
A Supervised Generative Topic Model to Predict Bug-fixing Time on
Open Source Software Projects

Pasquale Ardimento a and Nicola Boffoli b

Department of Informatics, University of Bari Aldo Moro, Via Orabona 4, Bari, Italy

Keywords: SLDA, Latent Topics, Bug-fixing, Repository Mining, Software Maintenance, Text Categorization, SLDA.

Abstract: During software maintenance activities an accurate prediction of the bug-fixing time can support software
managers to better resources and time allocation. In this work, each bug report is endowed with a response
variable (bug-fixing time), external to its words, that we are interested in predicting. To analyze the bug reports
collections, we used a supervised Latent Dirichlet Allocation (sLDA), whose goal is to infer latent topics that
are predictive of the response. The bug reports and the responses are jointly modeled, to find latent topics
that will best predict the response variables for future unlabeled bug reports. With a fitted model in hand,
we can infer the topic structure of an unlabeled bug report and then form a prediction of its response. sLDA
adds to LDA a response variable connected to each bug report. Two different variants of the bag-of-words
(BoW) model are used as baseline discriminative algorithms and also an unsupervised LDA is considered.
To evaluate the proposed approach the defect tracking dataset of LiveCode, a well-known and large dataset,
was used. Results show that SLDA improves recall of the predicted bug-fixing times compared to other BoW
single topic or multi-topic supervised algorithms.

1 INTRODUCTION

”Most defects end up costing more than it would have
cost to prevent them. Defects are expensive when
they occur, both the direct costs of fixing the de-
fects and the indirect costs because of damaged re-
lationships, lost business, and lost development time”
(Beck and Andres, 2005). The later a bug is found,
the later it will be fixed and more time and resources
will be wasted in the present and the form of oppor-
tunities lost in the future. For these reasons, an ac-
curate bug-fixing time prediction can help software
managers to better allocate resources and time. Soft-
ware projects usually use bug tracking systems (BTS)
to store and manage bug reports. A bug report con-
tains a large amount of text information that can help
software developers and maintainers understand bugs
well and complete bug fixing. Many open-source
software projects use BTS. Day by day, the number
of bug reports submitted to BTS increases and, at
the same time, the knowledge stored by BTS (Sun
et al., 2017; Alenezi et al., 2018; Ardimento and Di-
napoli, 2017). For Mozilla, by February 2022, the to-

a https://orcid.org/0000-0001-6134-2993
b https://orcid.org/0000-0001-9899-6747

tal number of bug reports was just under 1.8 million.
In recent years, lots of work utilized information re-
trieval technology to explore these massive bug repos-
itories to help developers understand, localize and fix
bugs (Mohsin and Shi, 2021; Hamdy and El-Laithy,
2020; Meng et al., 2021). Most of the predictive
models proposed to automatically predict bug-fixing
time are based on traditional machine learning tech-
niques. The basic idea is to extract text information
by bug reports attributes, discarding only those that
are empty or contain numerical values. Once a bug
report is open (not re-open), it is categorized to a dis-
cretized time to resolution, based on the learned pre-
diction model. This work is focused on an idea orig-
inally proposed in (Ardimento et al., 2016) and then
applied and further elaborated in (Ardimento and Di-
napoli, 2017; Ardimento et al., 2020). This idea in-
volves using all the text attributes of a bug report and
to treat the problem of bug-fixing time estimation as a
text categorization problem. In this paper, conversely
from previous experiences, two different variants of
the bag-of-words (BoW) model are used as baseline
discriminative algorithms. Then, supervised and un-
supervised dimensionality reduction techniques are
used on a corpus of textual bug reports extracted from
Bugzilla. In standard unsupervised Latent Dirichlet

Ardimento, P. and Boffoli, N.
A Supervised Generative Topic Model to Predict Bug-fixing Time on Open Source Software Projects.
DOI: 10.5220/0011113100003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 233-240
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

