
Combining SBFL with Mutation Testing: Challenges of a Practical
Approach

Anna Derezińska a and Sofia Krutko
Warsaw University of Technology, Institute of Computer Science, Nowowiejska 15/19, Warsaw, Poland

Keywords: Fault Localization, SBFL, Mutation Testing, MBFL.

Abstract: Research on fault localization techniques focuses on their efficiency and cost reduction. Spectra-Based Fault
Localization (SBFL) counts to the mostly used methods. Hybrid approaches have been shown to be beneficial.
We discuss the challenges of a revised approach combining SBFL with mutation testing. Certain unconvinced
issues of mutation testing have been identified, and a practical framework has been prepared to evaluate
different variants of the approach. Building a new repository with faulty programs has been launched in order
to study the approach not only on the commonly used legacy programs, but also on faulty programs of more
contemporary versions of the Java language and unit tests.

1 INTRODUCTION

Fault Localization in software belongs to very
laborious activities and, therefore, different methods
have been studied to automate them and support code
development and maintenance. Different approaches
have been proposed based on program analysis, such
as code slicing and its variants, machine learning-
based techniques, including various kinds of neural
network, statistical debugging, model-based
techniques, and a family of methods based on test
result spectra. An overview of the approaches to fault
localization can be found in (Wong et al., 2016).

Spectra-Based Fault Localization (SBFL) is an
approach which collects execution results of test
cases: whether a program passed a test or failed. The
results are related to program units and code coverage
outcomes. This set of data is called the program
spectrum. Later, the spectrum is used for the
calculation of the metrics associated with the units of
the program under test. These program units that have
the highest metric values are the most suspicious, i.e.
are considered as places of possible faults.

Mutation testing has been proposed to evaluate
the quality of an existing test suite of a program and
also to create new tests. An overview of different
topics and achievements of this research area can be
found in (Papadakis et al., 2019). Mutation testing is

a https://orcid.org/0000-0001-8792-203X

based on the idea of fault injection. One or more faults
are injected into the program code. The modified
program, called a mutant, is run against test cases. If
the tests detect the fault(s), these tests are counted as
good in revealing faults. Otherwise, additional tests
could be developed, if possible. The main limitation
of mutation testing is the high cost to apply it in
practice. Mutation testing has also been used in some
approaches to mutation-based fault localization
(MBFL): (Papadakis and Le Traon, 2015), (Moon et
al., 2014).

One of the ways to improve fault localization
efficiency at a reasonable cost is to combine different
approaches to fault localization. It has been studied,
for example, SBFL combined with statistical
debugging (Jiang et al., 2019), a variety of methods
in (Zou et al., 2019), or SBFL followed by mutation
testing (Cui, 2020), (Lobo de Oliveira et al., 2018),
(Xu, Zou and Xue, 2020), (Dutta and Godboley,
2021).

This paper contributes to the latter approach. We
have revisited the combination of SBFL with
mutation testing and performed a basic case study.
After discussing the results of the case study, we point
out some questionable issues in test realization and
interpretation, and practical tool support. As a result,
a framework for the approach has been prepared that
could assist in answering the identified research
questions and supporting the evaluation of the code

544
Derezińska, A. and Krutko, S.
Combining SBFL with Mutation Testing: Challenges of a Practical Approach.
DOI: 10.5220/0011093500003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 544-552
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

of the newer technology than discussed in the
previous research. Moreover, a new repository of
contemporary Java programs with real faults has been
launched.

The paper is structured as follows. The next
Section gives an overview of SBFL methods and
some mutation testing approaches. Related work is
commented on in Section 3. In Section 4, we explain
the main idea of the approach that joins SBFL and
mutation testing illustrated with a case study. Then,
we discuss the problems and present practical
solutions to support the approach. Finally, Section 6
concludes the paper.

2 BACKGROUND

2.1 Fundamentals of Spectrum-Based
Fault Localization

Spectrum-Based Fault Localization (SBFL) methods
use a statistical approach to evaluate test results
(Wong et al., 2016). For each test, a program
spectrum contains its outcome (pass or fail) and
information about code units covered during its
execution. The goal of the analysis is to calculate the
expected chance that a code unit includes a fault.

