A Framework for Seamless Offloading in IoT Applications using Edge

Keywords:

Abstract:

and Cloud Computing

Himesh Welgama, Kevin Lee and Jonathan Kua
School of Information Technology, Deakin University, VIC 3220, Geelong, Australia

Edge, Cloud, Docker, 10T, Offloading.

Typical Internet of Things (IoT) deployments are resource-constrained, with limited computation and storage,
high network latency, and low bandwidth. The introduction of Edge and Cloud computing provides a method
of mitigating these shortfalls. This paper proposes a framework for structuring IoT applications to allow for
seamless offloading (based on CPU load) of work from IoT nodes to Edge and Cloud computing resources.
The proposed flexible framework utilises software to orchestrate multiple containerised IoT applications
for optimal performance within available computational resources. Edge and Cloud servers co-operate
autonomously to determine the appropriate resource allocation based on the requirements of running [oT
applications in real-time. The result is a framework that is suited to perform with heterogeneous IoT hardware
while improving overall computational performance, latency and bandwidth relative to IoT architectures that
do not auto-scale. This framework is evaluated using an experimental setup with multiple IoT nodes, Edge
nodes and Cloud computing resources. It demonstrates the approach is viable and results in a flexible and

scalable IoT solution.

1 INTRODUCTION

The benefits for Internet of Things (IoT) applications
of integrating sensing nodes, Edge and Cloud will
lead to improved latency and bandwidth for IoT
devices and also provide additional resources for
resource constrained devices (El-Sayed et al., 2017).
Edge and Cloud computing paradigm that is a
bridge between IoT, Edge and Cloud computing,
data is stored and pre-processed at Edge servers,
only a small amount of data is then pushed towards
Cloud servers if increased computation is needed.
This process of transmitting data between different
levels reduces the latency, assists in increase overall
computational power along with boosting scalability.
There are particular challenges in the convergence
of IoT, Edge and Cloud computing for various
applications (Biswas and Giaffreda, 2014; Kua et al.,
2017),

A 3-tier Edge and Cloud infrastructure can
address the limitations of Edge computing but these
are difficult to build due to the coordination required.
Data needs to be seamlessly transferred between
the IoT node, Edge resources and Cloud resources
without introducing unnecessary delay. These
challenges can be mitigated through well designed

Welgama, H., Lee, K. and Kua, J.
A Framework for Seamless Offloading in loT Applications using Edge and Cloud Computing.
DOI: 10.5220/0011107500003194

frameworks and architectures that allow applications
to be built that utilise IoT, Edge and Cloud computing
resources. A three-tier architecture builds a hierarchy
with inter-layer computation offloading to address
this problem (Hwang et al., 2021). To this end, much
research has also been done to realize the “Edge-
Cloud Continuum” (Milojicic, 2020; Taivalsaari
et al., 2021; Aloi et al., 2020).

The aim of the research presented in this paper
is to improve the scalability and performance of
IoT applications that use a 3-tier architecture. The
contributions of this paper are: (i) the development of
a framework that allows IoT applications to be built
that can utilise Edge and Cloud resources seamlessly
through the use of container-based virtualisation, (ii)
mechanisms to support the automatic scaling (based
on CPU load) of container-based IoT applications
across edge and cloud resources, (iii) support for
the dynamic addition and removal of IoT, edge
and cloud resources in IoT applications, and (iv)
an evaluation comparing the approach to one that
doesn’t automatically scale. The proposed approach
allows for improved resource utilisation and improved
capability for all nodes in IoT applications.

The remainder of this paper is as follows.
Section 2 provides a background of the state-of-the-

289

In Proceedings of the 7th International Conference on Internet of Things, Big Data and Security (loTBDS 2022), pages 289-296

ISBN: 978-989-758-564-7; ISSN: 2184-4976

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

TIoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

art in the area. Section 3 proposes a new framework
for scalable IoT Applications using offloading.
Section 4 presents an experimental evaluation of the
proposed framework. Finally, Section 5 presents
some conclusions and future work.

