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Abstract: There is an unknown number of offshore helidecks in the U.S. Gulf of Mexico that comply with a specific 
marking standard. This is a direct result from the lack of national regulations enforced. The purpose of this 
research is to improve the assessment of offshore helideck marking standards’ compliance using optimized 
machine learning principles. Using two different phases and employing the transfer learning approach, an 
optimized machine learning algorithm is generated to classify offshore helidecks from photographs into CAP 
437, HSAC RP 161 or None. Results show that this model can identify marking standards being used with an 
accuracy of 95.7 percent. Therefore, demonstrating that the machine learning principles used can improve the 
assessment of offshore helideck marking standards’ compliance. 

1 INTRODUCTION 

Across the world, energy industry workers must be 
transported to offshore facilities. Originally, this 
transportation was performed by ship, yet this 
presented issues such as individuals getting seasick, 
hazardous transition from the ship to the facility, and 
wearisome travel times. Now, with the use of 
helicopters, these legacy issues have been mitigated. 
Helicopter travel decreases passenger illness, eases 
transition from the helicopter to the facility, and 
significantly reduces travel time compared to travel 
by ship. Due to these benefits, helicopters have been 
used since 1947 to perform tasks like offshore 
transportation of personnel, cargo, and parts. To 
execute offshore helicopter operations, a safe landing 
area should be guaranteed on these offshore facilities, 
referred to as helidecks (HSAC ~ Helicopter Safety 
Advisory Conference - Home, 2016). 

A helideck is defined as “a heliport located on a 
fixed or floating offshore facility such as an 
exploration and/or production unit used for the 
exploitation of oil and gas” (International Civil 
Aviation Organization, 2018).  

Many offshore facilities, and their helidecks, were 
built prior to the introduction of any applicable design 
standard. Therefore, the underlying design 

parameters and associated safety aspects for these 
facilities remain unknown. In the past two decades, 
design standards and guidance material have been 
developed and became more readily available; 
however, compliance with these standards or 
guidelines for newly built helidecks, as well as the 
gaps in compliance with those previously built 
(legacy) helidecks remain an industry concern. This 
results in a plethora of issues that offshore helicopter 
pilots must face when attempting to safely land a 
helicopter on a helideck. For example, the lack of, 
incorrect, or ambiguous markings force the pilots to 
adapt and draw their own conclusions as to whether it 
is safe to land or not during the final stages of landing. 
To clarify the various interpretations of these 
markings, standardization of helideck markings is 
crucial to improve landing safety. 

It takes time for a helideck to be inspected and 
verify compliance with applicable standards or 
industry guidelines. A trained and competent helideck 
inspector will need to be transported to the facility by 
helicopter, leading to significant additional costs. 
These costs also include travel labor costs of the 
inspector, offshore room, and board for the inspector, 
as well as the potential disruption of the daily 
activities at the facility due to the inspection of the 
helideck. With the vast number of active helidecks in 
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the U.S. Gulf of Mexico, this presents an immense 
challenge. It will take considerable sum of money and 
resources to inspect and subsequently improve 
marking standards’ compliance for all helidecks in 
the U.S. Gulf of Mexico. 

1.1 Helidecks in the U.S. Gulf of 
Mexico 

Oversight of platform structures is being handled by 
the Bureau of Safety and Environmental Enforcement 
(BSEE) and the U.S. Coast Guard (USCG), where 
floating facilities and vessels are under the USCG, the 
fixed-leg facilities on the U.S. Continental Shelf in 
the Gulf of Mexico are overseen by BSEE. BSEE has 
a database that maintains the number and details of 
active and non-active offshore facilities in the U.S 
Gulf of Mexico, excluding vessels. The number of 
offshore facilities that are currently active can be 
derived from this BSEE database. Using the available 
dataset as of 1/23/2021, a pivot table can be created 
to identify those facilities that may potentially be non-
compliant and in need of inspection to assess if they 
need to be re-marked to become compliant with 
current available guidelines. The resulting pivot table 
shows that there are 1311 facilities that need to be 
assessed and might be candidates for re-marking. 