There have been proposed over thirty statistical
formulas to compute the suspiciousness of each code
unit. The summaries of selected formulas can be
found, for example, in (Wong et al., 2016) and
(Heiden et al., 2019). Based on the calculated metric,
we can obtain a ranking of the program elements in
descending order of suspiciousness.

As an example, suspiciousness s(j) of j-th code
unit is calculated with the Ochiai metric, one of the
popular SBFL methods, using the following formula
(Abreu, Zoeteweij, Golsteijn, and van Gemund,
2009): 𝑠(𝑗) = 𝑎ଵଵ(𝑗)ඥ(𝑎ଵଵ(𝑗) + 𝑎ଵ(𝑗)) ∗ (𝑎ଵଵ(𝑗) + 𝑎ଵ(𝑗)) (1)

where
 a11(j) – the number of failed test cases that

cover unit j,
 a10(j) – the number of passed test cases that

cover unit j,
 a01(j) – the number of failed test cases that do

not cover unit j.
Following the notation used in unit testing

frameworks, in SBFL research, a failed test case is
one that has caused a program to fail, and a passed
test case is one that was passed by the code. The latter

is also called a successful test case (Wong et al.,
2016). Depending on the approach, in practice, a code
unit can be a code line, a statement, or a code block.

2.2 Mutation Testing in Fault
Localization

Fault localization can also use ideas of mutation
testing. In mutation testing, a mutant is a modified
program. A type of program modification is specified
by a mutation operator that typically reflects a
programming fault to be injected. Mutation tools
implement a set of mutation operators to inject faults
and create a set of mutants from an original program.
A mutant is killed if at least one of the tests detects
the injected fault. If the tests do not reveal any
difference in the program behavior, the mutant is said
to be alive.

Mutation-based methods identify suspicious
mutants and use them to find some faults that were
not previously localized in the original program. In
general, it is based on the following assumptions
(Papadakis and La Traon, 2015):
 Mutants-faults located in the same program

statements frequently exhibit a similar
behavior,

 Mutants-faults located in diverse program
statements exhibit different behaviors.

Evaluation of mutants should help detect which
tests are sensitive to faults in a given statement. This
could allow us to identify statements that are
potentially responsible for failed tests.

A basic method of mutation-based fault
localization is Metallaxis-FL (Papadakis and La
Traon, 2015). In this method, a mutant is classified as
killed if the test result is different from the test run on
the original program, i.e. a failed test was changed to
passed and a passed test was changed to a failed one.
A mutant M1 is said to have the same behaviour as
another mutant M2 if M1 and M2 are killed by the
same test cases. The degree of similarity in the test
cases that kill the mutants M1 and M2 defines the
behaviour similarity of these mutants.

Therefore, by measuring the number of mutants
killed by passing and failing test executions, one can
have an indication of the suspiciousness of those
mutants.

However, processing statements for which a
mutant was created could be questionable. In
Metallaxis-FL, if for a selected statement no mutant
was generated, its suspiciousness is treated as the
lowest and counted as zero. If for a statement more
than one mutant was created, the highest
suspiciousness is taken into account. A proposal of

Combining SBFL with Mutation Testing: Challenges of a Practical Approach

545

our modified approach to processing of results in
MBFL has been discussed in Sect. 5.

SBFL methods could also be combined with
mutation testing (Sect. 3.3).

3 RELATED WORK

3.1 Spectrum-Based Methods for Fault
Localization

Many SBFL methods have been developed that use
different formulas of suspiciousness. This raises the
question of the adequacy and efficiency of these
methods.

Nine SBFL methods have been evaluated in
experiments on a set of eight C programs, namely:
Jaccard, Tarantula, Ochiai, Sorensen-Dice,
Anderberg, Simple-matching, Rogers and Tanimoto,
Ochiai 2, Russel and Rao (Abreu, Zoeteweij,
Golsteijn, and van Gemund, 2009). In these
experiments, for each program, the Ochiai method
gave the highest accuracy in fault localization or at
least was as good as other methods. On average, the
results were 4% better for Ochiai than for other
methods.