2 AUTO-SCALING AND
OFFLOADING FOR EDGE
COMPUTING

Auto-scaling and offloading allow for IoT and edge
applications to be able to meet processing demand.
Fundamentally, auto-scaling is about increasing the
amount of resources available to the task. In
edge computing, auto-scaling represents a variety of
challenges and can be implemented in a range of
different ways (Taherizadeh and Stankovski, 2017).
The work in (Dinh et al., 2017) proposes an approach
to auto-scaling in mobile edge computing by scaling
the CPU frequency on devices that support it. This
is an example of utilising resources to the maximum,
whilst potentially incurring costs, such as increased
energy use or device life span. Auto-scaling is
a core property of cloud computing, through the
automatic additional and removal of cloned virtual
machines (Lorido-Botran et al., 2014). This approach
can be used in IoT, for example, increase the number
of supported IoT or sensor nodes (Lee et al., 2010).

Offloading is a form of auto-scaling which utilises
additional devices to increase the computational
resources available for the task. In edge computing,
there are a variety of approaches to supporting
offloading of work (Mach and Becvar, 2017).
(Zhang, 2018) takes a pricing based approach
to choosing between different edge servers to
offload data for processing. (Liu and Zhang,
2018) focuses on ensuring achieving low-latency
communications through the use of offloading. There
is also promising work to improve the battery
life of mobile devices by offloading to nearby
edge computing resources (Sardellitti et al., 2015).
Recent work in container based approaches for
IoT allows automatic failure-recovery for IoT edge
applications (Olorunnife et al., 2021).

As increasingly IoT applications are being de-
ployed using containers, and more processing is being
performed in IoT applications (e.g. video processing),
there will be a need for auto-scaling and offloading in
these applications. Support for auto-scaling and of-
floading in container-based deployments is currently
extremely limited, with none of the approaches dis-
cussed here targeting container-based deployments

290

through the whole of the IoT architecture. As an
example, (Wu et al., 2017) proposes the use of of-
floading in a container-based deployment for mobile
computation, but only creates cloud-based contain-
ers to offload work directly to, and does not take a
hierarchical scalable approach suitable for IoT. (Ab-
dul Majeed et al., 2019) provide an analysis of the
performance benefit in offloading critical tasks from
edge to cloud, in a container-based environment, but
this is focused on normally fixed services than IoT
applications, and doesn’t take into account the end
node. Most container-based auto-scaling approaches,
focus on a single layer, such as the edge or fog layer.
For example, (Zheng and Yen, 2019) propose an
approach to auto-scale Kubernetes containers to bal-
ance application performance and resource usage.
This paper aims to demonstrate that auto-scaling for
IoT applications through the use of offloading is a
viable technique in container-based deployments.

3 PROPOSED FRAMEWORK

This paper proposes a framework for building
scalable IoT applications with a focus on using Edge
and Cloud computing resources. Existing methods
(involving the use of container-based virtualization,
Edge, Cloud and Fog computing as described in
Section 2) often execute computational tasks in a
siloed fashion, and often lack seamless cooperation
between the various IoT/Edge/Cloud nodes.

The novelty of the framework proposed in
this paper is in the real-time cooperation between
IoT, Edge and Cloud nodes using a container-
based offloading mechanism to satisfy performance
requirements.

3.1 Design

Figure 1 illustrates the architecture of the proposed
framework that aims to balance and satisfy the
requirements. It adopts the popular 3-tier architecture
of 10T, Edge and Cloud computing resources. The
architecture aims to be scalable through the use
of decentralized management, which allows for the
introduction of new Edge or Cloud devices at any
point in time. An application container can be
run as a whole or as sub-tasks, depending on the
tasks requirements. Host devices are connected to
a private Docker registry and a Message Queuing
Telemetry Transport (MQTT) broker. For evaluation
purposes the program offers clients the ability to
create Docker registries or MQTT brokers upon its
first initialisation. MQTT is used as the primary

A Framework for Seamless Offloading in IoT Applications using Edge and Cloud Computing

method of communication between the nodes. All
nodes must be connected to the same MQTT broker.

PP

CLOUD SERVERS

anoTo

3903

10|

10T NODE 10T NODE 10T NODE

I COMPUTATIONAL HEQUIREMENTS[>

Figure 1: Overview of proposed architecture.

