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We propose an applied machine learning course that teaches students with no machine learning background
how to train and use deep learning models for deploying aerial drones (multi-copters). Our unique, hands-on
curriculum gives students insight into the algorithms that power autonomous systems as well as the hardware
technology on which they execute. Students learn how to integrate Python code with serial communications
for streaming sensors and imagery to deep learning models. Students use OpenCV, Keras, and TensorFlow
to learn about computer vision and deep learning. The final project (see Figure 1) provides the opportunity
for students to plan and develop an end-to-end, fully autonomous, self-contained product (i.e. all systems
physically residing on the drone itself) that is integrated with heavy-payload drones and computer vision in a
scenario centered around an outdoor search and rescue mission. With no human in the loop, students deploy
drones in search of a missing person. The drone locates and identifies the individual, delivers a care package
to their location, and then reports the individual’s geolocation to ground rescuers before returning home. The
novel helper code and solutions are built in-house using Python and open technologies. Results from a pilot
offering in the spring of 2021 indicate that our approach is effective and engaging for computer and cyber
science students who have previously taken a basic artificial intelligence course and who have 1-2 years of
programming experience. This paper details the design, focus, and methodology behind our Autonomous

Systems Integration curriculum as well as the challenges we encountered during its debut.

1 INTRODUCTION

For all the good internships may do for undergradu-
ate students’ preparedness for industry, merely 60%
of undergraduate students in the United States par-
ticipate in some form of internship program (Smith
and Green, 2021). A recent study with 536 multi-
institutional computer science (CS) students con-
firmed this trend, showing that only 57.5% of them
completed an internship prior to graduation (Kapoor
and Gardner-McCune, 2020). Many students rely on
their college degrees for job prospects after gradu-
ation (Valstar et al., 2020), and while there is lit-
tle difference in academic performance between stu-
dents who intern and those who do not, those grad-
uating without the industry experience an internship
affords often find themselves less employable, be-
cause they lack practical experience, good techni-
cal/interpersonal skills, and the ability to work effec-
tively in teams (Kapoor and Gardner-McCune, 2020).

We set out to address some of these issues
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for computer science (CS) undergraduate majors by
designing a hands-on machine learning (ML) cur-
riculum aimed at improving students’ understanding
and application of machine learning, teamwork, and
newly acquired skills. Specifically, we focus on skills
and insight that are considered relevant and valu-
able to both pubic and private industry: artificial
intelligence (AI), ML, simulation, computer vision,
and large, heavy-payload, unmanned aerial vehicles
(UAVs). Work on large, complex projects is never
done in a vacuum; therefore, we felt it was impor-
tant to integrate teamwork directly into the curricu-
lum. Our course, Computer Science CS 472: Au-
tonomous Systems Integration was designed to give
students hands-on experiences with these state-of-the-
art technologies.

The curriculum offers challenges wherein third
and fourth-year CS undergraduates can succeed by
leveraging and building upon their current skills and
knowledge. The chosen prerequisites for CS 472
are basic programming skills with Python, exposure
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Autonomous Drone
Custom hexcopter equipped with an onboard
computer and 3D camera.

Care Package
Delivered to the human target at

e a safe distance (10-20 feet)

Human Target

Recognized by the drone, and used to

determine where to drop the care

| package. S
— T T

Figure 1: A summary of CS 472’s final project. This image shows an actual deployment in action; drone is currently delivering
a package to the ground. Students deploy a fully autonomous drone (a) that uses machine learning to recognize a stranded
human from the air and calculate a safe ground distance from the individual where a much-needed care package is to be
delivered (b); the payload is then safely lowered to the ground and detached from the drone (c).

to Linux, intermediate knowledge and understanding
of AI (CS 471), and a grasp of basic, college-level
math. To make the course accessible to computer sci-
ence students, exercises focus on the algorithms and
ML models that control the UAV while also exposing
students to the hardware stack and sensor streaming
when required. An advanced understanding of Linear
Algebra (e.g., vectors and matrices) isn’t required; we
cover what they need during the course.