233

Allocation (LDA) each word in a document is gen-
erated from a Multinomial distribution conditioned
on its own topic, which is a probability distribution
over a fixed vocabulary representing a particular la-
tent semantic theme (Blei, 2012). Once hyperparam-
eters of the model are learned, posterior topic pro-
portion estimates can be interpreted as a low dimen-
sional summarization of the textual bug reporting. A
linear classifier trained with a SVM with soft mar-
gins can then be used to learn discretized bug-fixing
time class, using such posterior estimates as a reduced
feature vector. It is also considered a supervised La-
tent Dirichlet Allocation (SLDA) generative model
(Blei and McAuliffe, 2010), which adds the discrim-
inative signal into the standard generative model of
LDA. The response variable is an unordered binary
target variable, denoting time to resolution discretized
into FAST (negative class) and SLOW (positive class)
class labels. The proposed models have been eval-
uated on one large-scale open-source project. Re-
sults show that SLDA improves recall. Due to the
imbalance between the number of positive and nega-
tive cases and the importance assumed by the SLOW
class for the prediction task, this measure is more use-
ful than simply measuring the accuracy of classifiers.
The rest of the paper is structured as follows. Section
2 briefly presents the lifecycle of bugs in a BTS while
section 3 discusses the main related works of the bug-
fixing time prediction problem. Section 4 describes
the proposed prediction model and its main phases.
Section 5 presents the empirical study and the results
obtained, while section 6 discusses the main threats to
the validity of the proposed model. Finally, section 7
draws the conclusions and sketches the future work.

2 BACKGROUND

The bug life cycle, also called defect workflow, is
a process in which a defect goes through different
stages in its entire life. These stages usually are:
UNCONFIRMED, NEW, ASSIGNED, RESOLVED,
VERIFIED, REOPENED, CLOSED. There are many
popular implementations of a defect workflow such
as Jira, Bugzilla, FogBugz, The Bug Genie, Man-
tisBt, Request Tracker, and so on. The choice fell on
Bugzilla as a data source for the following reasons:

• there is a consistent number of public Bugzilla
installations, where a public installation is ”one
whose front or login page can be accessed and
viewed over the Internet” (bugzilla.org, 2022).
These installations permit anonymous users to
browse and access bug information; on Febru-
ary 2021, Bugzilla Web official site lists 141 or-

ganizations and organizations that are running
Bugzilla public installations (bugzilla.org, 2022);

• Bugzilla works for both free and open-source soft-
ware and proprietary projects. In this way, it
is possible to evaluate the feasibility of the pro-
posed approach both in open source software and
in commercial software;

• Bugzilla offers a native well-documented REST
API (Bugzilla, 2022) to extract and put informa-
tion from its installations to external programs and
vice versa;

• Existing different implementations of the defect
workflow can be considered equivalent to the one
present in Bugzilla. In particular, a Bugzilla
bug that is VERIFIED and FIXED represents a
CLOSED bug.

3 RELATED WORK

Several scientific papers dealt with the bug fixing
problem. A semi-automatic approach based on ma-
chine learning techniques to decrease the triaging
time was presented in (Anvik et al., 2006). This
method is based on learning the type of reported bug
that can be fixed by a developer. The received bug
is reported to this model and a list with a minimum
number of developers who can fix the bug is reported
as the output. They received up to 75 and 64% pre-
cision in Eclipse and Firefox projects, respectively.
In their method, the text of ‘Summary’ and ‘Descrip-
tion’ fields are categorized and the name of develop-
ers who can fix the bug is reported as the output. The
features are derived by applying information retrieval
methods and the classification is completed through
Naı̈ve Bayes (NB), support vector machine (SVM),
and C4.5 methods.

A binary prediction model was presented in
(Giger et al., 2010), based on a Decision Tree algo-
rithm, using both unchangeable fields, such as ’Re-
porter’, and fields that can be changed over time,
such as ’Severity’. They evaluated the proposed
model on six of the systems of three open-source
projects: Eclipse, Mozilla, and Gnome. Results ob-
tained show a 0.65 precision and 0.62 recall perfor-
mance in Eclipse. They also state that the inclusion
of post-submission bug report data of up to one month
promises to improve prediction models.

An analysis on how to calculate the time neces-
sary to fix a bug is provided in (Kim and Whitehead,
2006). In this work, the authors identified, in Ar-
goUML and PostgreSQL projects, when the bugs are
introduced and when the bugs are fixed.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

234

Authors in (Marks et al., 2011) applied the Ran-
dom Forest algorithm to predict bug-fixing time in
Mozilla and Eclipse projects using a selected subset
of bug reports fields. They obtained a 65% precision
in classification. They also carried out a sensitivity
analysis for parameters of both projects finding that
bug report time and its location are the most important
features in predicting the bug fix in Mozilla Project,
while in Eclipse, the severity feature is more impor-
tant. Priority, instead, is not very important in both
projects.

