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Abstract: Research on fault localization techniques focuses on their efficiency and cost reduction. Spectra-Based Fault 
Localization (SBFL) counts to the mostly used methods. Hybrid approaches have been shown to be beneficial. 
We discuss the challenges of a revised approach combining SBFL with mutation testing. Certain unconvinced 
issues of mutation testing have been identified, and a practical framework has been prepared to evaluate 
different variants of the approach. Building a new repository with faulty programs has been launched in order 
to study the approach not only on the commonly used legacy programs, but also on faulty programs of more 
contemporary versions of the Java language and unit tests.  

1 INTRODUCTION 

Fault Localization in software belongs to very 
laborious activities and, therefore, different methods 
have been studied to automate them and support code 
development and maintenance. Different approaches 
have been proposed based on program analysis, such 
as code slicing and its variants, machine learning-
based techniques, including various kinds of neural 
network, statistical debugging, model-based 
techniques, and a family of methods based on test 
result spectra. An overview of the approaches to fault 
localization can be found in (Wong et al., 2016). 

Spectra-Based Fault Localization (SBFL) is an 
approach which collects execution results of test 
cases: whether a program passed a test or failed. The 
results are related to program units and code coverage 
outcomes. This set of data is called the program 
spectrum. Later, the spectrum is used for the 
calculation of the metrics associated with the units of 
the program under test. These program units that have 
the highest metric values are the most suspicious, i.e. 
are considered as places of possible faults.  

Mutation testing has been proposed to evaluate 
the quality of an existing test suite of a program and 
also to create new tests. An overview of different 
topics and achievements of this research area can be 
found in (Papadakis et al., 2019). Mutation testing is 
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based on the idea of fault injection. One or more faults 
are injected into the program code. The modified 
program, called a mutant, is run against test cases. If 
the tests detect the fault(s), these tests are counted as 
good in revealing faults. Otherwise, additional tests 
could be developed, if possible. The main limitation 
of mutation testing is the high cost to apply it in 
practice. Mutation testing has also been used in some 
approaches to mutation-based fault localization 
(MBFL): (Papadakis and Le Traon, 2015), (Moon et 
al., 2014).  

One of the ways to improve fault localization 
efficiency at a reasonable cost is to combine different 
approaches to fault localization. It has been studied, 
for example, SBFL combined with statistical 
debugging (Jiang et al., 2019), a variety of methods 
in (Zou et al., 2019), or SBFL followed by mutation 
testing (Cui, 2020), (Lobo de Oliveira et al., 2018), 
(Xu, Zou and Xue, 2020), (Dutta and Godboley, 
2021). 

This paper contributes to the latter approach. We 
have revisited the combination of SBFL with 
mutation testing and performed a basic case study. 
After discussing the results of the case study, we point 
out some questionable issues in test realization and 
interpretation, and practical tool support. As a result, 
a framework for the approach has been prepared that 
could assist in answering the identified research 
questions and supporting the evaluation of the code 
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of the newer technology than discussed in the 
previous research. Moreover, a new repository of 
contemporary Java programs with real faults has been 
launched. 

The paper is structured as follows. The next 
Section gives an overview of SBFL methods and 
some mutation testing approaches. Related work is 
commented on in Section 3. In Section 4, we explain 
the main idea of the approach that joins SBFL and 
mutation testing illustrated with a case study. Then, 
we discuss the problems and present practical 
solutions to support the approach. Finally, Section 6 
concludes the paper. 

2 BACKGROUND 

2.1 Fundamentals of Spectrum-Based 
Fault Localization  

Spectrum-Based Fault Localization (SBFL) methods 
use a statistical approach to evaluate test results 
(Wong et al., 2016). For each test, a program 
spectrum contains its outcome (pass or fail) and 
information about code units covered during its 
execution. The goal of the analysis is to calculate the 
expected chance that a code unit includes a fault. 