1.2 Helideck Design 

Offshore helideck safety starts with a safe design. In 
this section, the available standards and guidance 
material regarding design will be introduced. Design 
criteria include the application of markings as visual 
cues to help the helicopter pilot interpret safety 
related information.  

Currently, there are three prevailing guidance 
documents available for use in offshore helideck 
design. These three documents are the International 
Civil Aviation Organization (ICAO) Doc 9261 Part 1 
- Heliport Manual (International Civil Aviation 
Organization, 2018), United Kingdom Civil Aviation 
Authority (UK CAA) Publication 437 Standards for 
offshore helicopter landing areas (CAP 437),  and The 
Code for the Construction and Equipment of Mobile 
Offshore Drilling Units, 2009 (2009 MODU Code 
(International Maritime Organization, 2010)). 

ICAO Doc 9261 Part 1 is approved by and 
published under the authority of the Secretary 
General of the United Nations. Within ICAO, the 191 
Member States and several global aviation 
organizations work together to develop international 
Standards and Recommended Practices (SARPs). 
These SARPs are the references countries utilize to 

develop their national civil aviation regulations, 
which then become enforceable. This is an important 
aspect: ICAO SARPs are not legally binding by 
themselves. Instead, they form the basis of national 
regulations which have legal status. As such, ICAO 
Document 9261 provides global guidance regarding 
the design of offshore helicopter landing areas, 
including helidecks, and should be used by civil 
aviation authorities to develop their own regulations. 

CAP 437 is a similar standard created by the UK 
CAA and is a mandatory standard for all the helidecks 
under their regulatory oversight. CAP 437 has been 
applied in the North Sea since 1981 and has since 
undergone several amendments. “CAP 437 presents 
the criteria required by the CAA in assessing the 
standards of offshore helicopter landing areas for 
world-wide use by helicopters registered in the UK” 
(International Civil Aviation Organization, 2018) . As 
international vessels and drill ships with helidecks 
move around the globe, several of those vessels have 
been in the operating region of the U.S. Gulf of 
Mexico. As a result, this document has started to 
influence helideck design guidelines for other 
platforms and installations in the U.S. Gulf of 
Mexico. In addition, the CAP 437 design guidelines 
are considered an equivalent design standard to the 
design requirements mentioned in the U.S. Code of 
Federal Regulations for Helideck design by the 
USCG (Hawkins, 2015). 

The 2009 MODU Code is a document that 
addresses requirements for drilling ships and vessels; 
it does provide a section regarding helideck design 
guidelines.  It facilitates their international movement 
and operation, plus it ensures a level of safety for such 
units and for personnel on board. However, as the 
MODU code only focuses on ships and vessels, and 
not all platform facilities, it is outside of the scope of 
this thesis, so this concludes the introduction and use 
of the 2009 MODU Code. 

Due to the limited number of design criteria 
specifications in the United States Code of Federal 
Regulations, the energy industry in the U.S. Gulf of 
Mexico started developing their own guidance 
material in the form of Recommended Practices 
(RPs). In 1978, the Helicopter Safety Advisory 
Conference (HSAC) was created as a conference 
composed of over 115 members. This conference 
creates RPs for the industry in the U.S. Gulf of 
Mexico. In 2008, they started their process of 
developing RPs for helideck markings. The RPs were 
influenced by CAP 437, but not fully identical in 
every aspect of the document, such as the system of 
measurement (imperial units versus metric). HSAC 
decided to combine relevant elements of onshore 
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helideck markings from the Federal Aviation 
Authority (FAA) Advisory Circulars and from CAP 
437.  They merged these elements, along with their 
own innovative ideas, into RP 2008-1 Offshore 
Helideck Markings in the U.S. Gulf of Mexico. Since 
2008, an additional document, RP 2013-1 regarding 
Helideck Parking Area Markings was developed, and 
ultimately all helideck marking guidance was 
absorbed into the HSAC RP 160-series of helideck 
design guidance between 2016 and 2019. 

