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Abstract: While deep neural networks are sensitive to adversarial noise, sparse coding using the Basis Pursuit (BP)
method is robust against such attacks, including its multi-layer extensions. We prove that the stability theorem
of BP holds upon the following generalizations: (i) the regularization procedure can be separated into disjoint
groups with different weights, (ii) neurons or full layers may form groups, and (iii) the regularizer takes
various generalized forms of the `1 norm. This result provides the proof for the architectural generalizations
of (Cazenavette et al., 2021) including (iv) an approximation of the complete architecture as a shallow sparse
coding network. Due to this approximation, we settled to experimenting with shallow networks and studied their
robustness against the Iterative Fast Gradient Sign Method on a synthetic dataset and MNIST. We introduce
classification based on the `2 norms of the groups and show numerically that it can be accurate and offers
considerable speedups. In this family, linear transformer shows the best performance. Based on the theoretical
results and the numerical simulations, we highlight numerical matters that may improve performance further.
The proofs of our theorems can be found in the supplementary material∗.

1 INTRODUCTION

Considerable effort has been devoted to overcom-
ing the vulnerability of deep neural networks against
‘white box’ adversarial attacks. These attacks have
access to the network structure and the loss function.
They work by modifying the input towards the sign
of the gradient of the loss function (Goodfellow et al.,
2014) that can spoil classification at very low levels
of perturbations. Furthermore, this white box attack
gives rise to successful transferable attacking samples
to other networks of similar kinds (Liu et al., 2016),
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called ‘black box attack’. This underlines the need for
network structures exhibiting robustness against white
box adversarial attacks.

Sparse methods exploiting `1 norm regularization
and the Basis Pursuit (BP) algorithm (Figs. 1(a) and
1(c)) exhibit robustness against such attacks, including
their multilayer Layered Basis Pursuit (LBP) exten-
sions (Romano et al., 2020) (Fig. 1(d)). (Cazenavette
et al., 2021) (Cazenavette et al., 2021) found a solu-
tion to the LBP’s drawback that layered basis pursuit
accumulates errors: they put forth an architectural gen-
eralization of LBP to modify the cascade of layered
basis pursuit steps of the deep neural network in such a
way that the entire network becomes an approximation
to a single structured sparse coding problem that they
call deep pursuit (Figs. 1(e) and 1(e∗)). Note that their
generalization goes beyond the structure depicted in
Fig. 1(e). This architectural generalization points to
the relevance of a single sparse layer BP that we study
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Figure 1: Steps of Basis Pursuit (BP) generalizations. Equa-
tions with argmin: the minimization tasks. (a): Recurrent
BP with sparse representation. Blue (light green) rectangle:
representation (input) layer. Blue (dashed light green) ar-
rows: channels that deliver quantities in the actual (in the
previous) time step. Red (light yellow) circles: active (non-
active) units of the sparse representation. X : input. Γ̄t and
et : representation and error at the tth iteration. Γ̄ j,t : same at
the jth layer of the deep unrolled network. Matrices D, D j:
dictionaries, I: identity matrix, φγ softmax with γ bias. (b):
group sparse case: `1 norm is replaced with the `1,2 norm.
(c): Unrolled feedforward network with finite number of
iterations. (d): Cascaded unrolled deep network. (e): Non-
cascaded modification of the unrolled deep sparse cascade.
(e∗): The minimization task of (e). (f): The general case still
having warranties against adversarial attacks. Within layer
groups are not shown. More details: text and supplementary
material.

here.
A long-standing problem is that sparse coding is

slow. An early effort utilized an associative correlation
matrix (Gregor and LeCun, 2010). Recent efforts, put
forth the first approximation of BP combined with
specific loss terms during training (see (Murdock and
Lucey, 2021) and the references therein). Although the
approach is attractive, theoretical stability warranties
are missing.

We propose group sparse coding as an additional
means for the resolution. Sparse coding that exploits
`1 norm regularization to optimize the hidden represen-
tation can be generalized to group sparse coding that
uses the `1,2 norm or the elastic `β,1,2 norm instead.