There have been proposed over thirty statistical 
formulas to compute the suspiciousness of each code 
unit. The summaries of selected formulas can be 
found, for example, in (Wong et al., 2016) and 
(Heiden et al., 2019). Based on the calculated metric, 
we can obtain a ranking of the program elements in 
descending order of suspiciousness. 

As an example, suspiciousness s(j) of j-th code 
unit is calculated with the Ochiai metric, one of the 
popular SBFL methods, using the following formula 
(Abreu, Zoeteweij, Golsteijn, and van Gemund, 
2009):  𝑠(𝑗) =  𝑎ଵଵ(𝑗)ඥ(𝑎ଵଵ(𝑗) + 𝑎଴ଵ(𝑗)) ∗ (𝑎ଵଵ(𝑗) +  𝑎ଵ଴(𝑗)) (1)

where 
 a11(j) – the number of failed test cases that 

cover unit j, 
 a10(j) – the number of passed test cases that 

cover unit j, 
 a01(j) – the number of failed test cases that do 

not cover unit j. 
Following the notation used in unit testing 

frameworks, in SBFL research, a failed test case is 
one that has caused a program to fail, and a passed 
test case is one that was passed by the code. The latter 

is also called a successful test case (Wong et al., 
2016). Depending on the approach, in practice, a code 
unit can be a code line, a statement, or a code block.  

2.2 Mutation Testing in Fault 
Localization 

Fault localization can also use ideas of mutation 
testing. In mutation testing, a mutant is a modified 
program. A type of program modification is specified 
by a mutation operator that typically reflects a 
programming fault to be injected. Mutation tools 
implement a set of mutation operators to inject faults 
and create a set of mutants from an original program. 
A mutant is killed if at least one of the tests detects 
the injected fault. If the tests do not reveal any 
difference in the program behavior, the mutant is said 
to be alive.  

Mutation-based methods identify suspicious 
mutants and use them to find some faults that were 
not previously localized in the original program. In 
general, it is based on the following assumptions 
(Papadakis and La Traon, 2015): 
 Mutants-faults located in the same program 

statements frequently exhibit a similar 
behavior, 

 Mutants-faults located in diverse program 
statements exhibit different behaviors. 

Evaluation of mutants should help detect which 
tests are sensitive to faults in a given statement. This 
could allow us to identify statements that are 
potentially responsible for failed tests. 

A basic method of mutation-based fault 
localization is Metallaxis-FL (Papadakis and La 
Traon, 2015). In this method, a mutant is classified as 
killed if the test result is different from the test run on 
the original program, i.e. a failed test was changed to 
passed and a passed test was changed to a failed one. 
A mutant M1 is said to have the same behaviour as 
another mutant M2 if M1 and M2 are killed by the 
same test cases. The degree of similarity in the test 
cases that kill the mutants M1 and M2 defines the 
behaviour similarity of these mutants. 

Therefore, by measuring the number of mutants 
killed by passing and failing test executions, one can 
have an indication of the suspiciousness of those 
mutants.  

However, processing statements for which a 
mutant was created could be questionable. In 
Metallaxis-FL, if for a selected statement no mutant 
was generated, its suspiciousness is treated as the 
lowest and counted as zero. If for a statement more 
than one mutant was created, the highest 
suspiciousness is taken into account. A proposal of 
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our modified approach to processing of results in 
MBFL has been discussed in Sect. 5. 

SBFL methods could also be combined with 
mutation testing (Sect. 3.3).  

3 RELATED WORK 

3.1 Spectrum-Based Methods for Fault 
Localization 

Many SBFL methods have been developed that use 
different formulas of suspiciousness. This raises the 
question of the adequacy and efficiency of these 
methods. 

Nine SBFL methods have been evaluated in 
experiments on a set of eight C programs, namely: 
Jaccard, Tarantula, Ochiai, Sorensen-Dice, 
Anderberg, Simple-matching, Rogers and Tanimoto, 
Ochiai 2, Russel and Rao (Abreu, Zoeteweij, 
Golsteijn, and van Gemund, 2009). In these 
experiments, for each program, the Ochiai method 
gave the highest accuracy in fault localization or at 
least was as good as other methods. On average, the 
results were 4% better for Ochiai than for other 
methods. 

