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In this paper, we study the Online Non-metric Facility Location with Service-Quality Costs problem (Non-
metric OFL-SQC), a generalization of the well-known Online Non-metric Facility Location problem (Non-
metric OFL), in which facilities have, in addition to opening costs, service-quality costs. Service-quality costs
are determined by the quality of the service provided by each facility so as the higher the quality, the lower
the service-quality cost. These are motivated by companies wishing to incorporate the quality of third-party
services into their optimization decisions. Clients are scattered around facilities and arrive in groups over
time. Each arriving group is composed of a number of clients at different locations. Non-metric OFL-SQC
asks to serve each client in the group by connecting it to an open facility. Opening a facility incurs an opening
cost and connecting a client to a facility incurs a connecting cost, which is the distance between the client
and the facility. Moreover, for each group, the algorithm needs to pay the sum of the service-quality costs
associated with the facilities serving the clients of the group. The aim is to serve each arriving group while
minimizing the total facility opening costs, connecting costs, and service-quality costs. We develop the first
online algorithm for non-metric OFL-SQC and analyze it using the standard notion of competitive analysis, in
which the online algorithm’s worst-case performance is measured against the optimal offline solution that can

be constructed optimally given all the input sequence in advance.

1 INTRODUCTION

Facility Location problems, that aim to place one
or more facilities in a way that meets a given opti-
mization objective, are one of the most well-studied
combinatorial optimization problems, with a wide
range of applications in operations research, urban
planning, management science, economics, market-
ing, computer science, and many others (Drezner and
Hamacher, 2004).

Facility Location problems have an online nature,
in which the input sequence is revealed in portions
over time, and the so-called online algorithm reacts to
each portion by targeting the given optimization goal.
In its most general form, each such sequence is com-
posed of a single client that needs to be connected to
an open facility. The online algorithm needs to de-
cide at which locations to open facilities, while mini-
mizing the total facility opening costs and connecting
costs or distances between clients and facilities.

Facility Location problems are known as metric
and non-metric variants. In the former case, clients
and facilities are assumed to reside in the metric
space and the distances respect the triangle inequal-
ity. The metric properties are normally used in the

616

Markarian, C.
Online Non-metric Facility Location with Service-Quality Costs.
DOI: 10.5220/0011101900003179

analysis of the online algorithms for the metric vari-
ants. Both metric (Meyerson, 2001; Fotakis, 2008;
Anagnostopoulos et al., 2004) and non-metric (Alon
et al., 2006; Markarian, 2021; Markarian et al., 2021;
Markarian and auf der Heide, 2019; Markarian and
Khallouf, 2021; Markarian and El-Kassar, 2021) vari-
ants have been well investigated, in many settings and
as many variations.

In this paper, we study an online non-metric vari-
ant of Facility Location, known as the Online Non-
metric Facility Location With Service-Quality Costs
problem (Non-metric OFL-SQC).

1.1 Online Non-metric Facility Location
with Service-Quality Costs
(Non-metric OFL-SQC)

Given a collection of potential facility locations. Each
facility location has an opening cost and a service-
quality cost. Service-quality costs are determined by
the quality of the service provided by each facility
so as the higher the quality, the lower the service-
quality cost. These are motivated by companies wish-
ing to incorporate the quality of third-party services
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into their optimization decisions. Clients are scattered
around facilities and arrive in groups over time. Each
arriving group is composed of a number of clients
at different locations. Non-metric OFL-SQC asks to
serve each client in the group by connecting it to an
open facility. Opening a facility incurs the associ-
ated facility opening cost and connecting a client to
a facility incurs a connecting cost, which is the dis-
tance between the client and the facility. Moreover,
for each group, the algorithm needs to pay the sum
of the service-quality costs associated with the facil-
ities serving the clients of the group. The aim is to
serve each arriving group while minimizing the total
facility opening costs, connecting costs, and service-
quality costs.