For a pilot to safely land on the intended helideck, 
the pilot needs to be able to correctly identify the 
helideck, know the size and weight capacity of the 
helideck he is going to land on, and any obstacles he 
needs to avoid (Bosman, 2021). 

To ensure that the pilot safely lands on the 
helideck of the intended platform, the identification 
marking on the helideck must be recognizable. 
Guidance material depicts this identification marking 
as white lettering in a specific location of the 
helideck. In HSAC RP 161 (Helicopter Safety 
Advisory Conference, 2021) and CAP 437 
(International Civil Aviation Organization, 2018), the 
identification marking locations are identical. Both 
identification markings are white, and while minor 
differences in size of font may occur, overall, these 
documents provide similar guidance for pilot 
recognition. 

Secondly, the pilot needs to be able to verify the 
weight limitations and size of the helideck. A 
helideck is designed for a specific model helicopter, 
which is the largest helicopter type the helideck is 
intended to serve. This design helicopter determines 
the maximum weight and size of the helideck. Once 
designed for this largest envisioned helicopter to be 
operating to the helideck, the helideck can safely 
accept that helicopter type and all smaller and lighter 
helicopter types. The weight capacity is therefore 
capped to the maximum allowable take-of mass 
(MTOM) of the design helicopter, which is available 
in the rotorcraft flight manual of the design 
helicopter. The helideck size is determined by the D-
value of the design helicopter. The d-value is defined 
as “The largest overall dimension of the helicopter 
when rotor(s) are turning, measured from the most 
forward position of the main rotor-tip-path plane to 
the most rearward position of the tail rotor-tip-path 
plane or rearward extension of the helicopter 
structure” (Helicopter Safety Advisory Conference, 
2021). The markings for weight and size between 
HSAC RP 161 and CAP 437 differ due to separate 
units of measurements used. CAP 437 documentation 
and marking standards are fully based on the metric 
system, whereas HSAC RP 161 is based on the 

imperial system while also providing some metric 
system options. CAP 437 (International Civil 
Aviation Organization, 2018) displays weight 
markings in metric tons in one specific location on the 
helideck. Size limitations are displayed on the 
helideck perimeter line using the applicable D-values. 
HSAC RP 161 (Helicopter Safety Advisory 
Conference, 2021) displays the D-value in a location 
marked inside of the bottom three-tiered box outlined 
in red preceded by the letter “D”.  

Finally, the pilot needs to be aware of any 
obstacles that might surround a helideck. Obstacle 
related markings are divided into three individual 
sectors: a 210 degree Obstacle Free Sector (OFS), a 
150 degree Limited Obstacle Sector (LOS) and a “No 
Nose” sector. The OFS is “An area free of all 
obstacles above helideck level outwards to a distance 
that will allow for an unobstructed arrival and 
departure path to/from the helideck for the 
helicopter(s) it is intended to serve” (Helicopter 
Safety Advisory Conference, 2021).The opposite side 
of the chevron marking is the LOS. As opposed to the 
OFS where n obstacles are allowed, the LOS allows 
some obstacles to be present, as long as they remain 
smaller in size than the preset profile. Obstacles in the 
colored areas shall remain below the associated 
height profile for the helideck to be considered 
compliant, providing a safe operating area for 
helicopters. If an object protrudes from the labeled 
sections, the helideck is not considered safe to land. 
The “No Nose” sector is a sector where the location 
of the helicopter’s nose is not allowed to go over to 
avoid the tail rotor to strike any obstacle or prevent 
the tail rotor to be maneuvered over a helideck access 
point.  

According to Table 1 (Composed from the BSEE 
database) there are 1194 facilities that were built 
before 2008. Resulting in 91.1 percent of the 
facilities in the U.S. Gulf of Mexico with the 
potential of being non-compliant to HSAC RP 
helideck marking guidelines. Additionally, the U.S. 
Coast Guard did not approve CAP 437 for use within 
the U.S. Gulf of Mexico until 2015 (Hawkins, 
2015). Cross referencing the BSEE database to filter 
out the number of facilities before 2015 
demonstrates that 98.8 percent of helidecks in the 
U.S. Gulf of Mexico might not follow the CAP 437 
guidance materials. 