Five SBFL methods (Tarantula, Ochiai, Op2, 
Barinel, oraz DStar) have been used in experiments 
conducted on programs with 3242 artificial faults and 
323 real faults (Pearson, et al., 2017). The results 
showed the superiority of the Op2 formulas over 
other SBFL methods in the case of artificial faults. 
However, the experiments also demonstrated that the 
SBFL results of artificial faults are considerably 
different from those of real faults. All five methods 
gave similar results for real faults, but the best results 
were for DStar and Ochiai.  

Research carried out by (Zou, Liang, Xiong, 
Ernst, and Zhang, 2019) aimed at comparison of 
different groups of fault localization techniques. 
SBFL was represented by two methods: Ochiai and 
DStar. In the top 10 elements with the highest 
suspicion, 44% of 357 faults were detected using 
Ochiai and 45% using DStar. In this case, the SBFL 
methods gave the best results compared to other fault 
localization methods examined in the paper. 

One of the problems is the range of suspicious 
areas identified by SBFL that should be further 
examined. In experiments reported in (Heiden et al., 
2019), while studding 10 of the most suspicious areas, 
only 40% of faults could be detected. Therefore, and 
additional post processing with other methods is 
recommended.  

3.2 Mutation-based Fault Localization 

The mutation testing approach has been proposed for 
fault localization by (Papadakis and La Traon, 2012), 
and the idea extended to Metallaxis-FL (Papadakis 
and La Traon, 2015). Similar prerequisites were used 
in MUSE, a mutation-based approach using another 
metric to calculate fault localization (Moon et al., 
2014). Direct mutation-based approaches are limited 
by the high execution cost. Therefore, it could be 
beneficial to pre-select a number of mutants, test 
cases, test runs, or their combinations.  

Mutation testing ideas have also been used in 
program debugging and fixing of faulty programs 
(Debroy and Wong, 2010). 

3.3 Combination of SBFL with 
Mutation-based Approaches 

There are also several attempts to combine spectrum-
based methods with mutation-based methods to 
locate faults. 

In (Cui et al., 2020), a program is analyzed with 
an SBFL (Ochiai and DStar). Then, mutants of the 
program are generated and executed with MBFL. 
Finally, the n-top suspicious statements according to 
SBFL are re-ranked on the basis of the mutation 
results using the Metallaxis and MUSE techniques.  

The FTMES approach (Lobo de Oliveira et al., 
2018) has used only the set of failed test cases to 
execute mutants and avoided the execution of passed 
test cases, replacing the killing information with 
coverage data. It has been shown that the approach 
presented good solutions when the size of the failed 
test case set is smaller than the set of passed test cases. 

In the hybrid approach presented by (Xu, Zou, and 
Xue, 2020), three different methods are combined. 
First, the standard SBFL is used and the 
corresponding program coverage is recorded. This 
gives a ranking of the suspiciousness of the statement. 
Then the k-top predicates (k = 10) are selected for 
mutation testing. Only failed test cases are run against 
mutants. Finally, the program slicing is applied. 

The experiments on C programs reported in 
(Dutta and Godboley, 2021) start with calculation of 
a program spectrum with different SBFL methods 
(Tarantula, Barinel, Ochiai, and DStar). The 
programs are mutated and run against tests. The 
mutation results are combined with the averaged 
results of SBFL. An obstacle of this MBFL approach 
is the high cost of mutation testing of whole 
programs. 

Most of the discussed works are limited to one 
fault in a program. 
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4 CASE STUDY 

In this Section, we present a case study on an 
approach that combines SBFL with mutation testing.  

4.1 A Subject of the Case Study 

Case study experiments were carried out on a 
program which performs a method of data 
compression via textual substitution Lempel-Ziv-
Storer-Szymanski (LZSS) (Storer and Szymanski, 
1982), which is a modification of the basic SL77 
algorithm. The program has been implemented in 
Java using the Spring Boot platform. The program 
can be run in two modes: coding and decoding. It can 
be called via a command line with appropriate options 
to control its execution.  