This paper makes three contributions. First, we
present a curriculum that helps CS students gain prac-
tical skills in drone technologies and applied ML. We
detail design considerations encompassing three key
areas: core autonomous systems concepts, machine
learning, and real-world integration, testing, and de-
ployment. Secondly, we explore the resources and
coordination required to implement such a course.
Third, we share a retrospective of our experience
with teaching CS 472 and challenges we encountered
throughout the 2021 Spring semester.

This paper is structured as follows. In the first sec-
tion, we provide an overview of related works and
show the need for a course that combines theoreti-
cal ML education and real-world exercises. We then
provide an overview of CS 472, describe the hard-
ware/software used, and the lesson layout. Finally,
we discuss our experiences piloting CS 472 during the
Spring 2021 semester, and conclude with a discussion
of lessons learned and areas for improvement.

2 RELATED WORKS

A modern approach to addressing the gap between
academia and industry is to couple theory and ap-

plication, embedding a practical learning experience
into the curriculum. This is the cornerstone of voca-
tional approaches to learning, where expertise is ac-
quired through engagement and experience prompted
by contextualized meaningfulness (Stevenson, 2020).
Internships overlap vocational-oriented programs that
incorporate many aspects of experiential learning
(Kolb et al., 2014) (or vice versa), which may help
to promote self efficacy through the transformation
of the experience built into such programs (Manolis
etal., 2013).

It is generally accepted that ML is currently held
in high regard insomuch as the promise it holds in
many areas of science, medicine, and engineering
(Akbilgic and Davis, 2019; Farjo and Sengupta, 2021;
Rutherford, 2020; Trister et al., 2017; Liirig et al.,
2021; Toole et al., 2019; Aczari et al.,, 2020; von
Lilienfeld and Burke, 2020); therefore, we feel it is
important to have a portion of CS curriculum devoted
to it. Yet, according to (Shapiro et al., 2018), educa-
tional offerings in CS departments do not reflect this
reality; in addition, they point out that more research
into how people learn ML is necessary so as to en-
courage the creation of ML courses specifically de-
signed to be effective across a broad range of students
with varying backgrounds and interests.

It is important to note that our course is designed
as an introductory ML course, albeit heavily applied.
The curriculum encourages students to “roll up their
sleeves” and dive into the material with quick startup
lessons and labs. We loosely incorporate ideas from
two studies that suggest differing pedagogical ap-
proaches to teaching ML that aim to accomplish sim-
ilar results for non-CS majors, (Sulmont et al., 2019)
and (Fiebrink, 2019). (Sulmont et al., 2019) point out
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that ML algorithms are not as difficult to teach as is
using ML in design decisions and comparing contrast-
ing models; insightful information that we took into
account when building out the hands-on projects in-
cluded in the curriculum.

Work by (Fiebrink, 2019) suggests approaches to
teaching ML for creative practitioners (i.e.,. artists,
musicians, etc.) while it draws on substantial data
from some of the first courses in the world focused
on teaching ML to non-CS majors. (Sulmont et al.,
2019) mapped Structure of Observed Learning Out-
comes (SOLO) stages from the seminal work pub-
lished by Biggs and Collis (Biggs and Collis, 2014)
to an instructor-based taxonomy of ML learning goals
for non-CS majors. Our take is that incorporating ele-
ments from these works into our design allows for the
program to be an effective, robust introductory course
to ML for CS majors while allowing for it to be tai-
lored to work outside of a CS major track in the near
future.

3 COURSE OVERVIEW

CS 472 is a 3-credit hour course consisting of 40 one-
hour classes. Students are expected to spend between
2 and 3 hours outside of class per hour in class on
homework, labs, and assignments. The course cen-
ters on integrating machine learning with autonomous
systems found in open drone tech stacks to provide
applied solutions to real-world problems.

The culminating event of the class is a multi-day
exercise in which students deploy a fully-autonomous
drone in support of a search and rescue mission (see
Figure 1). The drone must find and recognize a
stranded, possibly injured person from the air (rep-
resented as a dressed mannequin for safety reasons)
using a camera, infrared depth sensor and trained ma-
chine learning model. It must then lower and deliver a
care package (payload) within ten feet of that person,
report the location of the individual to human rescue
crews, and return home. The assignment is accom-
plished with teams of two students, each team having
its own drone. Each team integrates the drone hard-
ware with custom-written, in-house helper libraries
and software to enable the functionality necessary to
complete the mission. Each team may use any code
covered in class as well as any code created by its own
individual team members; no cross-team code sharing
is permitted. Teams go head-to-head, competing for
best all-around execution.