Five SBFL methods (Tarantula, Ochiai, Op2,
Barinel, oraz DStar) have been used in experiments
conducted on programs with 3242 artificial faults and
323 real faults (Pearson, et al., 2017). The results
showed the superiority of the Op2 formulas over
other SBFL methods in the case of artificial faults.
However, the experiments also demonstrated that the
SBFL results of artificial faults are considerably
different from those of real faults. All five methods
gave similar results for real faults, but the best results
were for DStar and Ochiai.

Research carried out by (Zou, Liang, Xiong,
Ernst, and Zhang, 2019) aimed at comparison of
different groups of fault localization techniques.
SBFL was represented by two methods: Ochiai and
DStar. In the top 10 elements with the highest
suspicion, 44% of 357 faults were detected using
Ochiai and 45% using DStar. In this case, the SBFL
methods gave the best results compared to other fault
localization methods examined in the paper.

One of the problems is the range of suspicious
areas identified by SBFL that should be further
examined. In experiments reported in (Heiden et al.,
2019), while studding 10 of the most suspicious areas,
only 40% of faults could be detected. Therefore, and
additional post processing with other methods is
recommended.

3.2 Mutation-based Fault Localization

The mutation testing approach has been proposed for
fault localization by (Papadakis and La Traon, 2012),
and the idea extended to Metallaxis-FL (Papadakis
and La Traon, 2015). Similar prerequisites were used
in MUSE, a mutation-based approach using another
metric to calculate fault localization (Moon et al.,
2014). Direct mutation-based approaches are limited
by the high execution cost. Therefore, it could be
beneficial to pre-select a number of mutants, test
cases, test runs, or their combinations.

Mutation testing ideas have also been used in
program debugging and fixing of faulty programs
(Debroy and Wong, 2010).

3.3 Combination of SBFL with
Mutation-based Approaches

There are also several attempts to combine spectrum-
based methods with mutation-based methods to
locate faults.

In (Cui et al., 2020), a program is analyzed with
an SBFL (Ochiai and DStar). Then, mutants of the
program are generated and executed with MBFL.
Finally, the n-top suspicious statements according to
SBFL are re-ranked on the basis of the mutation
results using the Metallaxis and MUSE techniques.

The FTMES approach (Lobo de Oliveira et al.,
2018) has used only the set of failed test cases to
execute mutants and avoided the execution of passed
test cases, replacing the killing information with
coverage data. It has been shown that the approach
presented good solutions when the size of the failed
test case set is smaller than the set of passed test cases.

In the hybrid approach presented by (Xu, Zou, and
Xue, 2020), three different methods are combined.
First, the standard SBFL is used and the
corresponding program coverage is recorded. This
gives a ranking of the suspiciousness of the statement.
Then the k-top predicates (k = 10) are selected for
mutation testing. Only failed test cases are run against
mutants. Finally, the program slicing is applied.

The experiments on C programs reported in
(Dutta and Godboley, 2021) start with calculation of
a program spectrum with different SBFL methods
(Tarantula, Barinel, Ochiai, and DStar). The
programs are mutated and run against tests. The
mutation results are combined with the averaged
results of SBFL. An obstacle of this MBFL approach
is the high cost of mutation testing of whole
programs.

Most of the discussed works are limited to one
fault in a program.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

546

4 CASE STUDY

In this Section, we present a case study on an
approach that combines SBFL with mutation testing.

4.1 A Subject of the Case Study

Case study experiments were carried out on a
program which performs a method of data
compression via textual substitution Lempel-Ziv-
Storer-Szymanski (LZSS) (Storer and Szymanski,
1982), which is a modification of the basic SL77
algorithm. The program has been implemented in
Java using the Spring Boot platform. The program
can be run in two modes: coding and decoding. It can
be called via a command line with appropriate options
to control its execution.

The program architecture is divided into two main
modules: encoder and decoder. These modules are
supplemented with Encoder and Decoder interfaces.
They are implemented by the classes EncoderImpl
and DecoderImpl. The first class realises the whole
functionality of the encoder module. The decoder
module contains five additional helper classes.

The program has been developed with a set of
twenty unit tests. The tests did not deal with the
functionality of the whole application, but the case
study was limited to a thorough testing of the
Encoder.encode() and Decoder.decode() methods, as
well as the selected helper methods. The tests give
100% class coverage, 95% method coverage, and
97% line coverage.