We present theoretical results on the stability of a
family of group sparse coding that alike to its sparse
variant can robustly recover the underlying represen-
tations under adversarial attacks. Yet, group sparse
coding offers fast and efficient feedforward estima-
tions of the groups either by traditional networks or
by transformers that the classification step can follow.
Previous work (Lőrincz et al., 2016) suggested the
feedforward estimation of the groups to be followed

by the pseudoinverse estimation of the group activi-
ties for learning and finding a group sparse code but
without targeting classification or adversarial consider-
ations.

Our feedforward method estimates the `2 norms of
the active groups followed by the classification step,
achieving further computational gains by eliminating
the pseudoinverse computations. We consider how to
combine the fast estimation with the robust BP compu-
tations based on our theoretical and numerical results.
However, the speed considerations and test will be
presented in a separate paper, now will focus on the
robustness results.

Our contributions are as follows:
• we extend the theory of adversarial robustness of

Basis Pursuit to a family of networks, including
groups, layers, and skip connections between the
layers both to deeper and to more superficial layers,

• we introduce group norm based classification and
its group pooled variant,

• suggest and study gap regularization,
• execute numerical computations and test feedfor-

ward shallow, deep, transformer networks trained
on sparse and group sparse layers with a synthetic
and the MNIST dataset,study the performance of
these fast algorithms, and

• we point to bottlenecks in the training procedures.
We present our theoretical results in Sect. 2. It is
followed by the experimental studies (Sect. 3). We
examine the properties of the group sparse structures
outside of the scope of the theory to foster further
works. Section 4 contains the discussions of our re-
sults. We conclude in Section 5. Details of the theoret-
ical derivations are in the supplementary material of
Footnote∗.

2 THEORY

We start with the background of the theory including
the notations. It is followed by our theoretical results.

2.1 Background and Notation

We denote the Sparse Coding (SC) problem by XXX =
DDDΓΓΓ, where given the signal XXX ∈ RN and the unit-
normed dictionary DDD ∈ RN×M , the task is to recover
the sparse vector representation ΓΓΓ ∈ RM .

min‖ΓΓΓ‖0 subject to XXX = DDDΓΓΓ,,, (P0)

where ‖.‖0 denotes the `0 norm. For an excellent
book on the topic, see (Elad, 2010) and the references
therein.
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One may try to approximate the solution of Eq. (P0)
via the unconstrained version of the Basis Pursuit (BP,
or LASSO) method (Tibshirani, 1996; Chen et al.,
2001; Donoho and Elad, 2003):

argmin
Γ̄ΓΓ

L
(
Γ̄ΓΓ
) de f
= argmin

Γ̄ΓΓ

1
2

∥∥XXX−DDDΓ̄ΓΓ
∥∥2

2 + γ ·
∥∥Γ̄ΓΓ
∥∥

1,

(BP)
where γ > 0.

Given XXX = DDDΓΓΓ, we may assume that ΓΓΓ can be
further decomposed in a way similar to XXX :

XXX = DDD1ΓΓΓ1, (1)
ΓΓΓ1 = DDD2ΓΓΓ2,

...
ΓΓΓK−1 = DDDKΓΓΓK .

The layered problem then tries to recover ΓΓΓ1, . . . ,ΓΓΓK .

Definition 1. The Layered Basis Pursuit (LBP) (Pa-
pyan et al., 2017a) first solves the Sparse Coding prob-
lem XXX = DDD1ΓΓΓ1 via Eq. (BP) with parameter γ1, obtain-
ing Γ̂ΓΓ1. Next, it solves another Sparse Coding problem
Γ̂ΓΓ1 = DDD2ΓΓΓ2 again by Eq. (BP) with parameter γ2, de-
noting the result by Γ̂ΓΓ2, and so on. The final vector Γ̂ΓΓK
is the solution of LBP. The vector γγγLBP contains the
weights γi in Eq. (BP) for each layer i.

It was shown in (Papyan et al., 2016) and (Papyan
et al., 2017b) that there is strong relationship between
the LBP and the CNN, showing that the forward pass
of the CNN is in fact identical to a layered pursuit
thresholding algorithm, moreover the layered version
can improve the system. There was also shown that
LBP suffers from error accumulation. To alleviate this
obstacle, (Cazenavette et al., 2021) rewrote LBP into
a single joint Eq. (BP)-like minimization scheme (i.e.,
all layers are processed simultaneously) that can be
equipped with skip connections. However, the solu-
tions of the two programs differ, and the stability has
not been proven for the latter that we do in the sup-
plementary material of Footnote∗, see Figs. 1(e*), and
(f).