The program architecture is divided into two main 
modules: encoder and decoder. These modules are 
supplemented with Encoder and Decoder interfaces. 
They are implemented by the classes EncoderImpl 
and DecoderImpl. The first class realises the whole 
functionality of the encoder module. The decoder 
module contains five additional helper classes. 

The program has been developed with a set of 
twenty unit tests. The tests did not deal with the 
functionality of the whole application, but the case 
study was limited to a thorough testing of the 
Encoder.encode() and Decoder.decode() methods, as 
well as the selected helper methods. The tests give 
100% class coverage, 95% method coverage, and 
97% line coverage.  

In order to evaluate the discussed approach, a fault 
has been injected into the encode() method of the 
EncoderImpl class on line 40. As a result, three unit 
tests detected this error and failed. 

4.2 Spectrum-Based Fault Localization 
in the Case Study 

In SBFL, suspiciousness degrees are assigned to code 
extracts according to a program spectrum. A program 
spectrum can be presented in a tabular form, as in 
Table 1. A code line is selected as a basic code unit, 
since most code coverage tools support line coverage. 
Four test cases are identified in columns. The eight 
rows correspond to selected code lines that include an 
executable code. The first column includes the line 
numbers. In the next columns, line coverages are 
given, where ‘1’ denotes a line covered by the test in 
this column, while ‘0’ means that a line was not 
covered by the test. The last row brings the results of 
the test execution: 1 – the program passed the test, 0 
– the program failed for the test. 

Table 1: Part of the spectrum of the LZSS program 
(EncodedImpl class). 

Line Test1 Test2 Test3 Test4
34 1 1 1 1
35 0 0 1 1
36 0 0 1 1
38 1 1 1 1
39 1 1 1 1
40 1 1 1 1
41 1 1 1 0
42 1 1 1 0

Test 
result

0 0 0 1 

Based on the formula of the Ochiai method (Sect. 
2.1), the suspiciousness of the program lines was 
calculated. The selected code lines in Table 1 were 
covered only by tests 1-4. The suspiciousness of these 
code lines is shown in Table 2. 

Table 2: Suspiciousness of selected lines of the LZSS 
program (Ochiai SBFL). 

Line Failed 
tests

Passed 
tests 

Suspiciousness 

34 3 1 0.87 
35 1 1 0.34 
36 1 1 0.34 
38 3 1 0.87 
39 3 1 0.87 
40 3 1 0.87 
41 3 0 1 
42 3 0 1 

None of the tests of other classes has failed; hence, 
the suspiciousness of other classes of the decoder 
module equals zero. Therefore, after this first step in 
fault localization, other classes were excluded except 
the one that includes an injected fault.  

The EncoderImpl class consists of four methods 
and includes 84 lines of executable code. Lines 41 
and 42 were assigned the highest suspiciousness, 
value 1, as they were executed by failed tests only. 
Next, 38 lines get suspiciousness equal to 0.87, 
including line 40 that comprises the injected fault. 
Code lines with the three highest degrees of 
suspiciousness have been selected to be used in the 
further evaluation. 

4.3 Mutation-based Fault Localization 
of the Case Study 

After using the SBFL method, the code area under 
concern was bounded to 61 lines of code. To this area, 
mutation testing was applied. This method requires 
the creation of many mutants and the execution of 
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tests several times. Therefore, any limitation of the 
number of suspicious code lines is worthwhile. 