2 OUR CONTRIBUTION

We design the first online algorithm for non-metric
OFL-SQC and measure its performance using com-
petitive analysis, a notion commonly used in the anal-
ysis of online algorithms (Sleator and Tarjan, 1985;
Borodin and El-Yaniv, 2005). An online algorithm is
said to be c-competitive or has competitive ratio ¢ if
its cost is at most ¢ times that of an optimal solution
constructed offline given, in advance, all the knowl-
edge about the input sequence, over all possible in-
stances of the problem. The input sequence is given
by an adversary that is trying to trick the algorithm so
that its competitive ratio is maximized. The algorithm
is given each portion of the input and needs to react
to it with its eyes closed to the future portions. Hence
the only information the algorithm has at any point in
time, is the present and the past. Competitive anal-
ysis is a worst-case analysis, that can reveal how the
algorithm performs against its worst input sequence.
Hence, by proving the competitive ratio of the algo-
rithm, one is able to give a provable guarantee about
the solution being constructed, in comparison to an
optimal solution that could only be constructed given
all the input sequence in advance. In our analysis, we
assume an oblivious adversary, which does not know
the random choices made by the algorithm.

2.1 Competitive Ratio

We prove that our randomized algorithm for non-
metric OFL-SQC has an O(logmlogn) competitive
ratio, where:

— m is the number of potential facility locations

— n is the total number of clients
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2.2 Algorithmic Techniques

Our online algorithm for non-metric OFL-SQC draws
on ideas from the online algorithms for the Online
Non-metric Facility Location problem (Alon et al.,
2006) and its variant (Markarian, 2021). We first for-
mulate the problem as a directed connectivity graph
problem and then run a randomized algorithm based
on randomized rounding, a technique widely used in
the design and analysis of online algorithms.

3 OBSERVATIONS ABOUT THE
MODEL

It is worth noting that if each arriving portion is com-
posed of a single client, rather than a group of clients,
then the problem can be solved as follows. Each
client’s connecting cost to a facility will be incre-
mented by adding to it the corresponding service-
quality cost of the facility. We can then run any on-
line algorithm for the special case of non-metric OFL-
SQC, the Online Non-metric Facility Location prob-
lem (Non-metric OFL) (Alon et al., 2006) to solve this
variant.

One might also wonder whether it helps to break
down the given portion containing a group of clients
into single clients, each arriving as a distinct portion
and then adding the service-quality costs as above.
However, this is not possible, since, we would then
have to pay the service-quality cost of a facility mul-
tiple times for the same group of clients and in our
model, we assume clients arrive as groups. The
groups of clients are motivated by scenarios in which
portions represent companies, and each of the clients
are the employees of the company. The goal would
be to serve each company with the minimum possible
service-quality costs of the joint facilities serving the
company.

As mentioned earlier, the service-quality costs are
motivated by scenarios of companies wishing to take
into consideration the quality of the services they are
offering through third-party companies when mak-
ing their decisions. In the classical Facility Location
models, the goal is to minimize the total facility open-
ing costs and the distances between the clients and
the facilities. Clients are indeed happy when they are
served by a nearby facility, but if the service is not
up to standard, then this would affect the image of
the company. So, the service quality also matters as
much as the distance. In many cases, the clients need
to be compensated to make up for the poor service.
Hence, the company would accompany each facility
with a service-quality cost to represent the compensa-
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tion costs.

Therefore, the Online Non-metric Facility Loca-
tion with Service-Quality Costs problem (Non-metric
OFL-SQC) is motivated by intrinsic client-serving
scenarios, in which companies with employees are
represented as groups of clients. Each client or em-
ployee needs to be connected to an open facility. Fa-
cilities are third-party service providers, each associ-
ated with an opening cost and a service-quality cost
that represents the quality of the service provided by
the facility.