We want to extend these methods to allow different
norms on different parts of Γ with different γ weights
(as in the layered case) and prove a stability result for
this more general case. This will also allow to relieve
the condition on the dictionary DDD that its columns have
unit length in the `2 norm.

Let us introduce a slightly modified version of the
notation used by (Papyan et al., 2016) and (Papyan
et al., 2017b). Let Λ be a subset of {1, . . . ,M} which
is called a subdomain, and the components, or atoms
corresponding to Λ form the subdictionary DDDΛ. Let
dddω, ω ∈ {1, . . . ,M} denote the atom corresponding to
the index ω.

If Λi (DDD)
de f
= {ω | 〈dddω,dddi〉 6= 0} and |Λi (DDD)| is its

cardinality, then the restriction ΓΓΓΛi(DDD) ∈ R|Λi(DDD)| of
ΓΓΓ ∈ RM to the indices in Λi (DDD) is given by,

(
ΓΓΓΛi(DDD)

)
θ

de f
=

ΓΓΓθ, if θ ∈ Λi (DDD) ,

0, otherwise.
(2)

Now let

‖ΓΓΓ‖0,st,DDD
de f
= max

i

∥∥ΓΓΓΛi(DDD)

∥∥
0 (3)

be the stripe norm with respect to DDD, a generalization
of the definition in (Papyan et al., 2017b).

If DDD is fixed, then we will use the shorter
form ‖ΓΓΓ‖0,st = ‖ΓΓΓ‖0,st,DDD. Further, let µ(DDD) =

maxi6= j
〈
dddi,ddd j

〉
be the mutual coherence of the dic-

tionary (since DDD is unit-normed the division by ‖dddi‖2 ·∥∥ddd j
∥∥

2 is dropped).
We want to use 4 different norms the `1, `2 and the

elastic `β,1,2 norm defined as ‖ZZZ‖
β,1,2

de f
= β · ‖ZZZ‖1 +

(1−β)‖ZZZ‖2, i.e., it is the convex combination of the `1
and `2 norms, and finally, the `1,2 group-norm, some-
times referred to as the Group LASSO (Yuan and Lin,
2006; Bach et al., 2011). To define this we need a
group partition of the index set.

If the index set {1, . . . ,M} is partitioned into
groups Gi, i ∈ {1, . . . ,k} (i.e.,

⋃k
i=1 Gi = {1, . . . ,M}

and Gi ∩G j = /0 for i 6= j), then the `1,2 norm ( see,
e.g., (Bach et al., 2011) and the references therein) is

‖ZZZ‖1,2
de f
=

k

∑
i=1

∥∥ZZZGi

∥∥
2 , (4)

where ZZZGi = ∑ j∈Gi z j · e j with the standard basis vec-
tors e j ∈ RM , i.e. z j-s are the coordinates of ZZZ.

To extend the regularizer of Eq. (BP), if Gi, i ∈
{1, . . . ,k} is a partition of the index set {1, . . . ,M}
then let

lll : RM → Rk, lll (ΓΓΓ)
de f
=
(
lα1

(
ΓΓΓG1

)
, . . . , lαk

(
ΓΓΓGk

))
,
(5)

where lαi is one of the `1, `2, `β,1,2 norm. For different
groups the parameter β can be different as well. So
this is a vector which elements are norms evaluated
on different parts of ΓΓΓ corresponding to the different
groups and for each group, we can individually decide

which norm to use. Let γγγ
de f
= (γ1, . . . ,γk) be a weight

vector for the different groups (more precisely for the
norms of the different groups), where γi > 0, ∀i. We
want use the regulariser

〈γγγ, lll (ΓΓΓ)〉=
k

∑
i=1

γilllαi

(
ΓΓΓGi

)
. (6)
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Note that if for some groups we use the `2 norm
with the same weight γ, then we think of this as using
the `1,2 group norm for this group of groups with the
weight γ being a special case.