Due to the complexity of the final project, we were
unable to find cost effective commercial products that
aligned our course goals; therefore, we created our
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own drone software suite, relying heavily on open
hardware and software architectures and technologies
whenever available. In this section we outline the
hardware and software choices we made, and demon-
strate how these choices give students the opportunity
to experience a rich environment where implementa-
tion and execution is fused with traditional college-
level theory.

3.1 Hardware Choices

Budget, safety concerns, and feasibility must all be
considered when choosing hardware for a course that
includes UAVs. Smaller drones are typically less ex-
pensive and even considered more practical under cer-
tain constraints (like available air space for flying or
storage space). However, we have ample outdoor
space for flying large machines, and we have good
storage facilities as well; therefore, we chose to pur-
chase seven custom, fully assembled large Tarot X6-
based hexacopter platforms from UAV Systems Inter-
national (International, 2019). Figure 2 details the
basic drone stance as well as the locations where we
retrofitted the assistive computer, camera, and dis-
tance sensor onto the drone. A number of reasons
went into our decision for purchasing these larger ma-
chines:

e We wanted to afford students the opportunity to
work with state-of-the-art technology while hav-
ing all of the necessary embedded equipment on-
board the drones. The autopilot, NVIDIA GPUs,
1TB data storage, cameras, distance finders, etc.
are 100% onboard. Smaller drones would make
this difficult, if not impossible.

* We desired to have all necessary hardware for
the AI execute on the drone independently, with-
out the need for a remote computer connection.
This significantly reduces latency between com-
mands and execution. Note that instructors have
RC transceivers on hand at all times to override
drone functions in cases where student code might
create a dangerous situation. In addition, a laptop
with a wireless radio is used to monitor real-time
telemetry while the drones are in flight.

* We wanted to create interesting and engaging
challenges for this course. The Tarot X6 is capa-
ble of carrying up to 11 pounds of cargo in addi-
tion to the onboard batteries. We felt that missions
requiring the delivery of a large payload would be
appealing and interesting for students.

* As the course matures, we may integrate more ob-
jectives that require additional sensors and other
equipment. These platforms are capable of scal-
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Figure 2: A close-up of the Tarot X6 hexacopters used in CS 472. In addition to the standard radio, autopilot, and GPS
systems (A), we attached a depth sensing camera, IR range finder, and an independent assistive computer (b). The drone
is capable of running machine learning models to classify objects and altering its behavior without commands from a base

station.

ing up with the course via their larger footprint
and payload capacity.

We purchased several long-range PowerBox Sys-
tem Radio Core RC Systems (powerbox systems.com,
2022) for managing the drones when outdoors. Our
handsets store an individual profile for each of our
drones, allowing instructors to override any drone
from any handset. In addition, each drone is equipped
with an Infel® RealSense™ D455 depth-sensing cam-
era (intelrealsense.com, 2021), the PX4 (ArduPi-
lot) Cube Blue autopilot (ardupilot.org, 2021), the
NVIDIA® Jetson Xavier™ NX for accelerated Al ex-
ecution (nvidia.com, 2022) - 6-core ARM CPU, 384
GPU cores, 8 GB ram, and 1TB SSD. Drones also
have onboard depth sensors and payload cable latch
systems.

3.2 Software

We relied heavily on cross-platform software when
designing CS 472. This was done out of necessity.
All of the students at our institution are issued Win-
dows laptops during their Freshman year. Conse-
quently, we wanted to make sure that the software so-
Iutions would run on their systems, as well as with
the course hardware-much of which utilizes Linux-
based operating systems. We designed and produced
Python source modules specifically for this course
that provide students with all the necessary core code
they’ll need for several major projects. It contains
ML helpers, safe drone interfacing functions, stan-
dardized logging, and starter code for major projects.

