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Abstract: Generative adversarial networks (GANs) have become a full-fledged branch of the most important neural
network models for unsupervised machine learning. A multitude of loss functions have been developed to train
the GAN discriminators and they all have a common structure: a sum of real and false losses which depend
only on the real losses and generated data respectively. A challenge associated with an equally weighted sum
of two losses is that the formation can benefit one loss but harm the other, which we show causes instability
and mode collapse. In this article, we introduce a new family of discriminant loss functions which adopts a
weighted sum of real and false parts. With the use the gradients of the real and false parts of the loss, we
can adaptively choose weights to train the discriminator in the sense that benefits the stability of the GAN
model. Our method can potentially be applied to any discriminator model with a loss which is a sum of the
real and fake parts. Our method consists in adjusting the hyper-parameters appropriately in order to improve
the training of the two antagonistic models Experiences validated the effectiveness of our loss functions on
image generation tasks, improving the base results by a significant margin on dataset Celebdata.

1 INTRODUCTION

Generative Adversarial Networks (GAN) (Goodfel-
low et al., 2020) technology, is an innovative pro-
gramming approach for building generative models,
that are, models capable of producing data on their
own (Brownlee, 2020) (Parthasarathy et al., 2020).
The GAN (Abdollahpouri et al., 2020) rapid devel-
opment in recent years and its multiple applications
make it one of the most promising recent discover-
ies in machine learning. Yann LeCun (head of AI re-
search at Facebook) has also presented it as ”the most
interesting idea of the last 10 years in the field of Ma-
chine Learning” (Rocca, 2021).

In technical terms, GANs are based on the un-
supervised learning of two artificial neural networks
called Generator and Discriminator. These two net-
works train each other in a contradictory relationship
using convolutional layers (Barua S et al., 2019) (Sun
H et al., 2020): The Generator is in charge of creating
designs (ex: images), the Discriminator receives de-
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signs from the generator and from a database of actual
designs. As a result of the Discriminator’s work, two
feedback loops convey to the two neural networks the
identity of the designs on which they need to improve.
The Generator receives the identity of the designs on
which it has been unmasked by the Discriminator, The
Discriminator receives the identity of the designs on
which it has been deceived by the Generator.

The two algorithms therefore maintain a win-win
relationship of continuous improvement: the Genera-
tor learns to create increasingly realistic designs and
the Discriminator learns to better and better identify
the real designs from those coming from the Genera-
tor.

There are many applications in industry. Automo-
tive manufacturers are particularly interested in GAN
to sharpen images captured by autonomous vehicle
cameras and thus improve the efficiency of artificial
vision algorithms. In the construction sector, for ex-
ample, a GAN has been used to simulate the activity
of future occupants of a building and thus feed sim-
ulation algorithms aimed at optimizing energy con-
sumption as accurately as possible. Finally, GANs
have already been implemented in the fashion sec-
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tor to design shoes or fabrics that will appeal to con-
sumers. With this ability to imitate without actually
copying, GANs could have far-reaching implications
for industrial design and copyright protection.

With regard to the limitations of the command sys-
tems, namely: sparsity and noise, two lines of re-
search have were conducted, and their common ideas
can be summarized as follows:

1. For the problem of data sparsity, data augmenta-
tion (Sandy et al., ) implemented by capturing the
distribution of real data under the minimax is the
main adaptation strategy.

2. For the issue of data noise, adversarial distur-
bances and training based on adversarial sampling
are often used as a solution (Mayer and Timofte,
2020).

In this article, we will take a closer look at GANs
and the different variations to their loss functions
(Brownlee, 2020), so that we can get a better insight
into how the GAN works while addressing the unex-
pected performance issues. The standard GAN loss
function, also known as the min-max loss (Brown-
lee, 2020),will be used to train these two models. The
generator tries to minimize this function while the dis-
criminator tries to maximize it. The rest of this paper
is organized as follows. In Section 2 we briefly com-
pare and position our solution with other proposals
find in the literature. Section 3 describes the prob-
lem handled. In Section 4, we describe our proposed
method that can be potentially applied to any discrim-
inator model with a loss that is a sum of the real and
fake parts.