Seeing as a staggering 98.8 percent of helidecks 
have not yet been verified as compliant with marking 
standards and therefore cannot be positively 
confirmed to be safe for landing, it is imperative that 
arrangements are made to further ensure offshore 
helideck operations safety. With the use of an image 
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Table 1: Percentage of helidecks in the Gulf of Mexico. 

 Number of 
Helidecks Percentage of all 

Helidecks in 
U.S. Gulf of 

Mexico 
1311 100.0% 

Helidecks 
before 2015 1295 98.8% 

Helidecks 
before 2008 1194 91.1% 

classification program, this issue of quickly verifying 
if helideck markings are applied using an available 
and acceptable standard can be easily resolved with 
much less hassle and cost. 

2 METHODS 

2.1 Marking Standard Comparison 

To properly identify helidecks and categorize them 
accordingly, a comparison needs be made between 
HSAC RP 161 and CAP 437. Both helidecks are 
painted green, have a yellow circle (Touch 
Down/Positioning Marking), an identification name, 
the letter ‘H’, and a chevron in a relative location of 
the ‘H’. HSAC RP 161 helidecks have a distinguished 
three-tiered red box to display the size, dimensions, 
and weight specifications of the helideck, where CAP 
437 helideck size markings are located within the 
perimeter line and the weight marking is identified in 
the top left corner. These are the key elements that the 
machine learning algorithm needs to be able to 
identify to distinguish between HSAC RP 161 and 
CAP 437 helidecks. Moreover, a third option will be 
added for the algorithm to use if the helideck is not 
able to be classified as either HSAC RP or CAP 437, 
it will be categorized as None. The third option is the 
most important option in this regard, as it will show 
which helidecks are non-compliant to either marking 
standard or will therefore have to be re-marked using 
one of the acceptable standards. 

2.2 Assessment of Helidecks Utilizing 
Deep Convolutional Neural 
Networks 

The main goal for the proposed convolutional neural 
network model is to identify if the helideck is 
compliant or not based on an image. Since there are 
limited options in obtaining photographs of offshore 
helidecks, the use of the guidance material can aid in 

creating self-developed (artificial) compliant 
imagery. This will demonstrate to the convolutional 
neural network how each helideck is supposed to look 
when following the HSAC RP 161 guidance material, 
the CAP 437 material, or None at all. Secondly, a 
convolutional neural network model with initial 
parameters is needed to provide a base and from there 
build an optimized model. While the parameters will 
change within the convolutional neural network 
through training, certain parameters such as kernel 
size, pooling size, and the size of the fully connected 
layer must be set manually. Based on the results of 
the initial configuration of the model, the accuracy 
might not be acceptable, therefore layers might need 
to be added, removed, or modified to adjust the model 
and increase the desired accuracy. 

Convolutional neural networks are like traditional 
neural networks in that they are both able to optimize 
their weights by learning. They also end the same way 
by receiving the outputs of earlier nodes and use loss 
functions to classify the object (O’Shea & Nash, 
2015). Where traditional neural networks and 
convolutional neural networks differ is that in 
traditional neural networks, the data is composed of 
text or numbers, such as a database, whereas 
convolutional neural networks perform their 
operations based on imagery and find information 
within images to recognize patterns. 

The proposed framework can be explained using 
the diagram in Figure 1 below. For each block in the 
process, a brief explanation is available to explain 
each specific process and the associated activities that 
were performed. The process will run in two different 
phases: phase one being composed of images that 
were self-developed (artificial) using the guidance 
materials, and phase two being composed of 
photographs from offshore facilities in the U.S. Gulf 
of Mexico. One key difference is the Image Pre-
Processing stage, as it is not performed in phase one, 
while in phase two, each photograph will need to be 
pre-processed before entering the convolutional 
neural network.  