Panjer (Panjer, 2007) proposed a method where
they discretized the fix-time values using an equal fre-
quency binning algorithm and identified seven classes
for bug fix-time. The binary classification was carried
out by applying the 0-R, 1-R, C4.5 DT, NB, LR algo-
rithms, and 34% was obtained as the maximum value
of precision.

A Markov-based model to predict the number of
bugs that will be fixed in three consecutive months
was proposed in (Zhang et al., 2013). The historical
bug reports were used to predict the time necessary to
fix the bug by applying the Monte Carlo Algorithm.
Besides, a KNN-based classification model was pro-
posed obtaining 72.45% as F-measure.

Bidirectional Encoder Representation from Trans-
formers (BERT) was used to predict the fixing-time
of a bug as slow and fast by (Ardimento and Mele,
2020). Even if ”BERT makes use of a self-attention
mechanism that allows learning the bidirectional con-
text representation of a word in a sentence, which
constitutes one of the main advantages over the previ-
ously proposed solutions” this method requires to be
further applied and investigated before to be consid-
ered as mature to provide a significant contribution to
face the bug-fixing prediction problem.

4 PROPOSED MODEL

The proposed prediction model consists of three se-
quential phases (shown in figure 1): Data Collection,
Pre-processing, Learning and evaluation of bug-fixing
time Prediction.

4.1 Data Collection

The Data Collection activity consists in gathering the
bug reports from any BTS as the proposed model is
BTS independent. The first step consists of selecting
only those bug reports that have already been fixed,
by one or more programmers, and successfully veri-
fied, by one or more testers. These bugs are the only
ones useful to, first, train the classifier and, then, to

predict the newly unseen bug reports. After select-
ing this subset, for each bug in it, only the attributes
sensible for both tasks were extracted, while resid-
ual attributes were discarded. In particular, the at-
tributes containing only numeric or empty values in
most cases were discarded. Since the bug-fixing time
is rarely publicly available in a BTS, it also happens
in Bugzilla installations, it was calculated as the num-
ber of days elapsed between the date where bug at-
tribute Status was set to RESOLVED and the date on
which the bug report was assigned for the first time.
This measure, called Days Resolution, represents the
bug-fixing time, from here on out. Since the Days
Resolution measure does not represent the effective
time spent to fix a bug it could affect the outcomes of
this research. After completing data gathering and at-
tribute extraction, the dataset was split into a training,
test, and validation dataset using a fixed split percent-
age. This operation takes place after extraction at-
tributes because all post-submission information has
to filter out from both test and validation sets. Test
and validation instances simulate newly opened and
previously unseen bugs and, therefore, attributes that
were not available before the bug was assigned must
be removed from the information set. To this aim, it
is necessary to retrieve the changes history of a bug.
The history permits to know when and who assigned
a value to the attributes. All the attributes whose val-
ues are not filled by the bug reporter are discarded.
Severity and priority attributes represent an exception
because their values can be filled by the bug reporter
and, then, changed. For these attributes, only the
initial value, if present, filled by the bug reporter is
considered and not discarded. Finally, the model dis-
cretizes the bug-fixing times into two classes, conven-
tionally labeled as SLOW and FAST. The SLOW la-
bel indicates a discretized bug-fixing time above some
fixed threshold in the right-tail of the empirical bug-
fixing time distribution. It is assumed that SLOW in-
dicates the positive class, thus SLOW being the tar-
get class of the prediction model. Therefore, increas-
ing the number of true positives for the positive class
cause an overestimation of bug-fixing times. This sit-
uation is preferred to underestimation because it in-
volves a less dangerous error.

4.2 Pre-processing and Learning
Models

Before applying any probabilistic model is necessary
to bring bug reports in a form that is analyzable for
the classification task. The steps followed in this pa-
per are the most commonly used in the literature on
text classification and Natural Language Processing

A Supervised Generative Topic Model to Predict Bug-fixing Time on Open Source Software Projects

235

Figure 1: Proposed Prediction Model.