Now if we fix a partition Gi and a regularizer lll
(i.e. norms for the groups), then let χχχΓΓΓ,G ∈ RM be the
2-norm group characteristic vector of ΓΓΓ, i.e.,

(
χχχΓΓΓ,G

)
j

de f
=


1, if j ∈ supp ΓΓΓ, or

j ∈ Gi,Gi∩ supp ΓΓΓ 6= /0 and lαi = `2,

0, otherwise,
(7)

where supp ΓΓΓ
de f
= {ω | ΓΓΓω 6= 0} is the support of ΓΓΓ.

For ZZZ ∈ RN , we define

(
ZZZsupp dddi

)
θ

de f
=

zθ, if θ ∈ supp dddi,

0, otherwise.
(8)

We call
‖ZZZ‖L,DDD

de f
= max

i

∥∥ZZZsupp dddi

∥∥
2 (9)

the local amplitude of ZZZ with respect to the dictionary
DDD.

For a fixed D, we use the shorthand ‖ZZZ‖L =
‖ZZZ‖L,DDD.

Both the stripe norm defined previously, and the
local amplitude seem difficult to calculate. However,
as in (Papyan et al., 2017b) if DDD corresponds to a
CNN architecture, then both become quite natural and
the calculation is easy. Moreover, it is easier to keep
mutual coherence of the dictionary low.

2.2 Theoretical Results

The proofs of the results can be found in the supple-
mentary material of Footnote∗.

Here, we will investigate the stability of Eq. (BP)
and two closely related algorithms. To unify the sev-
eral different cases, we introduce the following defini-
tion.

Definition 2. First, fix a partition Gi, i ∈ {1, . . . ,k},
norms for this partition lll (ΓΓΓ) and the weights γγγ for the
norms. The unconstrained Group Basis Pursuit (GBP)
is the solution of the problem:

argmin
Γ̄ΓΓ

L
(
Γ̄ΓΓ
) de f
= argmin

Γ̄ΓΓ

1
2

∥∥XXX−DDDΓ̄ΓΓ
∥∥2

2 +
〈
γγγ, lll
(
Γ̄ΓΓ
)〉
,

(GBP)

Theorem 3. Let XXX = DDDΓΓΓ be a clean signal and
YYY = XXX + EEE be its perturbed variant. Let ΓΓΓGBP be
the minimizer of Eq. GBP where γγγ is the weight vec-
tor. If among the norms of lll we used the elastic
norm, let {β1, . . . ,βr} be the set of the parameters

used in the elastic norms and λ
de f
= min{1,β1, . . . ,βr}.

Moreover, let γmax
de f
= max{γ1, . . . ,γk} and γmin

de f
=

min{γ1, . . . ,γk} for the weight vector γγγ and θ
de f
= λγmin

γmax
.

Assume that

a)
∥∥∥χχχΓΓΓ,G

∥∥∥
0,st
≤ c θ

1+θ

(
1+ 1

µ(DDD)

)
,

b) 1
λ(1−c) ‖EEE‖L ≤ γmin,

where 0 < c < 1. If DDDsupp χχχΓΓΓ,G has full column rank,
then

1) supp ΓΓΓGBP ⊆ supp χχχΓΓΓ,G ,
2) the minimizer of Eq. GBP is unique.

If we set γmin =
1

λ(1−c) ‖EEE‖L, then

3) ‖ΓΓΓGBP−ΓΓΓ‖
∞
< 1+θ

(1+µ(DDD))θ(1−c) ‖EEE‖L,

4)
{

i
∣∣∣ |ΓΓΓi|> 1+θ

(1+µ(DDD))θ(1−c) ‖EEE‖L

}
⊆ supp ΓΓΓGBP,

where 1+θ

(1+µ(DDD))θ(1−c) ‖EEE‖L ≤ 1+θ

θ(1−c) ‖EEE‖L yields a
weaker bound in 3) and 4) without the mutual co-
herence.