In the architecture, the IoT node/device is
responsible for data collection and processing within
the initial phase. Applications of low latency and
minimum computational demands will run on the
IoT device until the thresholds are met. Sub-
tasks can be partitioned from larger applications
and containerised, Each sub-task will have different
application and computational requirements. When
the sub-tasks increase their demands, they may
exceed the processing capability of the IoT device.
Under such circumstances, a request will be made
to a local Edge server to share hardware resources.
Containerised sub-tasks will be transitioned through a
Docker registry for processing within the Edge server.

An Edge node is situated within the networks
Edge. It aims to provide local optimisation through
increased computational resources and improved la-
tency for IoT devices. Edge nodes may undertake
any task requested from IoT devices requiring ad-
ditional resources. Furthermore, the availability of
Edge nodes can be increased to meet scalability re-
quirements of an application. Situations where a
particular Edge node is unable to satisfy computa-
tional needs of a sub-task can request resources from
the Cloud nodes. If a global optimisation approach
is required, the applications can also be processed
entirely across the Cloud nodes.

The Cloud Node can operate with a similar method
to Edge nodes, providing global optimisation and in-
creased computational resources. Sub-tasks that re-
quire access from a secure remote location will be
controlled through the Cloud tier. As computational
resources increase, the availability of Cloud resources
provide more utility than constructing new Edge
servers. Cloud nodes can communicate with each
other to distribute their computational loads effec-

tively, e.g., using load-balancer and auto-scaler (Pan
and McElhannon, 2017).

Applications can be separated into sub-tasks and
distributed across Cloud or Edge nodes. However,
they require a method of orchestration to allow for
the whole system to perform correctly. Once an
instance of this infrastructure scales, decentralized
communication can be deployed to avoid any vendor
lock-in or possibilities of information loss. MQTT
is a lightweight protocol that offers a flexible
Publish/Subscribe model. This architecture allows
for any additional Edge or Cloud node to subscribe
to open application requests, without requiring
databases or centralized management systems. As
long as a system is connected to the same MQTT
broker, it can scale to ‘n’ size.

Docker Registry Location?

What Node Is This?

Figure 2: Initialisation of nodes within the framework.

To ensure safe orchestration of applications within
the system, a configuration program will run inside
the operating system of each node. The program
will track the statistics of each IoT service within
the pool and relay MQTT messages and Docker API
calls when necessary. To improve computational
performance of this system, new nodes can be added
and initialised.

Node.js is used in the proposed framework. Each
node within the system is initialised at the start of
each experiment.

o All nodes must have Docker Engine installed

Required thresholds for application limits need to
be decided prior to configuring nodes

MQTT Broker and Docker Registry are set-up

Docker application must be saved as .tar file
within IoT node prior to execution

A series of system checks are performed prior to
setting up each node on the IoT framework. Figure 2
details the required responses upon initialisation.

291

TIoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

Figure 3 shows an example of the configuration file
created following the initialisation of a node within
the framework. This figure describes the necessary
information that’s required in order to establish a
connection between the Docker registry, Docker
image, MQTT broker and other nodes within the
framework.

{
registryLocation: '192.168.0.0:5000",
nodeType: ‘iot’,
imageLocation: ‘/image-name.tar’,
imageName: ‘Hello-World’,
mgttLocation: '192.168.0.1’

Figure 3: Node configuration JSON file.

4 EVALUATION

This section presents the experimental setup and
evaluation results of the proposed framework. The
first two evaluation scenarios focus on the validation
of the proposed system while the third evaluation
scenario compares the real-world performance of a
traditional non-auto-scaling IoT architecture and the
proposed framework.

4.1 Experimental Setup and Network
Configuration

The experimental test-bed setup consists of the
following:

e Raspberry Pi 3B+ with Wifi connection (IoT
node)

e x86 Intel i5-3570s @ 3.10GHz, 4GB RAM,
300GB HDD (Edge node)

e 4 Core Intel x86 CPU, 16Gb RAM, 25GB SSD
system (Cloud)

e 1 Core Intel x86 CPU, 1GB RAM, 25GB SSD
system (Cloud for Evaluation 1)
The network configuration for the experiments is

illustrated in Figure 4 and described as follows.
e [oT nodes connected to gateway through Wi-Fi.
e An edge node that uses a Gigabit wired Ethernet

connection to the gateway. This has a maximum
achievable download speed of 1000Mbits/s

e The network gateway from the selected Internet
Service Provider (ISP) is capped at 250Mbits/s
download and 20Mbits/s upload.

e A Cloud server is located in close geographical
proximity (Sydney Australia)

292

4.2 Scenario 1: Migration of
IoT-Edge-Cloud Nodes

This scenario analyses the impact of node movement
based on the available resources by visualising the
time between the transfer of a Docker container to a
higher level node in the framework. A Linux-based
software library stress-ng (King, 2017) is used to
create artificial load for performance bench-marking
and testing. In these experiments, the software stress
tests each CPU to 25% on each thread. The command
was encapsulated within a Docker image that was
containerised and used for each node.