Furthermore, the service-quality costs of non-
metric OFL-SQC are analogous to the so-called rat-
ing costs of the Online Set Cover With Rated Sub-
sets problem (OSC-RS), which we have recently in-
troduced in (Markarian, 2022). OSC-RS generalizes
the Online Set Cover problem (Alon et al., 2009),
in which we are given a universe of elements and a
collection of subsets of the universe, each associated
with a subset cost and a rating cost. The algorithm is
given, in each step, a request that contains a subset of
the elements. To serve a request the algorithm needs
to assign it to a number of subsets purchased by the
algorithm that jointly cover the requested elements.
The algorithm pays the subset costs associated with
the subsets purchased and for each request, it pays the
sum of the rating costs associated with the subsets as-
signed to the request. The aim is to serve all requests
as soon as revealed, while minimizing the total subset
and rating costs paid.

4 LOWER BOUNDS

The Online Set Cover problem (OSC) (Alon et al.,
2009) is a special case of the Online Non-metric
Facility Location problem (Non-metric OFL) (Alon
et al., 2006), which in turn is a special case of the
Online Non-metric Facility Location with Service-
Quality Costs problem (Non-metric OFL-SQC), in
which all service-quality costs are 0.
lognlogm

— There is an Q(W) lower bound on the
competitive ratio of any deterministic algorithm
for OSC, where m is the number of subsets and
n is the number of elements, due to (Alon et al.,
2009).

— There is an Q(lognlogm) lower bound on the
competitive ratio of any randomized polynomial-
time algorithm for OSC, under the assumption
that BPP # NP, due to (Korman, 2005).
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Figure 1: Non-metric OFL-SQC instance of three facilities,
three clients, and a request, formulated as a connectivity
digraph problem.

S FORMULATION OF
NON-METRIC OFL-SQC AS A
CONNECTIVITY DIGRAPH
PROBLEM

We formulate a given instance / of non-metric OFL-
SQC as a connectivity digraph problem, as follows.
We refer to each group of arriving clients as a request.
The reader is referred to Figure 1 for an illustration.

I will be represented as a graph G = (V, E), where
V denotes the request nodes, the facility nodes, and
the client nodes, and E is a collection of weighted
directed edges connecting these nodes.

We Construct the Set V of Nodes as Follows:

— For each arriving request, we create a request
node.

— For each facility i, we create two facility nodes,
namely, facility node i and duplicate facility node
i

— For each client, we create a client node.

We Construct the Set E of Edges as Follows:

— From each request node, we add a directed edge to
each facility node, of weight equal to the service-
quality cost of the corresponding facility.

— From each facility node, we add a directed edge to
its duplicate facility node, of weight equal to the
opening cost of the facility.

— From each duplicate facility node, we add a di-
rected edge to each client node, of weight equal
to the connecting cost between the client and the
corresponding facility.

The facility nodes, the duplicate facility nodes,
and the client nodes along with the edges in between
are constructed before the execution of the algorithm.



Each request node and its outgoing edges are formed
as soon as a request is revealed.

Upon the Arrival of a New Request:
— A request node and its edges are added.

— The algorithm outputs, for each client in the re-
quest, a directed path from the request node to the
corresponding client node.

Solution Mapping:

— The algorithm pays each facility opening cost,
each service-quality cost, and each connecting
cost associated with the edges in the directed
paths outputted by the algorithm. The algorithm
opens each facility if its facility nodes are in the
directed paths of the outputted solution.

— For each client, the algorithm outputs a directed
path containing at least one facility node and its
duplicate. This is true since every directed path
from the request node to the client node contains
a facility node and its duplicate node. The algo-
rithm connects each client to the corresponding
facility of the directed path.

— According to this mapping, any feasible solution
for the transformed instance implies a feasible so-
lution for I, of the same cost.

6 ONLINE ALGORITHM

In this section, we present an online randomized al-
gorithm for the Online Non-metric Facility Loca-
tion with Service-Quality Costs problem (Non-metric
OFL-SQCQ).

The algorithm solves the connectivity digraph
problem described in the previous section. It uses
an approach similar to that used in other online prob-
lems in the literature (Hamann et al., 2018; Markar-
ian, 2021; Alon et al., 2006; Markarian et al., 2021;
Markarian, 2018).

6.1 Preliminaries

Given the input graph G = (V, E) with a positive edge-
weight function. We refer to the weight of an edge e
by we.

