides a number
of reference models such as TA, MLPs and a pre-
trained CNN, the CNNP models are used for bench-
marking and as sub-models for the proposed SEC-
NNP model due to their better performance.

While a number of variants of the SECNNP ar-
chitecture with different hyperparameter (number of
traces, number of sub-models, number of layers and
number of nodes) were tested, in the following we
present results from SECNNP models with the archi-
tectures shown in figure 2. The number of traces is
in the range of [1..6] and the number of CNNP sub-
models is in the range of [1..3].

SECNNP models develop from CNNP with single
convolutional filter kernel size of 3 and CNNP with
two convolutional filter kernel sizes of 3 and 5. The
models are trained and evaluated using the ASCAD
v1 database traces on a variable-key dataset. Training
is performed on a VMware virtual machine, with ac-
cess to virtual NVIDIA GRID M60-8Q and M40-4Q
GPUs with 8GB and 4GB memory, respectively.

In the experiments using the ASCAD database,
the number of training epochs and time for each
model, together with the rank of the correct key are
reported. Our comparison method is straightforward,
in that we train the CNNP models with the training
dataset group. The hyperparameters are taken from
(Hoang et al., 2020), in which, we focus on the CNNP
models with convolutional filter kernel size of 3 and
the transfer learning CNNP model with convolutional
filter kernel sizes of 3 and 5. Three models with
different epochs are selected as sub-models for the
SECNNP structure in figure 2. The SECNNP struc-
tures are then retrained on the same training dataset

group for the final SECNNP models. We evaluate the
trained models on the separate test dataset group pro-
vided in the ASCAD database.

Traces in the test dataset group are sorted by the
plaintext. Those belonging to the same plaintext are
then grouped by [1..6] depending on the number of
traces required by the SECNNP model. Multiple
groups of traces with different plaintexts are used if
more traces (e.g. 42) are required.

At each run, a number of trace groups are ran-
domly selected from the test dataset for the attack
phase, with the maximum likelihood score (MLS) of
each hypothesis key calculated as a function of the
number of traces. These maximum likelihood scores
are then sorted after each run and the rank of the cor-
rect key is recorded. N runs are evaluated and the
mean of the correct key rank is computed. We eval-
uate our models using 100,000 traces from the test
dataset. Depending on how fast the key rank con-
verges, the number of traces for each run is differ-
ent. In the evaluation, we set the number of traces to
42 and the number of runs N is set to 50 for average
rank calculation to identify with (Hoang et al., 2020).
The better performing models are the ones that have a
lower key rank with similar or less traces required.

In our experiments, we consider the number of
traces required for a model be able to attack the
key as the number where the correct sub-byte key
achieves rank 3 or below because a brute force key
search for the entire key should then take at least
316 = 43,046,721 loops, an acceptable computational
for modern computers.

4.1 SECNNP Evaluation with Single
Convolutional Filter Kernel Size

In this section, we will compare the accuracy in at-
tacking traces using the SECNNP models with single
convolutional filter size, with the CNNP sub-models
(reference models) and the MLS of those sub-models.

The evaluation has been done for the SECNNP
models with convolutional filter kernel size 3 on
traces belonging to multiple plaintexts groups, in
which trace groups are randomly selected. As can be
seen in figure 3, the proposed SECNNP model with
1 input trace and 3 CNNP sub-models reduces the
required number of traces for attacking the sub-byte
key 3 to a half compared with the reference models,
in which the MLS of the reference models required
42 traces to achieve key rank 3 while the proposed
SECNNP needs just 24 to achieve the same key rank
(more than a half).
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Figure 3: Key rank comparison between proposed SECNNP
models with single convolutional filter kernel size and ref-
erence models and their MLS.

4.2 SECNNP Evaluation with Multiple
Convolutional Filter Kernel Size

Due to the better accuracy achieved with the SEC-
NNP model with three CNNP sub-models and a sin-
gle trace input as shown in 3, in this section, we
evaluate a different SECNNP model with the same
structure but three 2-convolutional-filter-kernel-size
CNNP sub-models are used. The proposed model uti-
lizes the CNNP model with convolutional filter kernel
sizes of 3 and 5 as detailed in (Hoang et al., 2020) as
the sub-models.

An evaluation of the SECNNP model using multi-
ple plaintexts is given in figure 4. The SECNNP has a
single input trace, and so 42 traces are randomly used
for each run and 50 runs are tested for average key
rank. Even though three CNNP sub-models of each
type (single and two convolutional filter size) are uses,
we use only one CNNP model with the best accuracy
among the three of each type as the reference. As can
be seen in figure 4, the combined MLS (in black) of
the reference models (CNNP with single and two con-
volutional filter kernel sizes) is equivalent with that
of the CNNP with two convolutional filter sizes and
SECNNP with single convolutional filter size (in dot
green) and achieve key rank 2 after 40 traces. The
proposed model (in dot red) reduces the number of
required traces from 40 to a half (20 traces) in com-
parison to the MLS of the two best reference CNNP
models.

Figure 4: Key rank comparison between proposed SECNNP
models with one and two convolutional filter kernel sizes
and reference models and their MLS.

5 DISCUSSION

The evaluation of the proposed SECNNP models re-
vealed the following:

• Re-training from the mistakes of the classifiers
(sub-models) improves the accuracy. The pro-
posed SECNNP is re-trained from the same
dataset with the probability of each hypothesis
key. This training gives the model a chance to
learn from its mistakes by looking at the relation-
ship between the probabilities of the correct and
incorrect hypothesis keys. Diversity among the
sub-models (Wang, 2008) is considered as a fac-
tor for the improvement in key rank.

• It is not necessary to have combination of many
different CNN structures to achieve higher accu-
racy. Instead, the same structure trained with a
different number of epochs so that they show di-
versity in attacking traces are good to combine in
an stacked ensembles model.

• A deeper structure which combines models with
different input data improves the accuracy. Even
though a deeper CNNP on its own does not im-
prove the accuracy, making the model deeper to-
gether with changing the input data from traces to
hypothesis key probabilities and combining mod-
els can increase the accuracy of the SECNNP
model. It reduces the number of required traces

SECRYPT 2022 - 19th International Conference on Security and Cryptography

66



to a half, from 40 to 20 making a brute force at-
tack possible.

• A trade-off in time and accuracy. In our experi-
ment, the SECNNP model with a single convolu-
tional kernel size requires double the training time
compared with the equivalent CNNP model. Con-
sequently, training the SECNNP model with two
convolutional filter kernel size requires double the
efforts compared with that of the single convolu-
tional filter kernel size SECNNP model.

6 CONCLUSION

This paper has proposed a modified approach for
building CNN-based models for profiling SCAs. A
MLS layer which combines the Maximum likelihood
scores of multiple models and multiple traces into
the training of the model is proposed. A new net-
work structure, which includes the input of the MLS
and the probability of the hypothesis keys predicted
from different traces by different CNNP models into
the re-training process is introduced for improved re-
sults over the state-of-the-art. The proposed SEC-
NNP models require half of the traces in compari-
son with the state-of-the-art CNNP models in attack-
ing a masked AES implementation from the open-
source ASCAD database and key recovery from just
20 traces is possible when targeting the variable key
database.

While considerable work has been done in the area
of ML for SCA, there is still significant scope for
improvement in current approaches. The experimen-
tation in this work is conducted on traces acquired
from an embedded device with software based coun-
termeasures. Future work could involve an analysis
of how the plaintext embedding approach transfers to
attack against hardware based countermeasures such
as threshold or dual-rail logic approaches.
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