(Mogotsi, 2010). The objective is to determine a vo-
cabulary of terms V, by:

• eliminating those words that occur commonly
across all the documents in the corpus which
means these words are not very discriminative,
and focusing on the important words instead (stop
word removal);

• reducing inflectional forms to a common base
form and then heuristically complete stemmed
words by taking the most frequent match as com-
pletion (stemming and stem completion);

• using a specific algorithm, proposed in (Ardi-
mento et al., 2016), for detecting multi-word ex-
pressions. This algorithm consists of a suitable
modification of a simple heuristic first introduced
in (Justeson and Katz, 1995).

• reducing dimensionality by term space reduction
as it may even result in a moderate increase in
predictive accuracy depending ”on the classifier
used, on the aggressivity of the reduction, and
on the term space reduction used.” (Sebastiani,
2002). In the proposed approach, terms were
sorted (from best to worst) according to their
estimated normalized expected mutual informa-
tion (NEMI, (Mogotsi, 2010)) with the discretized
time to resolution (SLOW/FAST). Only terms
showing a NEMI value greater than the overall av-
erage NEMI were included. In this way, the terms
almost approximately independent with the target
class label were omitted.

4.3 Baseline Model

Two different variants of the bag-of-words (BoW)
model were used to be baseline algorithms. The
BoW model is high-dimensional, as it represents a
document with one dimension per word. Specifi-
cally, it was first considered a multivariate Bernoulli
(MB) model with smoothing Laplace parameter λ, ap-
plied to the binary term-document incidence matrix
(Mogotsi, 2010). For each word in V and indepen-
dently of each other (Naive Bayes assumption) the
MB model learns the probabilities πty = P(et =

1
y)

that the word represented by et = (1,2, ..., |V |) will
occur at least once in any position in any one of the
documents of class y (i.e. y≡ SLOW

FAST , with SLOW ≡ 1).
The second alternative was a linear classifier using
unnormalized t f td counts (for token t and document
d), trained with a support vector machine (SVM) with
soft-margin classification, ruled by a cost-parameter
C. Inverse document frequency weighting (t f − id ftd)
was also used.

4.4 Unsupervised Latent Dirichlet
Allocation (LDA)

The most important thing to know about a document
is the underlying semantic themes rather than words.
Latent Dirichlet Allocation (LDA) is a generative
model of a textual corpus D, that has the potential to
discover topics during the training phase (Blei et al.,
2003; Blei, 2012). Formally, a topic is the probability
distribution over the elements of V. For each docu-
ment we have K underlying semantic themes (topics),

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

236

B1:K = (B1, ...,Bk), where each BK(K = 1, ...,K) is a
| V |-dimensional vector of probabilities over the ele-
ments of V. We also have a vector of K-dimensional
vectors Zd1:Nd

= (zd,1, ...,zd,Nd) of topic assignments,
where Zd,n is the topic assignment for the nth word
(n=1,...,N d) in document d. The indicator z of the k-
th topic is represented as a K-dimensional unit-basis
vector such that zk = 1 and z j = 0 for j 6= k. Simi-
larly, words in a document Wd1:Nd

= (wd,1, ...,wd,Nd)

are represented using superscripts to denote compo-
nents, that is the th word in |V| is represented as a
unit-basis vector w in RV, such that ων = 1 and ωυ = 0
for υ 6= ν. LDA can be summarized as the following
generative procedure (independently over d and n):

θd ∼ DirichletK(α) for d ∈ D (1)

zd,n|θd ∼Multinomialk(θd)

for D ∈ D and n ∈ {1, ...,Nd}
(2)

ωd,n|zd,n,β1,K ∼Multinomial|ν|(βzd,n)

for d ∈ D and n ∈ {1, ...,Nd}
(3)

where Bzd,n ≡ B j if z j
d,n = 1. Parameters α and β1:k are

treated as unknown hyper-parameters to be estimated,
rather than random variables. In this way, documents
are seen as a realization of a stochastic process, which
is then reversed by standard machine learning tech-
niques that return maximum-a-posteriori estimates of
model parameters for each document (bug) d, given
the value of hyper parameters α and β. Posterior esti-
mates of per-document topic proportions θd can be in-
terpreted as a low-dimensional summarization of the
document. As LDA is an unsupervised algorithm, we
used a linear classifier trained with an SVM with soft
margins to learn bug-fixing time class y, using poste-
rior θd estimates as a reduced feature vector.