A counter is used to track the CPU percentage
from when the Docker image is ran to the moment it
has reached its maximum threshold. On the Edge and
Cloud nodes, the counter will gather CPU percentage
as soon as the MQTT message is received. This is
used to calculate the downtime between the transfer of
images between nodes. Each node along the system
has specific maximum thresholds placed based on
their requirements. This is less relevant in this
experiment as the primary focus is on observing the
transfer of Docker images between nodes.

EDGE SERVER
Gigabit Ethernet
192.168.0.148
P ‘ ISP GATEWAY
- D: 250 Mbits/s
@ i
192.168.0.1
CLOUD SERVER
Wireless

Sydney, Ausiralia /—-/,_

52.255.47.20

—_

loT A

loTB a Wireless
Wireless a 192.168.0.128
192.168.0.76
Figure 4: Network configuration for the evaluation.

Figure 5 presents the evaluation results. It is
observed that the transfer of Docker image from IoT
to the Edge node has negligible downtime. This is due
to the location of the Docker registry location being
within the Edge node itself, therefore drastically
reducing the amount of information that has to be
downloaded. The Cloud node has significantly more
difficulty in downloading and running the Docker
image from the registry, which resulted in an almost
20-second delay in data loss between the moment
the Edge node stopped to when the Cloud node
started. This delay is heavily dependent on the
networking configuration of Edge Server and Cloud
Server. This scenario demonstrated the efficiency of

A Framework for Seamless Offloading in IoT Applications using Edge and Cloud Computing

data transmission from the IoT node to the Edge node.
As the system requirements become more complex,
a more logical approach would be the use of task
splitting with the proposed architecture.

loT —Edge —Cloud

o
S

CPU Utilization (%)
3
g

60
40
20

1 11 21 31 41 51 61 71 81
Elapsed Time (s)

Figure 5: Scenario 1:
thresholds are met.

Application movement when

4.3 Scenario 2: Aggregation of
Sub-tasks

Scenario 2 evaluates the separating of an application
into multiple containerised sub-tasks with the goal
of mitigating downtime and improving the utilisation
of each node. Based on thresholds, sub-tasks are
automatically set to migrate to a higher-level node
if a threshold is met. This evaluation hypothesises
a greater reduction in downtime between tasks, and
efficient resource allocation within nodes. The main
application is split between three separate tasks,
ranging from 25%, 50% and 75% CPU load utilised
in each task respectively. Tasks are initially deployed
on the IoT node as one application and are moved
to a separate node if the threshold is met. In this
experiment, the threshold values are not significant,
however the movement and CPU% utilisation of each
sub-task is important as this value will indicate the
successful migration/movement and optimal usage of
compute resources.

! . om a s e s
Elapsed Time (s)

Figure 6: Scenario 2: Sub-task 1, Avg 25% load per thread.

Figures 6, 7, 8 present the CPU utilisation for each
sub-tasks at 25%, 50% and 75% CPU load on each
thread. Figure 9 overlays all three graph plots and

00 —loT—Edge

0 19 40 60 82 102 122 142 162
Elapsed Time (s)

Figure 7: Scenario 2: Sub-task 2, Avg 50% load per thread.

350
—Series] —fdge —Cloud
300

250

CPU Utilization (%)

0 17 38 59 101 121 141 162

EIZ:JSed Time (s)
Figure 8: Scenario 2: Sub-task 3, Avg 75% load per thread.

compares the performance across the three sub-tasks.