2 STATE-OF-THE-ART

The Generative Adversarial Networks refers to a fam-
ily of generative models that seek to discover the un-
derlying distribution behind a certain data generating
process. It is described as two models in competition
which, when trained, is able to generate samples in-
discernible from those sampled from the normal dis-
tribution This distribution is discovered through an
adversarial competition between a generator and a
discriminator. The two models are trained such that
the discriminator strives to distinguish between gen-
erated and true examples, while the generator seeks
to confuse the discriminator by producing data that
are as realistic and compelling as possible. This gen-
erative model puts in competition two networks of
neurons D and G which will be called hereafter the
discriminator and the generator, respectively. In this
section, we present a brief review of existing litera-

ture of generative adversarial networks. In this study
(Goodfellow et al., 2020) (Mao and Li, 2021), GANs
were formulated for the first time. This article demon-
strates the potential of GANs as a generative model.
GANs became popular for image synthesis based on
the successful use of deep convolution layers (Mao
and Li, 2021) (noa, 2015).
Classical Algorithms. Classical image processing
algorithms are unsupervised algorithms that improve
low-light images through well-founded mathematical
models. They are efficient and simple in terms of cal-
culation. But they are not robust enough and require
manual calibration to be used in certain conditions
(Tanaka et al., 2019).
Implicit Model for Generation. Apart from the
descriptive models, another popular branch of deep
generative models are black-box models which map
the latent variables to signals via a top-down CNN,
such as the Generative Adversarial Network (GAN)
(Goodfellow et al., 2020) and its variants. These mod-
els have gained remarkable success in generating re-
alistic images and learn the generator network with an
assistant discriminator network.
Adversarial Networks. Generative Adversarial Net-
work (Goodfellow et al., 2020) have proven to per-
form sufficiently well for many supervised and un-
supervised learning problems. In (Zhu et al., 2017)
the authors propose a model through which the need
for paired images has been elevated and image trans-
lation between two domains can be done through
cycle-consistence loss. These techniques have been
applied to many other applications including dehaz-
ing, super-resolution, etc. Lately, it has been applied
to low light image enhancement in EnlightenGAN
(Jiang et al., 2019) with promising results and this
has motivated our GAN model. Generative adver-
sarial networks (Goodfellow et al., 2020) have also
benefited from convolutional decoder networks, for
the generator network module. Denton et al (Denton
et al., 2015) used a Laplacian pyramid of adversar-
ial generator and discriminators to synthesize images
at multiple resolutions. This work generated com-
pelling high-resolution images and could also condi-
tion on class labels for controllable generation. Rad-
ford (Alec et al., 2015) used a standard convolutional
decoder, but developed a highly effective and stable
architecture incorporating batch.
Fully Connected GANs. The first GAN architec-
tures used fully connected neural networks for both
the generator and discriminator (Goodfellow et al.,
2020). This type of architecture was applied to rela-
tively simple image data sets: Kaggle MNIST (hand-
written digits), CIFAR-10 (natural images), and the
Toronto Face Data Set (TFD).
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3 PROBLEM DESCRIPTION

In this article we will make a comparative study be-
tween two methods of calculating the loss: the first
consists in calculating this loss globally on the gener-
ator and the desciminator and comparing it to that of
the descriminator with some hyper-parameters (Fig-
ure 1). The second consists in summing the losses of
the two antagonistic models with trying to to find the
optimal hyper-parameters (Figure 1).

The discriminator network consists of convolu-
tional layers. For every layer of the network, we are
going to perform a convolution, then we are going
to perform batch normalization to make the network
faster and more accurate and finally, we are going to
perform a Leaky ReLu.

As for the generator, we’re going to give it a noise
vector, it’s going to be numbers generated as a vector
of 100 of numbers between -1 and 1 drawn randomly
according to a normal distribution, it’s really noise,
and in output the generator produces an image which
will be of the same geometry as the image which is
good with deconvolution processing to make a pro-
cessing equivalent to the processing of the discrimi-
nator then we went back in the other direction to gen-
erate generate deconvolution processing weights.