In order to evaluate the discussed approach, a fault
has been injected into the encode() method of the
EncoderImpl class on line 40. As a result, three unit
tests detected this error and failed.

4.2 Spectrum-Based Fault Localization
in the Case Study

In SBFL, suspiciousness degrees are assigned to code
extracts according to a program spectrum. A program
spectrum can be presented in a tabular form, as in
Table 1. A code line is selected as a basic code unit,
since most code coverage tools support line coverage.
Four test cases are identified in columns. The eight
rows correspond to selected code lines that include an
executable code. The first column includes the line
numbers. In the next columns, line coverages are
given, where ‘1’ denotes a line covered by the test in
this column, while ‘0’ means that a line was not
covered by the test. The last row brings the results of
the test execution: 1 – the program passed the test, 0
– the program failed for the test.

Table 1: Part of the spectrum of the LZSS program
(EncodedImpl class).

Line Test1 Test2 Test3 Test4
34 1 1 1 1
35 0 0 1 1
36 0 0 1 1
38 1 1 1 1
39 1 1 1 1
40 1 1 1 1
41 1 1 1 0
42 1 1 1 0

Test
result

0 0 0 1

Based on the formula of the Ochiai method (Sect.
2.1), the suspiciousness of the program lines was
calculated. The selected code lines in Table 1 were
covered only by tests 1-4. The suspiciousness of these
code lines is shown in Table 2.

Table 2: Suspiciousness of selected lines of the LZSS
program (Ochiai SBFL).

Line Failed
tests

Passed
tests

Suspiciousness

34 3 1 0.87
35 1 1 0.34
36 1 1 0.34
38 3 1 0.87
39 3 1 0.87
40 3 1 0.87
41 3 0 1
42 3 0 1

None of the tests of other classes has failed; hence,
the suspiciousness of other classes of the decoder
module equals zero. Therefore, after this first step in
fault localization, other classes were excluded except
the one that includes an injected fault.

The EncoderImpl class consists of four methods
and includes 84 lines of executable code. Lines 41
and 42 were assigned the highest suspiciousness,
value 1, as they were executed by failed tests only.
Next, 38 lines get suspiciousness equal to 0.87,
including line 40 that comprises the injected fault.
Code lines with the three highest degrees of
suspiciousness have been selected to be used in the
further evaluation.

4.3 Mutation-based Fault Localization
of the Case Study

After using the SBFL method, the code area under
concern was bounded to 61 lines of code. To this area,
mutation testing was applied. This method requires
the creation of many mutants and the execution of

Combining SBFL with Mutation Testing: Challenges of a Practical Approach

547

tests several times. Therefore, any limitation of the
number of suspicious code lines is worthwhile.

Mutants have been generated with (Pitest, 2021),
currently the most efficient mutation testing tool of
Java programs. The following Pitest mutation
operators have been used:
 BOOLEAN_FALSE_RETURN
 BOOLEAN_TRUE_RETURN
 CONDITIONALS_BOUNDARY_MUTATO

R
 EMPTY_RETURN_VALUES
 INCREMENTS_MUTATOR
 INVERT_NEGS_MUTATOR
 MATH_MUTATOR
 NEGATE_CONDITIONALS_MUTATOR
 NULL_RETURN_VALUES
 PRIMITIVE_RETURN_VALS_MUTATOR
 VOID_METHOD_CALL_MUTATOR

The results of the mutation testing for selected

lines are shown in Table 3. For each line, mutants are
identified that introduced changes in this code area.
In the column ‘Mutant’, the symbol ‘-‘ means that no
such mutant was generated, while numbers 1, 2, 3
denote consecutive numbers of mutants that refer to
this area. In the following columns, the results of tests
1-4 that are run against those mutants are given
accordingly. The number ‘0’ means that the program
failed the test, ‘1’ the program passed the test.

Table 3: Results of mutant testing for the selected code lines
of the LZSS program.