In this evaluation, all sub-tasks successfully run
on the most optimal node. The approach uses a 1
minute time window to examine the average CPU
usage compared against a set threshold. During each
1-minute interval, each sub-task will re-evaluate its
computational requirements and move the application
to a higher level node if necessary. The variability
of CPU utilisation percentages between each sub-
task are influenced by many different factors. This
evaluation focuses on the node movement and average
CPU load utilisation. The two key takeaways from
this evaluation are:

1. The application does not stop running during
periods of downtime between transitioning from
nodes. This can be observed from Figure 8§,
as the migration of sub-task from Edge node to
Cloud node has caused a 20-second delay. During
this period, sub-tasks 1 and 2 are still running at
optimal performance as seen in Figure 9.

2. Performance of sub-tasks on each node will be
below ideal when the host is executing more
than one task running at similar or higher CPU
percentage. This can be observed in Figures 7
and 8 where each sub-task is running at a higher
CPU percentage. This result indicates that more
computational resources are being allocated as the
operating system increases the priority level for
the particular task, and CPU throttling. Figure 7
demonstrates the increase of CPU percentage
following the Cloud migration of sub-task 3.

293

TIoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

CPU Utilization (%)

0 17 38 s9 81 101 21 141 162
Elapsed Time (s)

Figure 9: Application view: Aggregation of all sub-tasks.

Scenario 2 validates the framework for multi-task
programs and evaluates the effectiveness of utilising
IoT/Edge/Cloud nodes for optimal performance.

4.4 Scenario 3: IoT Node Optimised for
Image Detection

An IoT framework that autonomously optimises each
node to perform at its peak has been validated in
Scenarios 1 and 2. Scenario 3 represents a use-case
scenario in the real world. This use case involves
real-time image detection with Machine Learning
on IoT/Edge/Cloud nodes. The application of IoT
technologies for image detection is rapidly growing,
e.g., the need for robust face/mask detection and
social distancing during the COVID-19 pandemic.
This scenario evaluates the performance of each
different node to process face detection, and compares
the performance to a traditional Cloud approach.
The deployed application gathers an image of an
artificially generated face database and perform
image detection algorithms. This process is repeated
many times and the response times between the
generation of image to detection are recorded along
with the total number of faces processed within
the elapsed time frame. Using this metric, the
performance of the proposed architecture and its
usability in real-world applications can be further
investigated. The ability of the proposed architecture
to handle multiple IoT nodes, and the performance
impact of larger applications can also be evaluated.
An experiment is conducted to evaluate a tradi-
tional multi-device IoT architecture against the pro-
posed three tier architecture. This scenario utilises
two Raspberry Pi 3B+ IoT devices that work con-
currently to perform the same task. Both IoT de-
vices (IoT A and IoT B) vary the amount of threads
that are used to perform the application. IoT A uses
four threads whereas IoT B uses two threads. This
is purposely done in order to maximise the CPU us-
age where available resulting in the highest possible
output for either architecture and showcase variability
in the IoT devices used. Detailed specifications for
the experimental setup can be observed in Sub Sec-

294

tion 4.1. A second experiment is conducted with the
same setup, also using the same three-tier architec-
ture. The containerised application runs on two Rasp-
berry Pi 3B+ boards separately. This evaluation ini-
tially runs on a traditional IoT architecture, where the
device uses HTTP GET to retrieve the image and ex-
ecutes the ML algorithm. Next, the application runs
within the proposed architecture.

20

18
D6
E 14
Z 12

210
c

Process
omn s o ™

1 11 21 31 41 51 61 71 8 91 101 111 121
Number of images processed

Figure 10: IoT A (four threads): Traditional approach.

1 11 21 31 41 51
Number of images processed

Figure 11: IoT B (two threads): Traditional approach.

The test was performed for 180 seconds, with
results presented in Figs. 10 and 11). IoT A had
faster processing time given the higher number of
threads. The extra two threads resulted in roughly
129% increase in the number of faces processed. The
traditional approach gathered 177 processed faces
within the time frame.

<o 400 Two Threads
3
~— 350 Four Threads

0 20 41 61 81 102 122 142
Time Elapsed (s)

Figure 12: Results with proposed architectural framework:
IoT A (four threads) and IoT B (two threads).