Here we are going to start from a small vector, a
vector 100 which is going to be a noise vector and
we are going to gradually recreate an image of the
same geometry as that which is taken as input to the
discriminator. The question now is how to train this
generator. We have a neural network that provides us
with an output, what we would like is that the output
is generally something else even if in the long term
after learning we would like that the neural network
gives us the output that we expect. But we always
have a difference between what we would like to have
and what we really have from the neural network. So
from this difference we creates a loss function and
by calculating the gradient on this loss function we
can then correct the weights of our neural network.
The loss calculation will be made on the generator
and discriminator assembly. This is how we will then
be able to then, after having calculated the gradient of
the whole, we will be able to correct the variables of
the generator and the discriminator.

GANs require higher computing power and the in-
frastructure is at the same level. When using GANs,
you need to have more data traffic because these mod-
els will be very large and there are many parame-
ters, so training requires a lot of computing power and
memory (Figure 2).

Figure 1: GAN Backpropagation.

Figure 2: Good GANs with a good saddle.

4 THEORICALS RESULTS

4.1 Gradient Descent

The generator G implicitly defines a probability dis-
tribution pg as the distribution of the samples G(z)
obtained when z ∼ pz. Therefore, we would like al-
gorithm 1 to converge to a good estimator of pdata, if
given enough capacity and training time. The results
of this section are done in a nonparametric setting,
e.g. We represent a model with infinite capacity by
studying convergence in the space of probability den-
sity functions We will show in section 2.5 that this
minimax game has a global optimum for pg = pdata.

4.2 Discriminator

The goal of the discriminator is to correctly label the
real images as true and generated images as false (see
Figure 3). Therefore, we might consider the following
to be the loss function of the discriminator:
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Algorithm 1: Minibatch stochastic gradient descent training
of generative adversarial nets. The number of steps to apply
to the discriminator, k, is a hyperparameter. We used k = 1,
the least expensive option, in our experiments (Goodfellow
et al., 2020).

for number of training iterations do for k steps do for
k steps do
1. Sample minibatch of m noise samples z (1) , . . . , z

(m) from noise prior pg(z).

2. Sample minibatch of m examples x (1) , . . . , x (m)
from data generating distribution pdata(x).

3. Update the discriminator by ascending its stochastic
gradient:

~∇∇∇θθθd

1
m

m

∑
i=1

[log
(

D(x(i))
)
+ log

(
1−D(G(z(i)))

)
]

4. end for
Sample minibatch of m noise samples z (1) , . . . , z
(m) from noise prior pg(z). Update the generator by
descending its stochastic gradient:

~∇∇∇θθθg

1
m

m

∑
i=1

[log
(

1−D(G(z(i)))
)
]

5. end for
The gradient-based updates can use any standard gradient-
based learning rule. We used momentum in our experi-
ments.

Note: There is sometimes an analogy in the literature to the
falsification of works of art. D is then called the ”critic” and
G is called the ”forger”. The objective of G is to transform a
random noise z into a sample x̂ as similar as possible to the
real observations x ∈ X . Conversely, the goal of D is to learn
to recognize ”false” samples x̂ from true observations x. The
GAN loss function (Brophy et al., 2021) will be presented as a
mathematical equation to show how the network is functioning
and how the error is calculated and propagated to update the
parameters to achieve different goals in the network.(This ex-
planation is heavily inspired and based on (Goodfellow et al.,
2020) and (Rome, 2017).

Discr
iminator

Genera
tor

D(x) : To maximize D(G(z)) : To maximize
D(G(z)) : To minimize

Figure 3: Objective of two models.

ŁD = Error(D(x),1) +
Error(D(G(z)),0) (a)

Here, we are using a very generic, unspecific nota-
tion for Error to refer to some function that tells us the
distance or the difference between the two functional
parameters.

4.3 The Generator

The goal of the generator is to confuse the discrim-
inator as much as possible such that it mislabels
generated images as being true (see Figure 3).

LG = Error(D(G(z)),1) (b)

The key here is to remember that a loss func-
tion is something that we wish to minimize. In the
case of the generator, it should strive to minimize
the difference between 1, the label for true data, and
the discriminator’s evaluation of the generated fake
data. A common loss function that is used in binary
classification problems is binary cross entropy. The
formula for cross entropy looks like (Tae, 2020):

H(p,q) = Ex∼pdata(x)[− logq(x)] (1)

In classification tasks, the random variable is dis-
crete. Hence, the expectation can be expressed as a
summation.