Line Mutant Test1 Test2 Test3 Test4
34 1 0 0 0 1
34 2 0 0 0 1
34 3 0 0 0 1
35 - - - - -
36 1 0 0 0 1
38 - - - - -
39 1 0 0 0 1
40 1 1 1 1 0
40 2 0 0 0 1
41 1 0 0 0 1
42 - - - - -

When comparing the results of the mutant tests
with the outcomes of the original program (Table 1),
we can observe that only for mutant number 1 when
referred to line 40 the results for all tests differ from
the original ones. For all other mutants, all tests gave
the same results as for the original program.
Therefore, we could suspect that there is a fault in line
40, which corresponds to the fault introduced before
the method evaluation.

4.4 Discussion

The application of an SBFL method as a first step
resulted in the limitation of a considered area to 73%
of the code under test. Therefore, the mutation testing
approach could have been applied to a smaller part of
a program and pointed directly at the suspicious area.
Taking into account the labor intensity of mutation
testing, it positively influences the cost of the
approach.

It is also important to note that the considered area
has been successfully limited to only one class, which
in Java means that the search area is limited to one
file. As was shown in (Parnin and Orso, 2011),
programmers do not follow the ranked suspiciousness
list linearly. They usually start with a file where the
highest-ranked element is located and go through all
the suspicious elements in the class, even if these
elements have a lower ranking value. This means that,
with respect to fault detection efficiency, the
following situation would be beneficial: even if the
highest-ranked element is not the faulty one, it should
at least point to the file that includes some faults. This
situation also occurred in the case study.

After the mutation test is applied to the selected
area, the faulty line has been correctly identified. This
could be counted as the success of the combination of
two selected methods (Ochiai and Metallaxis).
However, in general, this could not be true. In the case
presented, the fault was correctly localized because a
mutant created has changed an incorrect result to a
correct one.

5 CHALLENGES OF A
PRACTICAL APPROACH

Based on the experience of the case study, we have
identified a few problematic points and addressed
research questions. We also discuss tool support
issues of the developed framework.

5.1 Obtaining Program Spectra

A crucial prerequisite for SBFL is high code coverage
by tests. However, a simple code coverage is not
sufficient. In the formulas of all SBFL methods, an
important factor is the number of tests that failed and
cover the j-code unit. In general, to practically apply
SBFL methods and calculate statistical values, many
test cases should be associated with a program.
Moreover, multiple coverage is necessary, which

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

548

means that many, or at least several, test cases should
cover the same code elements.

The SBFL evaluation in a case study was based
on the Ochiai algorithm, counted as one of the more
efficient methods in several experiments. However, it
has not yet been concluded which method is the best.
Moreover, in the framework, it could be a good idea
to use several SBFL methods and combine their
results to select suspicious areas that could be further
evaluated in mutation testing.

The spectrum of the LZSS programs was
generated with the support of the Intelij Idea Code
Coverage Agent. Code coverage could be obtained,
for example, through CodeCoverage Agent or
JaCoCo. However, commonly used coverage tools
report on line coverage but do not provide the
information necessary to calculate spectra, that is,
which test covered a single line. Therefore, in the case
study, the test cases were executed separately and the
final information was merged using those separate
test results.

Some tools that support spectra-based analysis
obtain information from unit tests of Junit3 and Junit4
(GZoltar, 2022), but not from Junit5. In the developed
framework, JaCoCo has been incorporated, and the
process has been automated to acquire all the spectra
also from the currently used Junit5 library.

5.2 Processing of Failed Tests in
Mutation Testing

In Metallaxis, the suspiciousness of a statement is 0 if
none of the failed tests has been changed to a passed
one. This makes the approach hardly useful in many
cases. If a method returns a type of limited set of
values (like a Boolean or enum), there is a chance to
get a correct test result after introducing a mutation
that compensates for an existing fault. However, if a
result type returned by a method or its behavior is
more complex, then it is less probable that a
combination of two faults, i.e. an original with the one
injected by mutation, give a correct program result. If
a fault were in such an expression, the tests would fail.

Therefore, in the framework, the number of tests
changed from pass to fail should be counted in
suspiciousness evaluation, even though the non-
failure test was changed to the introduction of a
passed due to a mutation introduction in this
expression.