Roughly speaking, if the perturbation is not too
large, the support of the noisy representation stays
within its clean equivalent, and the indices that are
above the threshold level in 4) are recovered. More-
over, we can compare our result to the original Eq. BP,
Theorem 6 in (Papyan et al., 2016), as in the pure `1
norm case λ = 1 and if we set c = 2

3 , we get the same

bound ‖ΓΓΓ‖0,st <
1
3

(
1+ 1

µ(DDD)

)
, but we have 3‖EEE‖L≤ γ

instead of the original 4‖EEE‖L in b). Similarly, our
weaker bound in 3) and 4) is 6‖EEE‖L instead of their
7.5‖EEE‖L.

Interestingly, this single sparse layer theorem for
Eq. GBP extends to multiple layers, where on each
layer we can add group partitioning, can choose norms
and weights. The precise convergence theorem can
be found in the supplementary material of Footnote∗.
It is a generalized version of Theorem 12 in (Papyan
et al., 2017a), but that suffers from error accumulation
(Romano et al., 2020).

As mentioned earlier, we can rewrite a layered
GBP into a single sparse layer GBP. The solution will
differ a bit, but the error accumulation is not present,
see the supplementary material of Footnote∗ for the
details. However, the new dictionary describing all the
layers won’t have unit normalization being a problem
in the ‘classical’ case but not in ours. This is because
if the dictionary DDD is not unit-normed, but the columns
belonging to a group Gi (where we choose the `2 or
the `β,1,2 norm) have the same `2 norm, then we can
push the ”normalization weights” of the columns of
DDD to the weight γi in γγγ through the solutions of the
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(GBP). The problem and the solution change, but the
solution will be equivalent to the original problem, see
the supplementary material of Footnote∗ for further
details. This allows us to extend our result for more
general sparse coding problems, see Fig. 1f and the
supplementary material of Footnote∗.

Now, if we stack a linear classifier onto the top
of GBP (or onto a layered GBP) as it was done in
(Romano et al., 2020), we have several classification
stability results, see in the supplementary material of
Footnote∗.

Also if we solve Eq. (GBP) with positive coding,
i.e. restrict the problem to non-negative Γ̄ΓΓ vectors, and
the solution ΓΓΓ+GBP is group-full (i.e. supp ΓΓΓ+GBP =
supp χχχΓΓΓ+GBP,G ) then a weak stability theorem holds
for ΓΓΓ+GBP, more in the supplementary material of
Footnote∗.

3 EXPERIMENTAL STUDIES

We turn to the description of our numerical studies. We
want to explore the limitations of Group Basis Pursuit
(GBP) methods and our experiments are outside of the
scope of the present theory. We first review the meth-
ods. It is followed by the description of the datasets
and the experimental results. Throughout these stud-
ies we used fully connected (dense) networks imple-
mented in PyTorch (Paszke et al., 2019).

3.1 Methods

3.1.1 Architectures

To evaluate the empirical robustness of our GBP with
`2 norm regularization, we compared two variants of it
with Basis Pursuit (BP) and 3 Feedforward networks.

For our BP experiments, we used a single BP
layer to compute the hidden representation ΓΓΓBP, then
stacked a classifier www on top.

Next, for GBP, we considered two scenarios. First,
we applied GBP on its own to compute a full ΓΓΓGBP
code. Second, we introduced Pooled GBP (PGBP):
after computing ΓΓΓGBP with GBP, we compressed it
with a per group `2 norm calculation into ΓΓΓPGBP, and
used this smaller code as input to a smaller classifier
wwwPGBP.

Finally, we employed 3 feedforward neural net-
works trained for approximating ΓΓΓPGBP: a Linear
Transformer (Katharopoulos et al., 2020), a single
dense layer, and a dense deep network having parame-
ter count similar to the Transformer. Network structure
details can be found in the supplementary material of
Footnote∗. For the nonnegative norm values, we used

Rectified Linear Unit (ReLU) activation at the top of
these networks. To migitate vanishing gradients, we
also added a batch normalization layer in some cases.
After obtaining the approximate pooled Γ̂ΓΓPGBP, we
applied the smaller wwwPGBP as the classifier.

3.1.2 Loss Functions

Whenever training was necessary for classification (see
Sect. 3.2.2), we pretrained our methods to minimize
the unsupervised reconstruction loss ‖XXX−DDDΓΓΓ(G)BP‖2

2.
During classification and attack phase, we used a

total loss function J (DDD,www,bbb,XXX ,class(XXX)) consisting
of a common classification loss term with an optional
regularization term.