H(p,q) =−
M

∑
x=1

p(x) log(q(x)) (2)

I the case of binary cross entropy, since there are
only two labels: zero and one. So the equation 2 can
be expressed as:

H(y, ŷ) =−∑ylog(ŷ)+(1− y)log(1− ŷ) (3)

This is the Error function that we have been
loosely using in the sections above. Binary cross
entropy fulfils our objective in that it measures how
different two distributions are in the context of binary
classification of determining whether an input data
point is true or false. Applying this to the loss
functions in equation 3, we obtain:

LD =− ∑
x∈χ,z∈ζ

log(D(x))+ log(1−D(G(z))) (4)

We can do the same for equation 2:

LG =− ∑
x∈χ,z∈ζ

log(D(G(z))) (5)
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Figure 4: Generator & Discriminator functions loss.

4.4 Model Optimization

Now that we have defined the loss functions for gener-
ator and discriminator, it is time to take advantage of
the math to solve the optimization problem, i.e. find
the parameters for generator and discriminator such
as loss functions are optimized. This corresponds to
the formation of the model in practical terms.

4.5 The Discriminator Cost

Conceptually, the goal of learning is to maximize the
expectation that the discriminator, D, correctly cate-
gorizes the data as either real or fake. The goal of
learning for the generator, G, is to fool the discrimi-
nator.

When training a GAN, we usually train one model
at a time (Figure 4). In other words, when learning the
discriminator, the generator is assumed to be fixed.
Mathematically, the goal of learning is to minimize
the following objective function:

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pdata(x)[logD(x)]+

Ez∼pgenerated(z)[1− logD(G(z))]
(6)

In reality, we are more interested in the distribu-
tion modeled by the generator than in pz. Therefore,
let’s create a new variable, y = G(z), and use this sub-
stitution to rewrite the value function in (Equation 6):

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pdata(x)[logD(x)]

+Ez∼pgenerated(z)[1− logD(y)]
(7)

=
∫

x∈χ

pdata(x)log(D(x))+ pg(x)log(1−D(x))dx

(8)

For ll (a,b) ∈ (R∗,R∗), the function y→a ∗
log(y)+b∗ log(1− y) achieves its maximum in [0,1]
at

a
a+b

.

The purpose of the discriminator is to maximize
the value of this Function 8. By a partial derivative
of V (G,D) with respect to D(x) see equation 8 , we
see that the optimal discriminator, noted D*(x), oc-
curs when the derivative with respect to D(x) is zero:

Pdata(x)
D(x)

-
Pg(x)

(1−D(x))
= 0 (9)

The optimum point is where the discriminator
fails to differentiate between the real input and the
synthesized data. For a fixed Generator, the optimal
discriminator D is, (by simplifying Equation 9):

D∗(x) =
pdata(x)

(pdata(x)+ pg(x))
(10)

For G fixed, this is the condition of the optimal dis-
criminator ! Note that the formula makes intuitive
sense: if a sample x is very authentic, we would ex-
pect pdata(x) to be close to 1 and pg(x) to converge to
zero, in which case the optimal discriminator would
assign 1 to that sample. (D(x) = 1) which corre-
sponds to the label of the real images. In contrast,
for a generated sample x = G(z), we would expect the
optimal discriminator to assign a label of zero, since
pdata(G(z)) must be close to zero.

4.6 The Generator Cost

To train the generator, we assume the discriminator
is fixed and analyze the value function. Let’s start by
plugging the result we found above, namely (equation
10), into the value function to see what happens.

Note that the training objective for D can be in-
terpreted as maximizing the log-likelihood for
estimating the conditional probability P(Y = y‖x),
where Y indicates whether x comes from pdata (with
y = 1) or from pg (with y = 0). From (equation 10)
we can deduce:

1−D∗(x) =
pg(x)

(pdata(x)+ pg(x))
(11)

The minimax game in Equation 6 can now be refor-
mulated as:
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C(G) = maxDV (G,D∗) = Ex∼pdata(x)[logD∗(x)]

+Ez∼pgenerated(z)log[1−D∗(y)]

= Ex∼pdata(x)[log
pdata(x)

(pdata(x)+ pg(x))
]

+Ex∼pgenerated(x)[log
pg(x)

(pdata(x)+ pg(x))
]

(12)

To proceed from here, we need a little inspiration.