Unfortunately, exact inference in the LDA model
is NP-hard for a large number of topics (Sontag and
Roy, 2011), and posterior distribution of latent vari-
ables p(Z1:D,θ1:D|ω1:D,α,β1:K) has not a closed-form
(here, per-word topic assignments zd:1:Nd are collected
into the z1:D vector as d varies over 1,...,D, with D
= |D|, and the same definition applies to θ1:D and
ω1:D). In fact, the marginal likelihood is intractable
and cannot be evaluated exactly in a reasonable time
for all possible per-word topic assignments zd,n. Con-
sequently, we used a mean-field variational Bayes
algorithm (VB) for approximate posterior inference
(Blei et al., 2016). Because the number of topics K
is in general not known, models with several different
numbers of topics were fitted and the optimal number
was determined in a data-driven way by minimizing
the geometric mean per-word likelihood (perplexity)

on test documents (Wallach et al., 2009). Since the
topic assignments for one document are independent
of the topic assignments for all other documents, each
test document can be evaluated separately. Once the
hyper parameters α and β1:k are learned and K has
been set, inference can be performed to compute a
posterior θd vector for each test document (as well as
for each document in the validation set), to obtain the
reduced representation in topic space, which is sub-
sequently used to predict bug bug-fixing time yd in a
supervised fashion.

4.5 Supervised LDA

Supervised Latent Dirichlet Allocation (SLDA) adds
the discriminative signal into the standard generative
model of LDA. For each document d, response label
yd (yd≡SLOW/FAST, with SLOW ≡ 1) is sampled
conditionally on the topic assignments:

yd |Zd;1:Nd ,η∼ Bernoulli(
exp(ητzd)

1+ exp(ητzd))
) (4)

where zd = 1
Nd

∑
Nd
n=1 zd,n is the vector of empirical

topic frequencies in document d. As previously said,
parameters α; β1,K and η are treated as unknown
hyper parameters to be estimated, rather than ran-
dom variables. Documents are generated under full
word exchangeability, and then topics are used to
explain the response. Other specifications are in-
deed possible, for example yd can be regressed as a
nonlinear function of topic proportions θd , but (Blei
and McAuliffe, 2007) claim that the predictive per-
formance degrades as a consequence of the fact the
topic probabilistic mass does not directly predict dis-
cretized bug-fix times.

Also in this case posterior inference of latent
model variables is not feasible, as the conditional pos-
terior distribution p(Z1:D,θ1:D|ω1:D,α,β1:K) has not
a closed-form. Consequently, a variational Bayes
(VB) parameter under a mean-field approximation
was used. The best number of topics K was optimized
through the test set (further details are in Section 5).

5 EXPERIMENT AND RESULTS

Bug report textual information was extracted from
the Bugzilla repository of a large open-source soft-
ware project: LiveCode. Data were automati-
cally collected using software routines written in
PHP/JavaScript/Ajax. Raw textual reports were pre-
processed and analyzed using the R 4.0.5 software
system (RProject, 2022). Five thousand bugs were
randomly drawn and randomly divided into training,

A Supervised Generative Topic Model to Predict Bug-fixing Time on Open Source Software Projects

237

Table 1: Results of best configurations for accuracy.

Test set - Best accuracy Algorithm Param. TP FN FP TN Acc. Prec. Recall
0,58 NB λ = 0 0 125 88 287 0,57 0 0
0,55 SVM C=0,01 0 125 88 287 0,57 0 0
0,61 LDA+SVM C=0,01 15 110 80 295 0,62 0,16 0,12
0,79 SLDA K=2 112 13 206 169 0,56 0,35 0,89

test and validation subsets, using a 70:20:10 split ra-
tio. Bug-fixing time was categorized into FAST and
SLOW labels according to the third quartile, q0.75, of
the empirical distribution of bug resolution times in
the training set. Accuracy, precision and recall were
used to assess the performance of bug-fixing time pre-
diction models. Accuracy indicates the proportion of
correctly predicted bugs:

Accuracy =
T P+T N

T P+FP+T N +FN
(5)

where TP (True Positive) denotes the number of bugs
correctly predicted as SLOW; FP (False Positive) de-
notes the number of bugs incorrectly predicted as
SLOW, TN (True Negative) denotes the number of
bugs reports correctly predicted as FAST, FN (False
Negative) denotes the numbers of bugs incorrectly
predicted as FAST.