Mutants have been generated with (Pitest, 2021), 
currently the most efficient mutation testing tool of 
Java programs. The following Pitest mutation 
operators have been used: 
 BOOLEAN_FALSE_RETURN 
 BOOLEAN_TRUE_RETURN 
 CONDITIONALS_BOUNDARY_MUTATO

R 
 EMPTY_RETURN_VALUES 
 INCREMENTS_MUTATOR 
 INVERT_NEGS_MUTATOR 
 MATH_MUTATOR 
 NEGATE_CONDITIONALS_MUTATOR 
 NULL_RETURN_VALUES 
 PRIMITIVE_RETURN_VALS_MUTATOR 
 VOID_METHOD_CALL_MUTATOR 

 
The results of the mutation testing for selected 

lines are shown in Table 3. For each line, mutants are 
identified that introduced changes in this code area. 
In the column ‘Mutant’, the symbol ‘-‘ means that no 
such mutant was generated, while numbers 1, 2, 3 
denote consecutive numbers of mutants that refer to 
this area. In the following columns, the results of tests 
1-4 that are run against those mutants are given 
accordingly. The number ‘0’ means that the program 
failed the test, ‘1’ the program passed the test. 

Table 3: Results of mutant testing for the selected code lines 
of the LZSS program. 

Line Mutant Test1 Test2 Test3 Test4
34 1 0 0 0 1
34 2 0 0 0 1
34 3 0 0 0 1
35 - - - - -
36 1 0 0 0 1
38 - - - - -
39 1 0 0 0 1
40 1 1 1 1 0
40 2 0 0 0 1
41 1 0 0 0 1
42 - - - - -

When comparing the results of the mutant tests 
with the outcomes of the original program (Table 1), 
we can observe that only for mutant number 1 when 
referred to line 40 the results for all tests differ from 
the original ones. For all other mutants, all tests gave 
the same results as for the original program. 
Therefore, we could suspect that there is a fault in line 
40, which corresponds to the fault introduced before 
the method evaluation. 

4.4 Discussion 

The application of an SBFL method as a first step 
resulted in the limitation of a considered area to 73% 
of the code under test. Therefore, the mutation testing 
approach could have been applied to a smaller part of 
a program and pointed directly at the suspicious area. 
Taking into account the labor intensity of mutation 
testing, it positively influences the cost of the 
approach.  

It is also important to note that the considered area 
has been successfully limited to only one class, which 
in Java means that the search area is limited to one 
file. As was shown in (Parnin and Orso, 2011), 
programmers do not follow the ranked suspiciousness 
list linearly. They usually start with a file where the 
highest-ranked element is located and go through all 
the suspicious elements in the class, even if these 
elements have a lower ranking value. This means that, 
with respect to fault detection efficiency, the 
following situation would be beneficial: even if the 
highest-ranked element is not the faulty one, it should 
at least point to the file that includes some faults. This 
situation also occurred in the case study. 

After the mutation test is applied to the selected 
area, the faulty line has been correctly identified. This 
could be counted as the success of the combination of 
two selected methods (Ochiai and Metallaxis). 
However, in general, this could not be true. In the case 
presented, the fault was correctly localized because a 
mutant created has changed an incorrect result to a 
correct one. 

5 CHALLENGES OF A 
PRACTICAL APPROACH 

Based on the experience of the case study, we have 
identified a few problematic points and addressed 
research questions. We also discuss tool support 
issues of the developed framework. 

5.1 Obtaining Program Spectra 

A crucial prerequisite for SBFL is high code coverage 
by tests. However, a simple code coverage is not 
sufficient. In the formulas of all SBFL methods, an 
important factor is the number of tests that failed and 
cover the j-code unit. In general, to practically apply 
SBFL methods and calculate statistical values, many 
test cases should be associated with a program. 
Moreover, multiple coverage is necessary, which 
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means that many, or at least several, test cases should 
cover the same code elements. 

The SBFL evaluation in a case study was based 
on the Ochiai algorithm, counted as one of the more 
efficient methods in several experiments. However, it 
has not yet been concluded which method is the best. 
Moreover, in the framework, it could be a good idea 
to use several SBFL methods and combine their 
results to select suspicious areas that could be further 
evaluated in mutation testing. 