Theorem 1.
The global minimum of the virtual learning criterion
C(G) = maxV(G,D)= V(G,D*) is reached if and only
if pg = pdata. At this point, C(G) reaches the value
−log(4). (Goodfellow, 2016)

C(G) =−log(4)+DKL(pdata||
pdata(x)+ pg(x)

2
)

+DKL(pg||
pdata(x)+ pg(x)

2
)

(13)
where KL is the Kullback–Leibler divergence.

We recognize in the previous expression the Jensen–
Shannon divergence between the model’s distribution
and the data generating process:

C(G) =−log(4)+2JSD(pdata||pg) (14)

We recognize in the previous expression the
Jensen–Shannon divergence between two distribu-
tions (the distribution of the model and the process
of data generation) which is always non-negative, and
zero if they are equal, we have shown that C∗ =
−log(4) is the global minimum of C(G) and that the
only solution is pg = pdata, i.e., the generative model
perfectly replicating the data distribution. Basically
what is happening is that we are exploiting the prop-
erties of logarithms to extract a -log4 that did not ex-
ist before. In extracting this number, we inevitably
apply changes to the terms of expectation, including
dividing the denominator by two. Why was this nec-
essary? The magic here is that we can now interpret
the expectations as a Kullback-Leibler divergence:

The conclusion of this analysis is simple: the goal
of learning the generator, which is to minimize the
value function V(G,D), we want the JS divergence be-
tween the distribution of the data and the distribution
of the generated examples to be the smaller possible.
This conclusion certainly fits our intuition: we want
the generator to be able to learn the underlying distri-
bution of the data from sampled training examples. In

other words, pg and pdata should be as close to each
other as possible. The optimal generator G is there-
fore the one which is able to mimic pdata to model a
convincing model distribution pg.

4.7 Loss Function

The loss function described in the original paper by
Ian Goodfellow et al. can be derived from the formula
of binary cross-entropy loss (equation 2). The binary
cross-entropy loss can be written as,

L(y, ŷ) =−
Nc

∑
i=1

yi log(ŷi) (15)

In binary classification, where the number of
classesNc equals 2, cross-entropy can be calculated
as:

L(y, ŷ) =−(y log(ŷyy)+(1− y) log(1− ŷ)) (16)

4.7.1 Discriminator Loss

While training discriminator, the label data coming
from Pdata(x) is y=1 (real data) and ŷyy=D(x) , By sub-
stitution of this in the loss function above (Equation
16), we get:

L(D(x),1) = log(D(x)) (17)

Conversely, for data coming from generator, the label
is y=0 (fake data) and ŷyy=D(G(z)). So from equation
16 the loss in this case is:

L(D(G(z)),0) = log(1−D(G(z))) (18)

Now, the objective of the discriminator is to
correctly classify the fake and real dataset. For this,
equations (1) and (2) should be maximized and final
loss function for the discriminator can be given as,

L(D) = max[log(D(x))+ log(1−D(G(z)))] (19)

4.7.2 Generator Loss

The generator is competing against discriminator.
So, it will try to minimize the equation (3) and loss
function is given as:

L(G) = min[log(D(x))+ log(1−D(G(z)))] (20)
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4.7.3 Combined Loss Function

We can combine equations (3) and (4) and write as:

L = minGmaxD[log(D(x))+ log(1−D(G(z)))] (21)

Remember that the above loss function is valid
only for a single data point, to consider entire dataset
we need to take the expectation of the above equation
as:

min
G

max
D

V(G,D) = min
G

max
D

Ex∼pdata(x)[logD(x)]

+Ez∼pgenerated(z)[1− logD(G(z))]
(22)

which is the same equation as described above
(see equation 6).

4.8 Experimental Setup

The two main types of networks to construct are either
Deep Convolutional GANs (DC-GANs) or fully con-
nected (FC) GANs. Which you use will depend on
the training data you are submitting to the network.
If you are using single data points, an FC network is
more appropriate, and if you are using images, a DC-
GAN is more appropriate (Stewart, ). In this paper we
will use the second type. We trained adversarial nets
on an a range of datasets including CELEBA (Jes-
sica, ),which consists of over 63,000 cropped anime
faces, and evaluate adversarial nets on the following
two tasks.