 
Figure 1: Flowchart of methodology. 
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2.3 Phase One – Developing the Model 
using Artificial Images 

Using the guidance material, eight individual 
helideck marking images were made for each 
document, 8 using HSAC RP 161 and 8 using CAP 
437, resulting in 16 distinct images for the machine 
learning process. These images include helidecks that 
are round, rectangular, and octagonal. Based on these 
16 images, the category None was created manually 
by copying the images and using a photo editor to 
change colors and remove key elements. This process 
resulted in a folder with 23 individual images and 
were categorized as HSAC, CAP 437 or None. 

Before being able to create a dataset, the model 
will need to distinguish individual images from each 
other. To achieve this, each image has been verified 
and classified manually and the filename reflects the 
classification of the image. The filenames will either 
start with a prefix CAP 437, HSAC, or None.  

In Convolutional Neural Networks, more 
available data provides better overall results. The 
number of 23 images currently available is not 
enough to properly train a convolutional neural 
network. Data augmentation was used to 
automatically generate more images for the network 
to use during learning. The data augmentation 
consisted of taking a single image and altering 
saturation, brightness, or rotation to generate 
additional images that have different properties. 
Tensorflow has an ImageDataGenerator function that 
can adjust the mentioned property values and save the 
newly generated image to a different location (Abadi, 
et al., 2015). Additionally, this function can perform 
functions such as flipping the image orientation, 
shifting horizontally and vertically, adjusting zoom 
levels to make it appear closer or further away, and 
shearing the image to make the helideck appear 
angled (Abadi, et al., 2015). The augmented image 
was sheared, mirrored horizontally, zoomed out, and 
has an increased brightness. Repeating this step for 
each image 100 times will result in over 4,343 images 
as a dataset for the neural network learning. 

 Just as important as the algorithm itself, the 
environment used to train the algorithm needs to be 
taken into consideration. While the model can be 
exported and be reused in other hardware, the training 
process requires a more robust setting. For this 
training process a desktop computer with a ZOTAC 
GeForce® GTX 1070 Ti Mini graphics card was used 
to train the model.  

The graphics card aids in accelerating the neural 
network training process by using the Tensorflow 
library. This library will use the CUDA cores to allow 

parallel processing (Abadi, et al., 2015). The software 
used in this process was Microsoft Visual Studio 
Code with the Python extension provided by 
Microsoft. Libraries within Python 3.8.7 mainly 
consist of Tensorflow 2.4.1 and keras 2.4.3, while 
sklearn was used for metrics (Pedregosa, et al., 2011).  

A base convolutional neural network model is 
first created to start the process of finding an 
optimized model. The base model is manually 
constructed to increase productivity and a gradient 
descent optimizer is selected. Based on the resulting 
graphs of accuracy and loss, manual modifications 
are made to add and adjust layers and create a model 
that demonstrates the desired learning curve, as well 
as a desired loss function curve.  

This initial model will also define the compiler 
used for future fine-tuning, and will be chosen 
between SGD, AdaDelta, RMSprop, and Adam. The 
chosen optimizer will be based on the graphs 
generated after each training session and by the 
performance of the model.  

During the training, the model will be modified 
until it has a validation accuracy above 90 percent 
This number was chosen as this program is meant to 
be an aid to the pilot, so in case it does misidentify, 
the pilot will still be able to personally verify the 
helideck. In this process, the computer uses a loop to 
modify the number of convolutions per layer and the 
number of nodes per dense layers to find a model that 
has an accuracy above 90 percent.  

The accuracy of the predictions is dependent on 
the training and testing data. There are no universal 
rules regarding the identification of proper ratios 
between training and testing data to obtain a certain 
percentage in accuracy. Also, as the size of the 
training data increases, the accuracy of the model will 
likewise increase (Medar, Rajpurohit, & Rashmi, 
2017). Focusing on the model, rather than the number 
of images it is training and testing on, will give the 
program the chance to obtain accuracies of 90 percent 
or higher. The training and testing ratio will be set at 
75 percent training and 25 percent testing. Using this 
ratio, the model will have enough images to learn and 
adapt to the ratio to get accuracies above 90 percent. 
In case the optimization process is not able to obtain 
90 percent, the training and testing ratio will be 
modified and then the process will have to be 
restarted to find the proper model. 