After the execution of the tests, the mutation tool
returns the state of execution of a mutant, ‘killed’ or
‘live’, and the information which tests have killed the
mutant. This could be used to automate the fault
localization process. However, Pitest does not allow

us to run mutants against tests that fail in an original
program. This could be logical for the typical
application of mutation testing, but is a limitation if
we want to use the results for fault localization
purposes. Moreover, it could be possible that a mutant
run with a failed test gives a positive result.

In the Pitest case study, the results were collected
for positive tests. Failed tests have been processed by
running mutants separately and collecting their
results. To automate the process for all types of tests,
the functionality of Pitest could be extended.

5.3 Differentiating Failed Tests in
Mutation Testing

Another problem is differentiating between various
types of failed test results. In mutation testing, we are
primarily interested in whether or not a mutant was
killed by any test. In the proposed approach, different
values obtained from failed tests could be
distinguished. In the determination of the final
suspiciousness, we could take into account tests that
change a program result in the following way:
 from pass to fail,
 from fail to pass,
 from fail to fail with the same result (“fail

invariant”),
 from fail to fail with another result (“fail

diversely”).
Therefore, a mutation testing platform should also

process test outcomes and, then, compare. Analyzing
these data could be beneficial, as the influence of the
results of a faulty program on the efficiency of the
fault location remains an open research question.

Research question 1: How will counting the tests
that failed with another result because of mutation as
tests that changed from fail to pass affect fault
localization efficiency?

5.4 Mutation Efficiency

An important aspect of mutation testing is its
efficiency. To achieve substantial savings in time and
space, the platform should provide additional
functionalities. The first one is the possibility of
precisely identifying the units (lines) of code that
should be mutated. The bigger the program, the more
costly the addition of a single mutant can be. Hence,
the result retrieved from SBFL should be used as a
direct line-by-line input for a mutation engine.

Secondly, the optimisation functionality already
provided by Pitest should be used. This optimisation
excludes from running the tests that do not cover a
code unit where a mutation is located. Therefore, the

Combining SBFL with Mutation Testing: Challenges of a Practical Approach

549

functionality provided by Pitest should be modified,
as it is impossible to collect complete coverage for a
failed test. That is why, in addition to all tests that
pass on the original program and cover the mutant,
failed tests should be run for each mutant.

5.5 Re-ranking Code Units for Which
No Mutants Were Generated

As mentioned above, the MBFL approach ranks all
code units without mutations as code with 0
suspiciousness. However, in the case of combining
spectrum- and mutation-based fault localization,
these units still have a ranking from the SBFL
technique. This might result in the actual faulty
statement being pushed to the bottom of the final
ranking if there are no available mutation operations
for the statement. We have not found any research on
whether reusing the SBFL suspiciousness ranking in
the final ranking could eliminate these scenarios and
improve the overall effectiveness of the combined
techniques. This open issue has to be verified.

Research Question 2: Will keeping the SBFL
score as the final score when no mutations were
created affect the effectiveness of spectrum-mutation-
based fault localization?

5.6 Evaluation of the Approach with
Contemporary Software

FL approaches are usually evaluated on programs that
include artificial or real faults. In (Pearson et al.,
2017), the same localization methods have been
compared using both types of faults. It was observed
that the results of artificial faults were not adequate
for evaluating programs with real faults. Therefore,
most of the research focused on programs with real
faults, eg., those collected in the Defects4J repository
(Just, Jalalj, and Ernst, 2014), (Defects4J, 2021).

To overcome certain limitations of Defects4J,
other sets of Java programs have been collected, e.g.
Bugs.jar (Saha et al., 2018) and BEARS Benchmark
(Madeiral et al., 2019).

However, the programs in these repositories are
written in Java 8 or earlier versions, and their unit
tests are in Junit 3 or Junit 4. In 2021, the 17th version
of Java was published. Although previous Java
versions are still commonly used, programs in Java
before version 8 could be treated as legacy code.
Since 2017, unit tests can be written with the Junit5
library. Therefore, a collection of faulty programs has
been launched in a new BugsRepo repository to
evaluate the approach also on some programs
developed using contemporary technology.

Research Question 3: Will evaluation of real
faults and newer versions of Java and Junit confirm
the results of previous research?