The same containerised application was then
launched from both IoT devices within the proposed
architecture. As illustrated in Figure 12, the appli-
cation was successful in transitioning the application
accordingly based on the CPU usage threshold. It can
be noted that the initial erratic CPU fluctuations are
due to the lower computational power of the Rasp-

A Framework for Seamless Offloading in IoT Applications using Edge and Cloud Computing

berry Pi, this same pattern is seen on Figure 6. The
periods of which either application migrates from
one host to another can be observed in sections of the
graph where the CPU % dips to 0. During the applica-
tion, IoT A (two threads) was above the set threshold
therefore requiring a migration to the Cloud server.
However, this migration was unsuccessful due to ma-
jor delays in the Cloud host to download the requested
Docker container. Furthermore, the Four Threads’
application remained on the Edge node, most likely
due to the increased computational resources avail-
able while the “Two Threads’ application remained
offline in its attempt to migrate to the cloud node.
A conclusion is drawn from this initial testing: The
proposed architecture is not designed to be suited for
large applications with sizes ranging above 1GB as
this induces further strain on the networking capabil-
ities of the involved nodes. The architectural design
of the proposed framework will need to be adapted to
suit larger applications.

MQTT: Download request

/ o
Edge Cloud Y
L

Docker Pull Request

MQTT: OK

Figure 13: Workflow of ‘pre-loaded’ approach.

A ‘pre-loaded’ approach can be taken to ensure
that the application is loaded within the Cloud
server prior to the initialisation of the IoT node.
Figure 13 demonstrates that a possible solution is
a Publish/Subscribe protocol to indicate completion
of pre-loaded images in the Cloud server. Complex
applications may cause high storage and network load
when ’pre-loading’ multiple applications.

450
400 Two Thread
350
300
250
200
150
100
50
0
0 12 24 35 47 59 71 83 96 108 120 133 145 157 169 181
Time Elapsed (s)

Four Thread

CPU Utilization (%)

Figure 14: Proposed framework with pre-loading.

The effects of pre-loading images onto the Cloud
server is illustrated in Figure 14. The CPU utilisation
shows that both applications had made use of
all available computational resources as transitions
between nodes can be observed through CPU%
dipping to 0% as seen in Figure 9 and 8. Successful

migration of the containerised applications to the
cloud node was made possible through the use
of pre-loading the application in the Cloud server,
thereby, allowing the two IoT applications to preform
optimally with higher computational resources. With
comparison to the first evaluation made on the
proposed architecture, this evaluation resulted in
around 2-second delay between the Edge node and
Cloud node. The performance of the application
to successfully process faces (images) from the
proposed architecture can be compared against the
traditional approach of running IoT A and IoT B
individually (See Figure 10 and 11).

Framework

Traditional

0 5 10 15
Average Processing Time Required (s)

Figure 15: Comparison: Processing time.

700
600
el
5 2 500
-
Q O
£ 8 400
2 g 300
T
8§ 20
0

Traditional Framework

Figure 16: Comparison: Overall performance.

A comparison can be made between the two
approaches, by comparing the total amount of images
processed and the total processing time. The
proposed architecture is able to outperform the
traditional IoT system in both processing time and
overall performance. This indicates the movement
of nodes between IoT to Edge and Cloud servers are
successful in providing the most optimal environment
for each application to thrive. Figure 15 shows a 10-
second gap between processing averages of the two
systems. Figure 16 presents a 237% increase in total
faces processed through out the three-minute elapsed
time. Further evaluations can be performed to assess
a many-to-many situation where multiple IoT nodes
are sending data to multiple Edge and Cloud servers.
This will provide extra validation for the scalability
for such architectures in real-world applications.

295

TIoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

S CONCLUSIONS

In this paper, a framework for seamless offloading for
IoT applications using Edge and Cloud computing for
container-based applications was proposed. It aims
to overcome the issues of traditional IoT systems
by utilising a sub-task methodology in deploying
IoT applications for optimal performance under the
proposed architecture. It evaluated in a variety
of scenarios to demonstrate offloading to Edge
and Cloud resources under load. The evaluation
demonstrated that in real world applications, it
outperforms traditional IoT applications. However,
it is noted that the work presented in this paper is
a proof-of-concept demonstration and further work
is needed. @~ Our work has not yet taken into
account real-world applications that have stringent
real-time latency requirements. Future work will
seek to address these issues and investigate the
seamless integration of the proposed framework, in
particular its offloading capability with common IoT
development frameworks

REFERENCES

Abdul Majeed, A., Kilpatrick, P., Spence, 1., and Varghese,
B. (2019). Performance estimation of container-based
cloud-to-fog offloading. In Proceedings of the 12th
IEEE/ACM International Conference on Utility and
Cloud Computing Companion, pages 151-156.