4.8.1 First Scenario

The generator nets used a mixture of rectifier linear
activations (Jarrett et al., 2009) and tanh activations,
while the discriminator net used sigmoid activations.
Dropout was applied and other noise at intermediate
layers of the generator, we used noise as the input to
only the bottommost layer of the generator network.

Note that generative modeling is an unsupervised
learning task, so the images do not have any labels.
The input to the generator is typically a vector or a
matrix of random numbers (referred to as a latent ten-
sor) which is used as a seed for generating an image.
The generator will convert a latent tensor of shape
(100, 1, 1) into an image tensor of shape 4 x 4 x 128.
Both latent tensor (z) and a matrix for real images are
mapped to hidden layers with Rectified Linear Unit
(ReLu) activation, with layer sizes 16 and 64 on gen-
erator and discriminator respectively. We then have
a final sigmoid unit on the discriminator output layer.
The discriminator takes an image as input, and tries
to classify it as ”real” or ”generated”. In this sense,

it’s like any other neural network. We’ll use a convo-
lutional neural networks (CNN) (Zhang et al., 2016),
which outputs a single number output for every im-
age. We’ll use stride of 2 to progressively reduce the
size of the output feature map (see Figure 5).

Figure 5: Filter hyperparameters.

Stride=2: For a convolutional or a pooling oper-
ation, the stride S denotes the number of pixels by
which the window moves after each operation.

Since the discriminator is a binary classification
model, we can use the binary cross entropy loss func-
tion to quantify how well it is able to differentiate be-
tween real and generated images.

In this scenario, we use RMSprop optimizer
(Rome, 2017) which is similar to the gradient de-
scent algorithm with momentum. The RMSprop op-
timizer restricts the oscillations in the vertical direc-
tion. Therefore, we can increase our learning rate and
our algorithm could take larger steps in the horizontal
direction converging faster and forced to training the
GAN as follows:

1. Generation of a batch of images using the genera-
tor, it is passed through the discriminator.

2. Calculation of the loss by setting the target labels
to 1, in order to ”fool” the discriminator.

3. Use of the loss to perform a gradient descent, that
is to say to modify the weights of the generator,
so that it improves to generate realistic images to
”fool” the discriminator.

Now that after trained the models, we obtained
these results:

We can visualize how the loss changes over time.
Visualizing losses is quite useful for debugging the
training process. For GANs, we expect the genera-
tor’s loss to reduce over time, without the discrimina-
tor’s loss getting too high.

As can be seen in Figure 6, the loss at the level of
the discriminator stabilizes quickly around 0.6 while
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Figure 6: Left: Discriminator Loss. Right: Gan Loss.

that of the GAN (generator and discriminator) it os-
cillates around 0.8.

Well then this is what learning looks like so at the
beginning we start from noise:

Figure 7: First image generated.

So there (Figure 7) we don’t see it but it’s slightly
crude, and after a certain number of learning cycles
we see fairly quickly images that look like deformed
faces. But if they are not well drawn there is still
something that really looks like faces.

So let’s go here (Figure 8) we see that the faces
are more and more precise.

Figure 8: Image generated with more epochs.

4.8.2 Second Scenario

On this case, we add the encoder block portion and
using same padding so that the input and output di-
mensions are the same, as well as batch normalization
and leaky ReLU. Stride is mostly optional, as is the
magnitude for the leaky ReLU argument. Followed
by the discriminator itself in which we have recycled
the encoder block segment and are gradually increas-
ing the filter size to solve the problem we previously
discussed on first scenario. We are performing the
opposite of the convolutional layers. The strides and
padding are the same for ease of implementation, and
we use batch normalization and leaky ReLU. On the
the generator side , we use decoder blocks and grad-
ually decrease the filter size. The choice of optimiza-
tion algorithm for a deep learning model can mean
the difference between good results in minutes, hours,
and days. The Adam optimization algorithm is an
extension to stochastic gradient descent that has re-
cently seen broader adoption for deep learning appli-
cations in computer vision and natural language pro-
cessing. So it is used in this second scenario to com-
pile disciminator.

We see that on this architecture (Figure 9) con-
sensus optimization achieves much better end results.
And the two losses converge to a relatively acceptable
value (0.2).

The images produced by the generator present a
relatively better quality than that of the first scenario
(see Figure 10).
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Figure 9: Discriminator & Generator Loss.