5.7 Framework Design

To address the above-mentioned issues, a new
spectrum-mutation-based fault localization
framework has been developed. The framework
consists of two parts: spectrum processing and
mutation processing. The spectrum module uses the
JaCoCo Java agent to instrument code classes. It
discovers the Junit5 tests, runs them sequentially, and
collects after each test the coverage data from the
agent. Based on the results, the SBFL suspiciousness
ranking is calculated for a range of different metrics.
Next, the top N suspicious code units (code lines) are
passed to the mutation module.

Mutation testing is performed with a modified
Pitest. This mutation tool has been extended with all
the required functionalities mentioned in Sections
5.2-5.4. During mutation testing, only the most
SBFL-suspicious units are taken into account.

Then, the final suspiciousness ranking is
produced.

6 CONCLUSIONS

Selected aspects of a process that combines SBFL
with MBFL have been presented. In the case study,
the suspicious code was considerably limited by
SBFL, and using MBFL to this area only, a previously
injected fault was found. To generalize the idea, new
recommendations are provided for processing the test
results of both approaches, which could improve the
efficiency and performance of fault detection. Most
of the suggestions refer to interpretation of failed tests
in mutation testing. We have formulated three
research questions that need further investigation.

A platform has been prepared to effectively
support the approach and further research on the
selection of different variants of SBFL metrics and
the processing of mutation testing results. It would
allow us to answer the identified research questions.

We have planned to carry out experiments with
real faults using not only legacy projects, as typically
in research, but also more contemporary projects in
terms of the Java language and Junit library. A new
bug repository will help to evaluate the known results,
for older Java and Junit versions, on newer
applications. Moreover, this supports the
development of tools that are compatible with newer

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

550

technologies. Without current easy-to-use tools, fault
localization can hardly be used in real life projects.

In the future, the platform could also be combined
with other fault localization approaches (Wong et al.,
2016), (Zakari et al., 2020), as well as fault prediction
methods (Caulo,2019), (Catal, 2011).

REFERENCES

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund,
A.J.C., 2009. A practical evaluation of spectrum-based
fault localization. The Journal of Systems and Software,
82(11), 1780-1792. doi:10.1016/j.jss.2009.06.035.

Caulo, M., 2019. A taxonomy of metrics for software fault
prediction. 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ESEC/FSE
2019, pp. 1144–1147. doi:10.1145/3338906.3341462.

Catal, C., 2011. Software fault prediction: A literature
review and current trends. Expert Systems with
Applications, vol. 38, no. 4, pp. 4626-4636. doi:
10.1016/j.eswa.2010.10.024.

Cui, Z., Jia, M., Chen, X., Zheng, L., Liu, X., 2020.
Improving software fault localization by combining
spectrum and mutation. IEEE Access vol 8, 172296-
172307. doi:10.1109/ACCESS.2020.3025460.

Debroy V., Wong, W.E., 2010. Using mutation to
automatically suggest fixes for faulty programs. In:
Third International Conference on Software Testing,
Verification and Validation, pp. 65–74.
doi:10.1109/ICST.2010.66.

Defects4j on GitHub. [Online] [Accessed 29 Dec 2021]
Available from https://github.com/rjust/defects4j.

Dutta A., Godboley S., 2021. MSFL: A model for fault
localization using mutation-spectra technique. In:
LASD’2021, Lean and Agile Software Development.
LNBIP, vol 408. pp 156-173, Springer, Cham. doi:
10.1007/978-3-030-67084-9_10.

GZoltar – Java library for automatic debugging. [Online]
[Accessed 25 Jan 2022] Available from
https:/github.com/GZoltar/gzoltar.

Heiden, S., Grunske, L., Kehrer, T., Keller, F., van Hoorn,
A., Filieri, A., Lo, D., 2019. An evaluation of pure
spectrum-based fault localization techniques for large-
scale software systems. Journal of Software: Practice
and Experience. 49(8) pp. 1197-1224.
doi:10.1002/spe.2703.

Jiang, J., Wang, R., Xiong, Y., Chen, X., Zhang, L., 2019.
Combining spectrum-based fault localization and
statistical debugging: an empirical study. In: ASE’19,
34th IEEE/ACM International Conference on
Automated Software Engineering. pp. 502-514. IEEE
Comp. Soc. doi.10.1109/ASE.2019.00054.