Precision, instead, indicates the proportion of cor-
rectly predicted SLOW bugs:

Precision =
T P

T P+FP
(6)

Recall denotes the proportion of true positives of all
SLOW bugs:

Recall =
T P

T P+FN
(7)

The trained set was used to train the classification
models, reported in the list below. Then the specific
free parameters of each model were assessed over the
test set and, finally, performances measures were re-
calculated over the validation set using the best accu-
racy values obtained from the test set.

• Multivariate Bernoulli (MB), with either no
smoothing, or Laplace λ varying in {1,2,3}
(Mogotsi, 2010).

• Support Vector Machine (SVM), with soft-margin
classification and cost parameter C varying in
{0.1,10,100}.

• Latent Dirichlet Allocation plus Support Vec-
tor Machine (LDA+SVM), with K varying
in {2,5,10,15,20,25,30,35,40,50}, soft-margin
classification and cost parameter C varying in
{0.1,1,10,100}.

• Supervised Latent Dirichlet Allo-
cation (SLDA), with K varying in

{1,2,5,10,15,20,25,30,35,40,45,50}. With
K=1 it obtains a single-topic model.

Table 1 presents the results obtained, it shows that
SLDA does not achieve the best value for accuracy.
However, it is important to note that accuracy is a mis-
leading measure for imbalanced class distributions.
In the case of our experimentation, the two classes
are not equally distributed. Furthermore, it is evi-
dent that the minority class (SLOW) has more impor-
tance in the context of software maintenance, because
of its larger impact in terms of cost/effectiveness.
Consequently, if it is assumed that a higher recall
(proportion of true positives of all SLOW bugs) is a
more sensible target, the SLDA model has the best
performance. It is also worth noting that a larger
number of FAST bugs are classified as SLOW un-
der the SLDA model. However, costs incurred in
false-positive are generally very low. Conversely, NB,
SVM and LDA+SVM classifiers showed higher ac-
curacies, but they failed to correctly predict most of
SLOW bugs. Overall, these results clearly show that
the use of a supervised topic model highly improves
the recall of bug-fix time prediction.

6 THREATS

The following threats have to be considered to judge
the quality of our research.

• Dataset. The experiment was carried out on
just one data set extracted from LiveCode. This
project is not representative of the population of
all open-source software.

• Non-open-source projects. There is no guarantee
that the proposed model is effective for non-open-
source projects. Typically, in fact, in proprietary
projects a specific group is responsible for fixing
given bugs based on corresponding features.

• Outliers and noises. Dataset could contain bug re-
ports whose fixing time is not fit with other bug
reports because, for example, it is extremely long.
These bug reports, called outliers, should be re-
moved to both improve the quality of the data
and, maybe, generate a positive impact on the ac-
curacy of the predictions. Moreover, a possible
noise in the dataset could be represented by a bug

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

238

CLOSED more than one time. BTS, in fact, per-
mits that a CLOSED bug could be reopened at any
time. When this happens the calculation of the
time resolution is not more coherent with the time
necessary to fix a bug. Another threat in our ex-
periment concerns the so-called problem of ”pro-
portion of inconsistent samples”. Two bug reports
are inconsistent if they have the same character-
istics but, one is marked as positive class and the
other is marked as negative class. A possible way
to tackle this problem is reported in (Du et al.,
2022), where the authors aim to reduce, by incor-
porating the activity information and time infor-
mation of bug activity transfer, the proportion of
inconsistent samples. This method of bug feature
extraction and model construction is based on a
LSTM-based deep learning model which can not
only achieve sequence prediction, but also learn
sequences interaction through the attention mech-
anism to improve prediction accuracy. The results
are promising even if they are obtained on only
one open data set Firefox.

• Bug-fixing time. A strong assumption about bug-
fixing time was made. The actual amount of time
spent by developers and the distribution in terms
of hours per day to fix a bug are not publicly de-
clared on Bugzilla. It is assumed, therefore, a uni-
form distribution of developers’ work and calcu-
lated effort spent in calendar days. These assump-
tions hide and ignore the real efforts made by the
developers to complete the fixing work.

• Number of developers involved. The number of
developers involved in fixing a bug is not publicly
known. It represents another limitation in calcu-
lating the bug-fixing time. For example, if dif-
ferent bugs have the same calendar days value, it
does not imply that the time spent to fix them is
the same.