2.4 Phase Two - Developing the Model 
using Real Images 

Phase two of the process is similar to phase one, 
except that instead of self-developed images actual 
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photographs are used. The photographs need to be 
pre-processed before entering the neural network. 
Additionally, the previously optimized model in 
phase one is now being used as the initial model to 
start phase 2. In other words, the model used in phase 
2 benefits from the transfer learning approach. Most 
of the photographs obtained had a broad range of 
resolutions. Some images were as large as 4252 by 
2838 pixels compared to other images which were as 
small as 640 by 480 pixels in resolution. In addition, 
some images included the entire facility and not just 
the helideck. Therefore, some images needed to be 
resized and cropped to focus on the helideck in order 
to be usable in the convolutional neural network. The 
image preparation was performed through a process 
of segmentation, in which certain features are filtered 
out of the image depending on the users’ 
specifications.  

The similarities in HSAC RP 161 and CAP 437 
work in the favor of segmentation in such a way that 
the computer can focus on the helideck being green 
to find it in the image. For this process to work, each 
image is converted into a three-dimensional array, 
this is done because each image is composed of 
values for red, green, and blue, and range from zero 
to 255. Unfortunately, there is a drawback, as each 
pixel in an image has a green value to create its color. 
This results in it being more difficult for the computer 
to find the green helideck. To remedy this, hue, 
saturation, and value (also known as intensity) are 
used to give more control over which green to look 
for. Applying a range of green values, contrast values, 
and intensity values, the computer can filter the image 
based on the range provided. This is also known as 
thresholding.  

Within python, using the OpenCV (commonly 
called cv2) library, the use of masks can help segment 
the helideck from the rest of the image (Bradski, 
2000). To develop this mask, a custom tool was 
created to find the ranges of hue, saturation, and 
intensity of the green helideck. The tool provides a 
graphical interface where color (HSV) values can be 
adjusted at will, filtering the color of the resulting 
image. Once the values are identified, they can then 
be used in the findContours function built into the cv2 
library. This function will locate a rectangle around 
the helideck and create the image that will later be 
used in the neural network (Bradski, 2000).  

Moreover, a total of 56 photographs of helidecks 
or offshore platforms with helidecks were collected, 
and these underwent the same data augmentation 
process as mentioned under phase one to generate 
additional photographs for the dataset. The same 
parameters for data augmentation were used as in 

phase one. This resulted in 4,873 photographs that the 
neural network can use. 

3 RESULTS 

3.1 Results of Phase One 

The initial model starts off with a single 200-by-200 
pixel image. This image was then convoluted with 32 
filters in the convolutional layer. Following this, the 
ReLU activation layer was used to remove the 
negative values that may appear and adjust them to 
zero. After activation, a dropout rate of 50 percent 
was applied; meaning that out of the 32 nodes, 16 
were randomly selected to be passed onto the next 
layer. The next layer is the fully connected layer, in 
which the 16 nodes are then condensed into one single 
vector.  At the end of the network, the dense layer will 
further narrow the results down to three choices. The 
softmax activation layer will then use these three 
choices to return a probability vector.  

Using this model, different optimization 
algorithms were used to find the optimum. Adam and 
RMSProp show the most potential. Adam, however, 
showed a more stable curve, and was therefore chosen 
to be used for the rest of the development. Using the 
Adam compiler and step five of the methodology, a 
more complex network was created. This model was 
able to reach an accuracy of 98.1 percent. Both the 
confusion matrix and classification report are shown 
below in Table 2 and Table 3. These show the model 
tends to classify some helidecks that were None as 
HSAC RP 161 helidecks. As seen in Figure 2, the 
model was able to learn the data at a steady rate, and 
both accuracy and loss remained close together 
throughout the entire training process. 

Table 2: Confusion matrix of final theoretical model. 