Aloi, G., Fortino, G., Gravina, R., Pace, P., and Savaglio,
C. (2020). Simulation-driven platform for edge-based
aal systems. [EEE Journal on Selected Areas in
Communications, 39(2):446-462.

Biswas, A. R. and Giaffreda, R. (2014). IoT and cloud
convergence: Opportunities and challenges. In 2014
IEEE World Forum on Internet of Things (WF-IoT),
pages 375-376. IEEE.

Dinh, T. Q., Tang, J., La, Q. D., and Quek, T. Q.
(2017). Offloading in mobile edge computing: Task
allocation and computational frequency scaling. IEEE
Transactions on Communications, 65(8):3571-3584.

El-Sayed, H., Sankar, S., Prasad, M., Puthal, D., Gupta, A.,
Mohanty, M., and Lin, C.-T. (2017). Edge of things:
The big picture on the integration of edge, iot and the
cloud in a distributed computing environment. /EEE
Access, 6:1706-1717.

Hwang, R.-H., Lai, Y.-C., and Lin, Y.-D. (2021). Offloading
optimization with delay distribution in the 3-tier
federated cloud, edge, and fog systems. arXiv preprint
arXiv:2107.05015.

King, C. I. (2017). Stress-ng. URL: http://kernel. ubuntu.
com/git/cking/stressng. git/(visited on 28/03/2018).

Kua, J., Armitage, G., and Branch, P. (2017). A survey
of rate adaptation techniques for dynamic adaptive

296

streaming over http. IEEE Communications Surveys
Tutorials, 19(3):1842-1866.

Lee, K., Murray, D., Hughes, D., and Joosen, W. (2010).
Extending sensor networks into the cloud using
amazon web services. In 2010 IEEE International
Conference on Networked Embedded Systems for
Enterprise Applications, pages 1-7. IEEE.

Liu, J. and Zhang, Q. (2018). Offloading schemes in
mobile edge computing for ultra-reliable low latency
communications. IEEE Access, 6:12825-12837.

Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A.
(2014). A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of grid
computing, 12(4):559-592.

Mach, P. and Becvar, Z. (2017). Mobile edge comput-
ing: A survey on architecture and computation of-
floading. IEEE Communications Surveys & Tutorials,
19(3):1628-1656.

Milojicic, D. (2020). The edge-to-cloud continuum.
Computer, 53(11):16-25.

Olorunnife, K., Lee, K., and Kua, J. (2021). Automatic fail-
ure recovery for container-based iot edge applications.
Electronics, 10(23):3047.

Pan, J. and McElhannon, J. (2017). Future edge cloud and
edge computing for internet of things applications.
IEEE Internet of Things Journal, 5(1):439-449.

Sardellitti, S., Scutari, G., and Barbarossa, S. (2015). Joint
optimization of radio and computational resources for
multicell mobile-edge computing. /EEE Transactions
on Signal and Information Processing over Networks,
1(2):89-103.

Taherizadeh, S. and Stankovski, V. (2017). Auto-scaling
applications in edge computing: Taxonomy and
challenges. In Proceedings of the International
Conference on Big Data and Internet of Thing,
BDIOT2017, page 158-163, New York, NY, USA.
Association for Computing Machinery.

Taivalsaari, A., Mikkonen, T., and Pautasso, C. (2021).
Towards seamless iot device-edge-cloud continuum.
In International Conference on Web Engineering,
pages 82-98. Springer.

Wu, S., Niu, C., Rao, J., Jin, H., and Dai, X. (2017).
Container-based cloud platform for mobile computa-
tion offloading. In 2017 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS),
pages 123-132.

Zhang, T. (2018). Data offloading in mobile edge
computing: A coalition and pricing based approach.
IEEE Access, 6:2760-2767.

Zheng, W.-S. and Yen, L.-H. (2019). Auto-scaling in
kubernetes-based fog computing platform. In Chang,
C.-Y., Lin, C.-C., and Lin, H.-H., editors, New Trends
in Computer Technologies and Applications, pages
338-345, Singapore. Springer Singapore.