A fraction f, is assigned to each edge e in G.
All fractions are set initially to O and will be non-
decreasing throughout the run of the algorithm. The
maximum flow from a node u to a node v is the small-
est sum of fractions of edges which would disconnect
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u from v if removed. These edges form a minimum
cut.

The algorithm generates the number ¢, indepen-
dently among 2 [logn] random variables uniformly
distributed in the interval [0, 1], where n is the total
number of clients. g represents the randomized aspect
of the algorithm, that will determine which edges will
be purchased by the algorithm.

6.2 Execution

Given a request node r at time step ¢ and a client node
Jj associated with the request. We let S; be the collec-
tion of edges of G outputted by the algorithm before
and at time step 7.
At time step 7:

If the edges in S; form a directed path in G from
r to j, the algorithm moves on to the next client as-
sociated with r. Else, it performs the following three
steps:

Step 1. The algorithm checks the maximum flow
from r to j. While it is less than 1, the algorithm
outputs a minimum cut Q and increases the fraction
of each edge in Q, using the equation below:

1
e el 73
fe = LI+ )+ T,

Step 2. The algorithm adds each edge with fraction
above ¢ (the value generated before the execution of
the algorithm) to the solution.

Step 3. The algorithm could have outputted a set of
edges that form an infeasible solution. To guarantee
feasibility, the algorithm performs the following. If S;
does not contain edges that form a directed path from
r to j, the algorithm finds a shortest weighted directed
path from r to j and outputs the edges of this path to
the solution.

The three steps of the algorithm are depicted in
Algorithm 1 below.

7 COMPETITIVE ANALYSIS

In this section, we analyze the competitive ratio of the
online algorithm presented above.

Given an instance I of non-metric OFL-SQC. Ac-
cording to the solution mapping given above, any fea-
sible solution for the graph instance problem corre-
sponding to I implies a feasible solution for 7, of the
same cost.
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Algorithm 1: Online Algorithm for Non-metric OFL-SQC.

Step 1. While the maximum flow from r to j is less
than 1:

Construct a minimum cut Q from r to j and in-
crease the fraction f, of each edge e € Q, using the
equation below:

1 1
Je e fell+ L)+ 1o we

Step 2. Output each edge e to the solution if its
fraction f, is above q.

Step 3. If the edges in S; do not form a directed
path from r to j, output the edges of a smallest
weighted directed path from r to j.

Thus, in order to measure the performance of the
algorithm, we analyze the total cost of edges pur-
chased by the algorithm in comparison to the cost of
the optimal offline solution.

Let Opt be the cost of an optimal offline solution.
The algorithm purchases edges in steps 2 and 3. Let
S1 and S, be the collection of edges purchased by the
algorithm in Step 2 and Step 3, respectively. We ana-
lyze the expected cost of each step separately.

Step 2. In Step 2, the algorithm purchases each edge
whose fraction is at least g (generated before the ex-
ecution of the algorithm). We fix an edge e and
i:1<i<2[logn]. We denote by X,; the indicator
variable to indicate if e has or has not been purchased
by the algorithm. We let w, and f, be the weight and
fraction of edge e, respectively. The expected cost Cs,
of the collection S of Step 2 can be expressed as fol-
lows:

2[logn)
Cs, = Z Z We‘Exp[Xe,i] (h
ecs) i=1
=2[logn] Y wefe )
ecS

To compare to the edges in the optimal offline
solution, we need to understand when the algorithm
purchases. We will observe the minimum cuts con-
structed in Step 1 of the algorithm. Notice that each
minimum cut constructed must contain at least one
optimal edge. This is because each optimal solution
must also contain a directed path to the client at hand.

Let us now observe the number of times a mini-
mum cut is constructed by the algorithm. It is possi-
ble to upper bound this number by O(Opt - log|Q|),
where |Q)| is the size of the largest minimum cut con-
structed. We prove this as follows.
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Proof. Let us fix the edges in the optimal solution.
We can prove that each optimal edge appears in a
bounded number of minimum cuts. This is true be-
cause the fractional value of each such edge eventu-
ally reaches 1. After reaching 1, it can’t appear in any
future minimum cut, as per the algorithm’s condition.