The spectrum of the LZSS programs was 
generated with the support of the Intelij Idea Code 
Coverage Agent. Code coverage could be obtained, 
for example, through CodeCoverage Agent or 
JaCoCo. However, commonly used coverage tools 
report on line coverage but do not provide the 
information necessary to calculate spectra, that is, 
which test covered a single line. Therefore, in the case 
study, the test cases were executed separately and the 
final information was merged using those separate 
test results.  

Some tools that support spectra-based analysis 
obtain information from unit tests of Junit3 and Junit4 
(GZoltar, 2022), but not from Junit5. In the developed 
framework, JaCoCo has been incorporated, and the 
process has been automated to acquire all the spectra 
also from the currently used Junit5 library. 

5.2 Processing of Failed Tests in 
Mutation Testing 

In Metallaxis, the suspiciousness of a statement is 0 if 
none of the failed tests has been changed to a passed 
one. This makes the approach hardly useful in many 
cases. If a method returns a type of limited set of 
values (like a Boolean or enum), there is a chance to 
get a correct test result after introducing a mutation 
that compensates for an existing fault. However, if a 
result type returned by a method or its behavior is 
more complex, then it is less probable that a 
combination of two faults, i.e. an original with the one 
injected by mutation, give a correct program result. If 
a fault were in such an expression, the tests would fail. 

Therefore, in the framework, the number of tests 
changed from pass to fail should be counted in 
suspiciousness evaluation, even though the non-
failure test was changed to the introduction of a 
passed due to a mutation introduction in this 
expression. 

After the execution of the tests, the mutation tool 
returns the state of execution of a mutant, ‘killed’ or 
‘live’, and the information which tests have killed the 
mutant. This could be used to automate the fault 
localization process. However, Pitest does not allow 

us to run mutants against tests that fail in an original 
program. This could be logical for the typical 
application of mutation testing, but is a limitation if 
we want to use the results for fault localization 
purposes. Moreover, it could be possible that a mutant 
run with a failed test gives a positive result. 

In the Pitest case study, the results were collected 
for positive tests. Failed tests have been processed by 
running mutants separately and collecting their 
results. To automate the process for all types of tests, 
the functionality of Pitest could be extended. 

5.3 Differentiating Failed Tests in 
Mutation Testing 

Another problem is differentiating between various 
types of failed test results. In mutation testing, we are 
primarily interested in whether or not a mutant was 
killed by any test. In the proposed approach, different 
values obtained from failed tests could be 
distinguished. In the determination of the final 
suspiciousness, we could take into account tests that 
change a program result in the following way: 
 from pass to fail, 
 from fail to pass, 
 from fail to fail with the same result (“fail 

invariant”), 
 from fail to fail with another result (“fail 

diversely”). 
Therefore, a mutation testing platform should also 

process test outcomes and, then, compare. Analyzing 
these data could be beneficial, as the influence of the 
results of a faulty program on the efficiency of the 
fault location remains an open research question. 

Research question 1: How will counting the tests 
that failed with another result because of mutation as 
tests that changed from fail to pass affect fault 
localization efficiency? 

5.4 Mutation Efficiency 

An important aspect of mutation testing is its 
efficiency. To achieve substantial savings in time and 
space, the platform should provide additional 
functionalities. The first one is the possibility of 
precisely identifying the units (lines) of code that 
should be mutated. The bigger the program, the more 
costly the addition of a single mutant can be. Hence, 
the result retrieved from SBFL should be used as a 
direct line-by-line input for a mutation engine.  

Secondly, the optimisation functionality already 
provided by Pitest should be used. This optimisation 
excludes from running the tests that do not cover a 
code unit where a mutation is located. Therefore, the 
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functionality provided by Pitest should be modified, 
as it is impossible to collect complete coverage for a 
failed test. That is why, in addition to all tests that 
pass on the original program and cover the mutant, 
failed tests should be run for each mutant. 