Figure 10: Image generated in 2nd scenario.

4.8.3 Third Scenario

This example is based on Minifaces dataset. We will
also scale and crop the images to 3x64x64, and nor-
malize the pixel values with a mean and standard de-
viation of 0.5 for each channel. This will ensure that
the pixel values are in the range (-1, 1), which is more
convenient for training the discriminator.

The input to the generator is typically a vector of
random numbers which is used as a seed to generate
an image. The generator will convert a latent shape
tensor (128, 1, 1) into a 3 x 28 x 28 shape image ten-
sor. The adjustment function to train the discriminator
and the generator in tandem for each batch of training
data uses the Adam optimizer. We will also save sam-
ple generated images at regular intervals for inspec-
tion.

The figures 11 and 12 show fluctuations in the
scores and errors of the generator, which explains the
variation in image quality from one epoch to another
(See Figure 13).

In table 1 the average of the error of the genera-
tor for dataset Minifaces is too high with an exces-
sive fluctuation. As a result, some images appear rel-
atively distorted.

4.8.4 Forth Scenario

In this example we describe a GAN witch, when
trained is able to generate samples indiscernible from
those sampled from the normal distribution (figure

Figure 11: Discriminator & Generator Loss.

Figure 12: Discriminator & Generator Score.

14). The standard normal distribution (figure14), also
called the z-distribution, is a special normal distribu-
tion where the mean is 0 and the standard deviation is
1.

Figure 15 illustrates the learning to sample from
the standard normal distribution. The network con-
tains one hidden layer of 16 ReLU units on the gen-
erator and 64 on the discriminator. The function rep-
resented in figure 14, also called the z-distribution, is
a special normal distribution where the mean is 0 and
the standard deviation is 1.

After the training the gan for about 600 epochs we
obtained the results (Figure 15).

For the three examples below, In the process of
learning the discriminator network, it is fundamental
to label the real images as ”true” and the false images
as ”false”. However, after a while of training, the sys-
tem will be stimulated by the use of deceptive strate-
gies that ”surprise” the discriminator. and constrain it
to make corrections to what had already been learned
before. These strategies consist of labeling the gener-
ated images as if they were ”real”. This technique al-
lows the generator to make the necessary corrections
and thus prove to be faces more resembling those pro-
vided as a model.
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Figure 13: Images generated in scenario 3.

Figure 14: standard normal distribution.

The same deceptive strategy is adopted for the
last example, which forces the descimnator to pro-
duce curves resembling the model provided as input
(Figure15). After 600 epochs the generated curve
tends towards a distribution curve with some defor-
mations (Figure15 Right)

The performance of the GAN depends on the data
processed. The models are large and complex and
take a lot of communication and memory and require
some real computational horsepower.

Table 1: Hyper-parameters optimization and losses.

Sc
en

ar
io

Disc
rim

in
ato

r L
os

s

Gen
er

ato
r/G

AN
Los

s

1-Faces 0.6 0.8
2-Celeb 0.2 0.2
3-Minifaces 0.2 4.5
4 z-distribution 0.7 0.7

Figure 15: A GAN learning to sample from the standard
normal distribution over 600 epochs.(Left) the accuracies
and losses of the generator and discriminator (Right) the
observed probability density of the GAN and the real N(0,
1) density.

5 CONCLUSIONS

Generative adversarial networks models are not able
to formulate an intention and assess their own results
and therefore are not completely autonomous creative
systems. The dataset on which the GAN is trained is
the key to its creativity. GAN is a powerful structure
that stimulates feature extraction but is unstable with
its convergence uncertainty during training. Its con-
tradictory insight is the main motivation improvement
of the model but its structure is too simple and has
many unknowns factors affecting its results which ex-
plains its instability. We propose a relatively stable set
of architectures for the training of generative adver-
sarial networks and we provide evidence that adver-
sarial networks learn good image representations for
supervised learning and generative modeling. How-
ever there are still some forms of model instability.

In order to resolve this instability issue, further
work is required. We believe that the broader func-
tional coverage encompassing other areas such as
video and speech (pre-trained features for speech syn-
thesis) should be very interesting. Also, how the acti-
vations performed on large-scale data still need to be
investigated.

Further research on the properties of learned latent
space would also be interesting.
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