7 CONCLUSION

This paper proposes an automatic binary bug-fixing
time prediction model based on SLDA, a supervised
generative topic model. This model significantly im-
proves recall compared to other BoW single topic or
multi-topic supervised algorithms. Accuracy, instead,
is lightly lower and, considering all the models used,
not so good. These results are aligned with the need
to maximize recall to detect SLOW classes as much
as possible and the acceptance that the negative class
(FAST) plays a secondary role.

To improve the results obtained and to increase
the external validity of the proposed approach, future

work will require: (i) to carry out a stability analysis
to avoid that results depend on some purely random
factor (in the experimentation carried out, if topic
models were re-run with a different random seed, the
topics will often change); (ii) to carry out a sensitiv-
ity analysis of quantiles to measure the impact of the
inputs over the α-quantile of the output distribution.
(iii) to discover similarities and differences between
open and non-open-source software projects; (iv) to
tackle the problem of ”proportion of inconsistent sam-
ple” to reduce the presence of inconsistent bugs.

REFERENCES

Alenezi, M., Banitaan, S., and Zarour, M. (2018). Using
categorical features in mining bug tracking systems to
assign bug reports. CoRR, abs/1804.07803.

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should
fix this bug? In Osterweil, L. J., Rombach, H. D.,
and Soffa, M. L., editors, 28th International Confer-
ence on Software Engineering (ICSE 2006), Shang-
hai, China, May 20-28, 2006, pages 361–370. ACM.

Ardimento, P., Bilancia, M., and Monopoli, S. (2016). Pre-
dicting bug-fix time: Using standard versus topic-
based text categorization techniques. In Calders, T.,
Ceci, M., and Malerba, D., editors, Discovery Science
- 19th International Conference, DS 2016, Bari, Italy,
October 19-21, 2016, Proceedings, volume 9956 of
Lecture Notes in Computer Science, pages 167–182.

Ardimento, P., Boffoli, N., and Mele, C. (2020). A text-
based regression approach to predict bug-fix time. In
Appice, A., Ceci, M., Loglisci, C., Manco, G., Mas-
ciari, E., and Ras, Z. W., editors, Complex Pattern
Mining - New Challenges, Methods and Applications,
volume 880 of Studies in Computational Intelligence,
pages 63–83. Springer.

Ardimento, P. and Dinapoli, A. (2017). Knowledge extrac-
tion from on-line open source bug tracking systems
to predict bug-fixing time. In Proceedings of the 7th
International Conference on Web Intelligence, Mining
and Semantics, WIMS ’17, New York, NY, USA. As-
sociation for Computing Machinery.

Ardimento, P. and Mele, C. (2020). Using BERT to
predict bug-fixing time. In 2020 IEEE Conference
on Evolving and Adaptive Intelligent Systems, EAIS
2020, Bari, Italy, May 27-29, 2020, pages 1–7. IEEE.

Beck, K. L. and Andres, C. (2005). Extreme programming
explained - embrace change, Second Edition. The XP
series. Addison-Wesley.

Blei, D. M. (2012). Probabilistic topic models. Commun.
ACM, 55(4):77–84.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2016).
Variational inference: A review for statisticians.
CoRR, abs/1601.00670.

Blei, D. M. and McAuliffe, J. D. (2007). Supervised
topic models. In Platt, J. C., Koller, D., Singer,
Y., and Roweis, S. T., editors, Advances in Neu-
ral Information Processing Systems 20, Proceedings

A Supervised Generative Topic Model to Predict Bug-fixing Time on Open Source Software Projects

239

of the Twenty-First Annual Conference on Neural
Information Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007, pages 121–
128. Curran Associates, Inc.

Blei, D. M. and McAuliffe, J. D. (2010). Supervised topic
models.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). La-
tent dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022.

Bugzilla (2022). Webservice api bugzilla. [Online; accessed
16-February-2022].

bugzilla.org (2022). Bugzilla installation list. [Online; ac-
cessed 16-February-2022].

Du, J., Ren, X., Li, H., Jiang, F., and Yu, X. (2022). Predic-
tion of bug-fixing time based on distinguishable se-
quences fusion in open source software. Journal of
Software: Evolution and Process, n/a(n/a):e2443.