Let us observe any optimal edge and the equa-
tion of the algorithm. After O(w,log|Q|) fraction in-
creases, the value of the edge reaches at least 1. Recall
that, each minimum cut contains at least one optimal
edge. Hence, O(Opt -log|Q|) minimum cuts must be
constructed by the algorithm, where |Q| is the size of
the largest minimum cut constructed.

We now give an upper bound on |Q|. Fix a request
node and a client node. Each directed path from the
request node to the client node represents one of the
facility locations available. Therefore, |Q| is at most
m, the number of potential facility locations.

Thus, the number of minimum cuts constructed is
at most O(Opt -logm).

Next, we show that the total fractional increase ac-
companying each minimum cut is at most 2.

Lemma 1. Each minimum cut constructed is accom-
panied with a fractional increase of at most 2.

Proof. We fix a minimum cut Q. The fraction of each

edge e in Q is increased by w, - (V{—E + m) , as per
e e

the equation in the algorithm. Before fractions in-

crease, the maximum flow was less than 1, as per the

algorithm. Thus, Yecofe < L. Therefore, we have
that:

Jfe 1
ZWe'(+|Q.We) <2

ecQ ¢

Thus,

Cs, < O(Opt -logn -logm) 3)

Step 3. It remains to bound the expected cost Cs, of
the collection S of edges purchased by the algorithm
in Step 3.

The flow of a path is the minimum fraction among
the edge fractions of a given path. We fix a client
node u and an i: 1 <i <2[logn]. We measure the
probability that, for a single i, there is no directed path
purchased by the algorithm in Step 2 feasible for u. In
terms of flow, this probability is the probability that g
is more than the flow of each directed path to u. We let
Q be any minimum cut constructed at the end of Step
2. Before executing Step 3, we had that the sum of
flow associated with all directed paths to u was at least



1 as per the algorithm. Hence, the probability that
there is no directed path purchased by the algorithm
in Step 2 feasible for u, for a single i, is:

H(l —f) < e Lecqle < 1
ecqQ, ¢
Next, we calculate the probability for all i: 1 <
i <2[logn] and imply the following. The probability
that there is no directed path purchased by the algo-
rithm in Step 2 feasible for u is at most nLZ
Thus, the algorithm purchases a smallest weighted
path from the request node to u with probability at
most n% Clearly, this path is upper bounded by Opt,
since 1t is a smallest weighted path.
Since the total number of clients is at most n, we
have that:
Opt
CS2 <n- 7127
Hence, the theorem below follows.

Theorem 1. There is an O(logmlogn)-competitive
randomized algorithm for the Online Non-metric Fa-
cility Location with Service-Quality Costs problem
(Non-metric OFL-SQC), where m is the number of
potential facility locations, and n is the number of
clients.

8 CONCLUDING THOUGHTS

In this paper, we have initiated the service-quality
costs model by addressing the non-metric variant of
Online Facility Location. A next step would be to
investigate the metric variant in which facilities and
clients are assumed to reside in the metric space.

A next research direction is to explore other ways
to express service-quality costs. In our model, the ser-
vice quality of a facility is expressed as a fixed cost,
given to the algorithm, and does not change over time.
It could be that this quality improves over time and
it would be interesting to add this dynamics into the
model and study its effect in the competitive ratio of
the algorithms.

Our adversary assumes the algorithm has no
knowledge at all about the future input portions. One
may want to investigate, for instance, other types of
adversary and probability distributions for the client
arrival.

We have assumed in our model that a client ar-
rives exactly once and this assumption is used in the
analysis of the proposed algorithm. In real-world sce-
narios, one client may appear in more than one group,
and a different approach would be needed to solve this
variant of the problem.
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Finally, it is always interesting to observe how the
algorithm performs in simulated or real-world envi-
ronments. This would give us a better understanding
about the performance of the algorithm in average-
case scenarios, thus complementing our worst-case
scenario analysis.
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