For the classification loss, we made our choice de-
pending on the number of classes. For the 2 class (bi-
nary classification) case we used hinge loss, whereas
for the multiclass case we applied the categorical cross-
entropy loss.

The regularization loss was specifically employed
to test whether it can further improve the adversarial
robustness. For this, we introduced a gap regulariza-
tion term to encourage a better separation between
active and inactive groups. We intended to increase
the smallest difference of preactivations between the
smallest active and the largest inactive group norm
within a mini-batch of ΓΓΓ(G)BP samples:

Jgap =− min
i=1,...,N

(
min

j : φγ

(
||ΓΓΓ(i)

(G)BP,G j
||2
)
6=0
||ΓΓΓ(i)

(G)BP,G j
||2

− max
j : φγ

(
||ΓΓΓ(i)

(G)BP,G j
||2
)
=0
||ΓΓΓ(i)

(G)BP,G j
||2
)
,

(10)
where i is the sample index, ||ΓΓΓ(i)

(G)BP,G j
||2 is the `2

norm of group j within ΓΓΓ
(i)
(G)BP (i.e., an element of

ΓΓΓ
(i)
PGBP) and φγ is an appropriate proximal operator.

For the BP case we applied group size 1.
For the training of the feedfoward networks, we

applied mean squared error against ΓΓΓPGBP.

3.1.3 Adversarial Attacks

To generate the perturbed input YYY = XXX +EEE, we used
the Iterative Fast Gradient Sign Method (IFGSM) (Ku-
rakin et al., 2016). Specifically, this starts from XXX and
takes T bounded steps wrt. `∞ and `2 norms according
to the sign of gradient of the total loss J to get YYY =YYY T :

YYY 0 = XXX ,

GGGt−1 = ∇YYY t−1J (DDD,www,bbb,YYY t−1,class(XXX))

YYY t = clamp(YYY t−1 +a · sgn(GGGt−1)) .

(11)
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where for the learning rate we set a = ε

T and clamp is
a clipping function. Throughout our experiments, we
used T = 20; for our values of ε, see Sect. 3.3. For
most cases, the attack was white box and if applicable,
the total loss J included the optional gap regulariza-
tion term. However, for the 3 Feedforward networks
we computed YYY using PGBP, resulting in a black box
attack.

3.2 Datasets

We used three datasets; two synthetic ones and MNIST.

3.2.1 Synthetic Data

We generated two synthetic datasets, one without
and another with group pooling, according to the
following procedure. First, we built a dictionary
DDD ∈ R100×300 using normalized Grassmannian pack-
ing with 75 groups of size 4 (Dhillon et al., 2008). We
generated two normalized random classifiers www ∈R300

and wwwPGBP ∈ R75 with components drawn from the
normal distribution N (0,1) and set the bias term to
zero (bbb = 0). Next, we created the respective input
sets. We kept randomly generating ΓΓΓ ∈ R300 vectors
having 8 nonzero groups of size 4 with activations
drawn uniformly from [1,2] and computed XXX = DDDΓΓΓ.
We collected two sets of 10,000 XXX vectors that satis-
fied classification margin O(XXX)≥ η ∈ {0.03,0.1,0.3}
in terms of the classifiers www and wwwPGBP acting on top
of ΓΓΓ (no pooling) and the `2 norms of the groups of ΓΓΓ

(pooled), respectively. While running our methods, we
used a single dense layer and a linear classifier layer
with the true parameters (DDD, www(PGBP)).

3.2.2 MNIST Data

We employed image classification on the real MNIST
dataset. The images were vectorized and we prepro-
cessed to zero mean and unit variance. We used a
fully connected (dense) dictionary DDD ∈ R784×256, hid-
den representation ΓΓΓ(G)BP ∈ R256 with optionally 32
groups of size 8 for our grouped methods, and a fully
connected softmax classifier www mapping to the 10 class
probabilities acting either on top of the full ΓΓΓ(G)BP (i.e.,
wwwi ∈ R256, i = 1, . . . ,10) or the compressed ΓΓΓPGBP
(i.e., wwwPGBP,i ∈ R32, i = 1, . . . ,10). Since in this case
the true parameters (DDD, www, bbb) were not available for
our single layer methods, we tried to learn these via
backpropagation over the training set. For this, we
applied Stochastic Gradient Descent (SGD) (Bottou
et al., 2018) over 500 epochs with early stopping pa-
tience 10. To prevent dead units in DDD, we increased γ

linearly between 0 and its final value over the initial 4
epochs.