Giger, E., Pinzger, M., and Gall, H. C. (2010). Predicting
the fix time of bugs. In Holmes, R., Robillard, M. P.,
Walker, R. J., and Zimmermann, T., editors, Proceed-
ings of the 2nd International Workshop on Recommen-
dation Systems for Software Engineering, RSSE 2010,
Cape Town, South Africa, May 4, 2010, pages 52–56.
ACM.

Hamdy, A. and El-Laithy, A. (2020). Semantic catego-
rization of software bug repositories for severity as-
signment automation. In Jarzabek, S., Poniszewska-
Maranda, A., and Madeyski, L., editors, Integrating
Research and Practice in Software Engineering, vol-
ume 851 of Studies in Computational Intelligence,
pages 15–30. Springer.

Justeson, J. S. and Katz, S. M. (1995). Technical terminol-
ogy: some linguistic properties and an algorithm for
identification in text. Nat. Lang. Eng., 1(1):9–27.

Kim, S. and Whitehead, E. J. (2006). How long did it take
to fix bugs? In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06,
page 173–174, New York, NY, USA. Association for
Computing Machinery.

Marks, L., Zou, Y., and Hassan, A. E. (2011). Studying the
fix-time for bugs in large open source projects. In Pro-
ceedings of the 7th International Conference on Pre-
dictive Models in Software Engineering, pages 1–8.

Meng, D., Guerriero, M., Machiry, A., Aghakhani, H.,
Bose, P., Continella, A., Kruegel, C., and Vigna, G.
(2021). Bran: Reduce vulnerability search space in
large open source repositories by learning bug symp-
toms. In Cao, J., Au, M. H., Lin, Z., and Yung,
M., editors, ASIA CCS ’21: ACM Asia Conference
on Computer and Communications Security, Virtual
Event, Hong Kong, June 7-11, 2021, pages 731–743.
ACM.

Mogotsi, I. C. (2010). Christopher d. manning, prabhakar
raghavan, and hinrich schütze: Introduction to infor-
mation retrieval - cambridge university press, cam-
bridge, england, 2008, 482 pp, ISBN: 978-0-521-
86571-5. Inf. Retr., 13(2):192–195.

Mohsin, H. and Shi, C. (2021). SPBC: A self-paced learn-
ing model for bug classification from historical repos-

itories of open-source software. Expert Syst. Appl.,
167:113808.

Panjer, L. D. (2007). Predicting eclipse bug lifetimes. In
Proceedings of the Fourth International Workshop on
Mining Software Repositories, MSR ’07, page 29,
USA. IEEE Computer Society.

RProject (2022). The r project for statistical computing.
[Online; accessed 16-February-2022].

Sebastiani, F. (2002). Machine learning in automated text
categorization. ACM Comput. Surv., 34(1):1–47.

Sontag, D. A. and Roy, D. M. (2011). Complexity of in-
ference in latent dirichlet allocation. In Shawe-Taylor,
J., Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and
Weinberger, K. Q., editors, Advances in Neural Infor-
mation Processing Systems 24: 25th Annual Confer-
ence on Neural Information Processing Systems 2011.
Proceedings of a meeting held 12-14 December 2011,
Granada, Spain, pages 1008–1016.

Sun, X., Zhou, T., Li, G., Hu, J., Yang, H., and Li, B. (2017).
An empirical study on real bugs for machine learn-
ing programs. In Lv, J., Zhang, H. J., Hinchey, M.,
and Liu, X., editors, 24th Asia-Pacific Software En-
gineering Conference, APSEC 2017, Nanjing, China,
December 4-8, 2017, pages 348–357. IEEE Computer
Society.

Wallach, H. M., Murray, I., Salakhutdinov, R., and Mimno,
D. M. (2009). Evaluation methods for topic models.
In Danyluk, A. P., Bottou, L., and Littman, M. L.,
editors, Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Mon-
treal, Quebec, Canada, June 14-18, 2009, volume 382
of ACM International Conference Proceeding Series,
pages 1105–1112. ACM.

Zhang, H., Gong, L., and Versteeg, S. (2013). Predicting
bug-fixing time: an empirical study of commercial
software projects. In Notkin, D., Cheng, B. H. C.,
and Pohl, K., editors, 35th International Conference
on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013, pages 1042–1051. IEEE
Computer Society.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

240