5.5 Re-ranking Code Units for Which 
No Mutants Were Generated 

As mentioned above, the MBFL approach ranks all 
code units without mutations as code with 0 
suspiciousness. However, in the case of combining 
spectrum- and mutation-based fault localization, 
these units still have a ranking from the SBFL 
technique. This might result in the actual faulty 
statement being pushed to the bottom of the final 
ranking if there are no available mutation operations 
for the statement. We have not found any research on 
whether reusing the SBFL suspiciousness ranking in 
the final ranking could eliminate these scenarios and 
improve the overall effectiveness of the combined 
techniques. This open issue has to be verified. 

Research Question 2: Will keeping the SBFL 
score as the final score when no mutations were 
created affect the effectiveness of spectrum-mutation-
based fault localization? 

5.6 Evaluation of the Approach with 
Contemporary Software 

FL approaches are usually evaluated on programs that 
include artificial or real faults. In (Pearson et al., 
2017), the same localization methods have been 
compared using both types of faults. It was observed 
that the results of artificial faults were not adequate 
for evaluating programs with real faults. Therefore, 
most of the research focused on programs with real 
faults, eg., those collected in the Defects4J repository 
(Just, Jalalj, and Ernst, 2014), (Defects4J, 2021).  

To overcome certain limitations of Defects4J, 
other sets of Java programs have been collected, e.g. 
Bugs.jar (Saha et al., 2018) and BEARS Benchmark 
(Madeiral et al., 2019). 

However, the programs in these repositories are 
written in Java 8 or earlier versions, and their unit 
tests are in Junit 3 or Junit 4. In 2021, the 17th version 
of Java was published. Although previous Java 
versions are still commonly used, programs in Java 
before version 8 could be treated as legacy code. 
Since 2017, unit tests can be written with the Junit5 
library. Therefore, a collection of faulty programs has 
been launched in a new BugsRepo repository to 
evaluate the approach also on some programs 
developed using contemporary technology. 

Research Question 3: Will evaluation of real 
faults and newer versions of Java and Junit confirm 
the results of previous research? 

5.7 Framework Design 

To address the above-mentioned issues, a new 
spectrum-mutation-based fault localization 
framework has been developed. The framework 
consists of two parts: spectrum processing and 
mutation processing. The spectrum module uses the 
JaCoCo Java agent to instrument code classes. It 
discovers the Junit5 tests, runs them sequentially, and 
collects after each test the coverage data from the 
agent. Based on the results, the SBFL suspiciousness 
ranking is calculated for a range of different metrics. 
Next, the top N suspicious code units (code lines) are 
passed to the mutation module. 

Mutation testing is performed with a modified 
Pitest. This mutation tool has been extended with all 
the required functionalities mentioned in Sections 
5.2-5.4. During mutation testing, only the most 
SBFL-suspicious units are taken into account.  

Then, the final suspiciousness ranking is 
produced. 

6 CONCLUSIONS 

Selected aspects of a process that combines SBFL 
with MBFL have been presented. In the case study, 
the suspicious code was considerably limited by 
SBFL, and using MBFL to this area only, a previously 
injected fault was found. To generalize the idea, new 
recommendations are provided for processing the test 
results of both approaches, which could improve the 
efficiency and performance of fault detection. Most 
of the suggestions refer to interpretation of failed tests 
in mutation testing. We have formulated three 
research questions that need further investigation. 

A platform has been prepared to effectively 
support the approach and further research on the 
selection of different variants of SBFL metrics and 
the processing of mutation testing results. It would 
allow us to answer the identified research questions. 

We have planned to carry out experiments with 
real faults using not only legacy projects, as typically 
in research, but also more contemporary projects in 
terms of the Java language and Junit library. A new 
bug repository will help to evaluate the known results, 
for older Java and Junit versions, on newer 
applications. Moreover, this supports the 
development of tools that are compatible with newer 
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technologies. Without current easy-to-use tools, fault 
localization can hardly be used in real life projects. 

In the future, the platform could also be combined 
with other fault localization approaches (Wong et al., 
2016), (Zakari et al., 2020), as well as fault prediction 
methods (Caulo,2019), (Catal, 2011). 
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