In agreement with the sparse case (Sulam et al.,
2020), we found that pretraining the dictionary using
reconstruction loss (see Sect. 3.1.2) is beneficial in the
group case, too.

3.3 Experimental Results

We note that our numerical studies are outside of the
scope of the theory as shown in the supplementary
material of Footnote∗ since (i) only about 50% of the
perfect group combinations could be found in the syn-
thetic case and (ii) the group assumption is not war-
ranted for the MNIST dataset.

3.3.1 Synthetic Experiments

We used three margins, 0.03, 0.1, and 0.3 on the syn-
thetic data. Results for margin 0.1 of the no group
pooling and group pooled synthetic experiments are
shown in Fig. 2 a) and b), respectively. See the supple-
mentary material of Footnote∗ for the rest.

For the no group pooling experiment, we found that
BP achieves low accuracy even without attacks, and
it breaks down rapidly for increasing ε. In contrast,
our GBP achieves perfect scores for low ε, since it
has access to the ground truth group structure of the
data, and it is able to leverage it. For large ε values, it
still breaks down and is slower than BP in the studies
domain. Note, however, that the search space is much
larger for BP than for GBP.

For the group pooled experiment, the dense, deep
dense and transformer networks were trained to ap-
proximate PGBP instead of the ground truth, hence
they score worse for zero attack. Up to ε≈ 0.14 val-
ues, PGBP reaches perfect accuracy. Beyond that and
due to the different nature of the attack (white box for
PGBP and black box for the others), the breakdown
is faster for PGBP than for the other methods. The
effect is more pronounced for smaller margins (see the
supplementary material of Footnote∗). Out of the three
feedforward estimations, the transformer performed
the best.

3.3.2 MNIST Experiment

On MNIST, we compared BP, GBP, PGBP, their re-
spective gap regularized variants and the 3 feedfoward
networks. Our results are depicted in Fig. 2 c).

Among the white box attacked pursuit methods,
PGBP gave the best results for both the non-attacked
and for the attacked case, indicating the benefits of
the pooled representation, i.e., it is more difficult to
attack group norms than the elements within groups.
We think that this result deserves further investigation.
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(c)
Figure 2: Results for adversarial robustness against Itera-
tive Fast Gradient Sign Method (IFGSM) attack. Datasets
differ for all subfigures. Best viewed zoomed in. (a): Syn-
thetic dataset, no group pooling: our Group Basis Pursuit
(GBP, green) obtains 100% accuracy for small ε and consid-
erably outperforms Basis Pursuit (BP, red) as it can exploit
the given group structure. (b): Synthetic dataset, group
pooling: Pooled Group Basis Pursuit (PGBP, blue) achieves
perfect scores for small ε. Break down is faster than for
the Linear Transformer (LT, cyan) and the Dense (magenta)
networks due to the difference between white box and black
box attacks. Deep network (yellow) having parameter count
similar to LT is overfitting. (c): MNIST dataset: PGBP is
the best for small ε, and it also consistently outperforms all
BP and GBP variants for large ε. For some methods, gap reg-
ularization (dash-dotted) increases performance. For large
ε, black box attacked LT scores the highest. Deep network
overfits.

BP and GBP were worse and their curves crossed each
other.

Gap regularization (Eq. (3.1.2)) slightly increased
performance for BP and PGBP, but it impairs GBP.
We believe that this technique may be improved by
making it less restrictive, similarly to the modifications
for mutual coherence in (Murdock and Lucey, 2020),
e.g., by averaging the terms.

Feedforward nets were attacked by the black box
method. The Linear Transformer obtained the best
results. Deep Network was difficult to teach; it was
overfitting.