 Precision Recall F1-
score Support 

CAP 437 0.98 0.97 0.98 427 
HSAC 0.99 0.95 0.97 603 
None 0.91 0.98 0.95 189 

Table 3: Classification report of the final theoretical model. 

 
Actual 

CAP 437 HSAC None 

Pr
ed

ic
te

d CAP 437 200 0 2 
HSAC 0 183 14 
None 0 4 683 
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Figure 2: Accuracy and loss of the phase one model. 

3.2 Results of Phase Two 

In phase two, images are cropped and resized to the 
resolution of 200 by 200 pixels in the pre-processing 
stage. The same model and compiler from the 
previous phase were used for this phase as well, with 
the model being re-trained using the pre-processed 
photographs rather than the manually created images 
used in phase one. The model was able to train up to  
 

Table 4: Confusion matrix from phase two model. 

 
Actual 

CAP437 HSAC None 

Pr
ed

ic
te

d CAP437 407 7 13 
HSAC 16 551 36 
None 4 1 184 

Table 5: Classification report from phase two model. 

 Precision Recall F1-score Support 
CAP 437 1.00 1.00 1.00 202 

HSAC 0.98 0.94 0.96 197 
None 0.98 1.00 0.99 687 

 
Figure 3: Accuracy and Loss curves of phase two model. 

an accuracy of 95.7 percent. This is lower than phase 
one, but it is to be expected due to the noise presented 
in the photographs. The same confusion matrix, 
classification report and performance graphs were 
generated to evaluate the model and are shown in 
Table 4 and Table 5 as well as Figure 3. 

4 DISCUSSION 

4.1 Conclusions 

According to the literature review, the standardization 
of offshore helideck marking is an important aspect 
for the safety of offshore helicopter occupants. With 
standardized markings in place, the pilot will be able 
to identify the correct helideck, know its weight and 
size limitations, and be able to find obstacle sector 
markings crucial for landing safely such as the OFS, 
LOS, and “No Nose” sectors. To ensure that 
acceptable marking standards are complied with, 
assessments of each individual offshore helideck 
must be completed. Unfortunately, to do this requires 
many resources due to the number of applicable 
helidecks, manpower needed to perform the 
inspections, and costs associated with offshore travel 
for the inspectors and their hourly rate as subject 
matter experts. In-person assessment of individual 
helidecks will also require many years to complete. 
Using machine learning, this task can be accelerated 
and simplified with the use of convolutional neural 
networks, where images are used to classify a 
helideck into three different categories of helideck 
marking standards: HSAC RP 161, CAP 437, or 
None. These standards depict safety related markings 
in specific locations on a helideck where the pilots 
can obtain information quickly. Images were 
generated based on the marking requirements in 
HSAC RP 161, CAP 437, and None, and photographs 
were pre-processed to focus on the helideck rather 
than the entire platform.  

Using the literature review results, and the 
flowchart depicting the methodology, two models 
were created in separate phases. Phase one to classify 
manually constructed images, and phase two to 
classify actual helideck photographs using the 
transfer learning approach. The objective of each 
phase was to create a theoretical model that had an 
accuracy above 90 percent. The first phase resulted in 
a model classification success rate of 98.1 percent, 
while phase two had a success rate only slightly 
decreased at 95.7 percent. These results show that 
optimized machine learning principles can be used to 
improve the assessment of compliance of offshore 
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helideck marking standards in the U.S. Gulf of 
Mexico.  

4.2 Future Work 

There is potential in this model to possibly be 
integrated into a helicopter, where a camera and 
artificial intelligence can assist the pilot in identifying 
hazards, obstacles, and destination information in 
real-time. This model can also be adjusted to possibly 
include other marking standards or recommended 
practices, thereby furthering its reach to outside of the 
U.S. Gulf of Mexico. 

This model could provide a base understanding to 
add additional features such as obstacle detection 
around the helidecks to improve safety even more or 
initiate another research to use infrared and/or radar 
imagery in real time to augment pilot vision and 
situational awareness. 

Moreover, this model is not limited by the 
offshore applications. It can also be used for onshore 
applications such as hospital and rooftop heliports. 
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