Just, R., Jalali, D., Ernst, M. D., 2014. Defects4J: a database
of existing faults to enable controlled testing studies for
Java programs. In: ISSTA’2014, International
Symposium on Software Testing and Analysis.
doi:10.1145/2610384.2628055.

Lobo de Oliveira, A.A., Camilo-Junior, C. G., Noronha de
Andrade Freitas, E., Rizzo Vincenzi, A. M., 2018.
FTMES: A failed-test-oriented mutant execution
strategy for mutation-based fault localization. In: IEEE
29th International Symposium on Software Reliability
Engineering, pp. 155-165. doi:
10.1109/ISSRE.2018.00026.

Madeiral, F., Urli, S., de Almeida Maia, M., Monperrus,
M., 2019. BEARS: An extensible Java bug benchmark
for automatic program repair studies. In: SANER’2019,
IEEE 26th Conference on Software Analysis, Evolution
and Reengineering. pp. 468-478. doi:
10.1109/SANER.2019.8667991.

Moon, S., Kim, Y., Kim, M., Yoo, Y., 2014. Ask the
mutants: mutating faulty programs for fault
localization. In: Proceedings of IEEE International
Conference on Software Testing, pp. 153–162. doi:
10.1109/ICST.2014.28.

Papadakis, M., Kintis, M., Zhang, Jie, Jia, Y., Le Traon, Y.,
and Harman, M., 2019. Chapter Six - Mutation testing
advances: an analysis and survey. Advances in
Computers. 112, pp. 275-378. Elsevier.
doi:10.1016/bs.adcom.2018.03.015.

Papadakis M, Le Traon Y. 2012. Using mutants to locate
“unknown” faults. In: IEEE Fifth International
Conference on Software Testing, Verification and
Validation, pp. 691–700. doi:10.1109/ICST.2012.159.

Papadakis, M., Le Traon, Y. 2015. Metallaxis-FL:
Mutation-based Fault Localization. Software Testing,
Verification and Reliability 25, pp. 605-628.
doi:10.1002/stvr.1509.

Parnin C, Orso A., 2011. Are automated debugging
techniques actually helping programmers? In:
ISSTA’2011, Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pp.199-
209. doi:10.1145/2001420.2001445.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R.,
Ernst, M.D., Pang, D., Keller, B., 2017. Evaluating and
improving fault localization. In: IEEE/ACM 39th
International Conference on Software Engineering
(ICSE), pp. 609-620. IEEE doi:10.1109/ICSE.2017.62.

Pitest.org.[Online] [Accessed 29 Dec 2021] Available
from: https://pitest.org/.

Saha, R., Lyu, Y., Lam, W., Yoshida, H., Prasad, M., 2018.
Bugs.jar: A large-scale, diverse dataset of real-world
Java bugs. In: IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pp. 10-13. doi:10.1145/3196398.3196473.

Storer, J.A., Szymanski, T.G., 1982. Data compression via
textual substitution. Journal of the ACM. 29(4) pp. 928-
951. doi:10.1145/322344.322346

Wong, E., Gao, R., Li, Y., Abreu, R., Wotawa, F., 2016. A
survey on software fault localization. IEEE
Transactions on Software Engineering 42(8), pp. 707-
740. doi:0.1109/TSE.2016.2521368.

Zakari, A., Lee, S.P., Abreu, R., Ahmed, B.H., Rasheed,
R.A., 2020. Multiple fault localization of software
programs: a systematic literature review. Information
and Software Technology, 124, 106312.
doi:10.1016/j.infsof.2020.106312.

Combining SBFL with Mutation Testing: Challenges of a Practical Approach

551

Zou, D., Liang, J., Xiong, Y., Ernst, M. D. Zhang, L. 2019.
An empirical study of fault localization families and
their combinations. IEEE Transactions on Software
Engineering, 47(2), 332-347. doi:10.1109/TSE.2019.2
892102.

Xu, X., Zou, C., Xue, J., 2020. Every mutation should be
rewarded: Boosting fault localization with mutated
predicates. In: International Conference on Software
Maintenance and Evolution. IEEE pp.196-207.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

552