4 DISCUSSION

We have dealt with the structural extensions of basis
pursuit methods. We have extended the stability the-
ory of sparse networks and their cascaded versions as
follows:

1. The non-cascaded extension (Cazenavette et al.,
2021) that includes skip connections beyond the
off-diagonal identity blocks of the matrix depicted
in Fig. 2 that is the lower triangular part of the
matrix can be filled by general blocks has stability
proof.

2. Stability proof holds if non-zero general block ma-
trices occur in the upper triangular matrix repre-
senting unrolled feedback connections.

3. Stability proof holds if representation elements
within any layers are grouped.

4. Different layers and groups can have different bi-
ases, diverse norms, such as `1, `1,2, and the elastic
norm.

5. The theorem is valid for Convolutional Neural Net-
works.

6. Proofs are valid for positive coding for the sparse
case and under certain conditions, for the group
case, too.

Feedforward estimations are fast and our experiments
indicate that they are relatively accurate especially for
the Linear Transformer for the group structures when
there is no attack. In case of attacks, the transformer
shows reasonable robustness against black box attacks.
However, it seems that transformers are also fragile
for white box attacks (Bai et al., 2021). Attacks can be
detected as shown by the vast literature on this subject.
For recent reviews, see (Akhtar et al., 2021; Salehi
et al., 2021) and the references therein. Detection of
the attacks can optimize the speed if all (P)GBP and
feedforward estimating networks are run in parallel
and the detection is fast so it can make the choice in
time.
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Performances could be improved by introducing
additional regularization loss terms (Murdock and
Lucey, 2021). We could improve our results by adding
a loss term aiming to increase the gap between the
groups that will become active and the groups that
will be inactive after soft thresholding. Our results are
promising and the present loss term (Eq. (3.1.2)) may
be too strict. Another interesting loss term could be the
minimization of the mutual coherence of DDD (Murdock
and Lucey, 2020) and we leave this examination for
future works.

Our experimental studies can be generalized in sev-
eral ways. Firstly, a single layer can not be perfect for
all problems. The hierarchy of layers is most promis-
ing for searching for groups of different sizes. As an
example, edge detectors can be built hierarchically
using CNNs, see, e.g., (Poma et al., 2020).

Further, we restricted the investigations to groups
of the same size and the same bias, even though that
inputs may be best fit by groups of different sizes, or
even by including a subset of single elements, and the
bias may also differ. This is an architecture optimiza-
tion problem, where the solution is unknown. Learn-
ing of the sparse representation is however, promising
since under rather strict conditions, high-quality sparse
dictionaries can be found (Arora et al., 2015). The
step to search for groups is still desired since (a) the
search space may become smaller by the groups and
(b) the presence of the active groups may be estimated
quickly and accurately using feedforward methods, es-
pecially transformers (in the absence of attacks). In
turn, feedforward estimation of the groups followed
by (P)GBP with different group sizes including single
atoms seems worth studying.

5 CONCLUSIONS

We studied the adversarial robustness of sparse coding.
We proved theorems for a large variety of structural
generalizations, including: groups within layers, di-
verse connectivities between the layers and versions
of optimization costs related to the `1 norm. We also
studied group sparse networks experimentally. We
demonstrated that our GBP can outperform BP, and
that our PGBP works better than both using 8 times
smaller representation. We found that PGBP offers
fast feedforward estimations and the transformer ver-
sion shows considerable robustness for the datasets we
studied. Finally, we showed that gap regularization
can improve robustness even further, as suggested by
condition 4) of Theorem 3.

Yet, the scope of our studies are limited from mul-
tiple perspectives. First, the suprisingly great perfor-

mance of our PGBP despite its small representation
calls for further investigations using more complex
datasets and attacks, as MNIST and IFGSM are too
simple and specialized compared to real world sce-
narios. Second, we believe that theoretical extensions
to PGBP are possible, and that varying group sizes
and other loss functions may provide performance im-
provements.

Defenses against noise, novelties, anomalies and,
in particular, against adversarial attacks may be solved
by combining our robust, structured sparse networks
with out-of-distribution detection methods.
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APPENDIX

Due to space constraints, we were only able to state
our main result of Theorem 3 here. The rest of our
theorems and all proofs can be found in the supple-
mentary material of Footnote∗, the url is located right
below the abstract.
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