Throughout the course students utilize several
pieces of open source software tools. Python 3.8
(Sanner et al., 1999) was chosen for the program-
ming language. All coding exercises are performed
in Python. PyCharm (JetBrains.com, 2022) was cho-
sen for the Python development environment. Py-
Charm is a free open-source, robust development en-

vironment that offers easy virtual environment cre-
ation, debugging and syntax checking. Students uti-
lize two drone-related Python API libraries: (1) Py-
mavlink and (2) DroneKit. These libraries communi-
cate with drone hardware over serial communications
using the MavLink protocol. Machine learning and
computer vision are facilitated by TensorFlow, Keras,
and Open-CV. Finally, we include the PyRealSense
Python library for interfacing with Intel’s camera sys-
tem (described in section 3.1).

To configure the drone hardware, upload flight
plans to drones, and monitor drones while in flight,
students use Mission Planner (Oborne, 2016). We
also provided students with a simulated environment
that they use to test their drone code. The software
for that is provided by the ArduPilot open source
project, referred to as Software in the Loop (SITL)
(ArduPilot.org, 2016). SITL allows students to ex-
ecute their code on a simulated drone so that it can
be safely tested and debugged before deploying onto
the actual devices. To visualize the simulated drone
flight, we incorporated an open-source flight simula-
tor to sit on top of SITL, FlightGear (Perry, 2004).
The SITL environment, as we have it configured for
this course, contains everything required for virtual-
ized drone flight testing and experimentation.

4 CURRICULUM DESIGN

CS 472’s curriculum is split into two halves. The
first half of the course (lessons 1-15) consists mostly
of a traditional classroom arrangement. Here, stu-
dents attend lectures and complete labs covering the
use of drones, multi-copter flight theory and mission
planning, machine learning, sensors and data stream-
ing, drone hardware calibration, and drone safety.
Quizzes, homework, and testing are administered as
expected under a traditional college-level setting.
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The second half of the course (Lesson 16 onward)
is designated for hands-on experimentation and im-
plementation workshops, fused with lectures and gate
checks (progress and readiness checks) designed to
cover ML in greater detail and depth. The hands-on
lessons are designed to help students concretely ap-
ply their theoretical knowledge to the physical hard-
ware and environment. To form a complete picture
of an end-to-end solution, each major lesson block
concludes with a either real-world exercise where stu-
dents must program the UAV hardware to accomplish
a subset of the final mission, or a real-world example
that includes building/training ML models to be used
in our mission(s).

There are many topics wrapped into a course of
this type, and any one of these topics alone could
consume an entire semester. Consequently, mate-
rial had to be compressed to fit within our 16-week
semester. It was important to consider assimilable
material, how much of it would be supplied to the stu-
dents, and where we should expect students to “fill in
the blanks”. For example, when designing labs and
projects, we considered the amount of starter code
that should be supplied and where assignments should
focus students’ work and attention to ensure optimal
learning towards the primary purpose of a given exer-
cise. An important outcome for this course is to pro-
duce students who have both knowledge and imple-
mentation skills, yet we considered it unreasonable
to expect students to design, build, discover, and code
everything from scratch.

4.1 Programming Exercises

Although CS 472 is not a programming course per se,
it does require students to write a significant amount
of Python code to get their drones working. To ease
this burden, we provided two forms of starter code to
the students:

* Custom Python libraries that contain common
functions for communicating with our drones,
along with commonly-used commands and pro-
cesses

» Skeleton code that provides a working MAIN
function and stubs that students are required to
complete

These items provide a key starting point for all
projects, allowing students to quickly spin up and fo-
cus on the major tasks at hand. In addition, labs in-
clude live coding in the classroom, where students can
follow along with the instructor. This gives us an op-
portunity to explain the code to the students while giv-
ing them functional examples that they can then mod-
ify as needed when working on the final project.
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4.2 Textbooks

The advantages to using trade books over more tradi-
tional textbooks in this context are (1) quality publi-
cations provide readers with robust theory to go with
content while filtering all but the essentials for good
instruction, (2) trade books are often considered more
readable, making it possible to approach readily-
applicable examples and instruction and (3) students
who go on to become professionals are likely to turn
to trade books when working in industry (Schultz,
2014; Smolkin et al., 2013). With this in mind, we
chose 3 texts for the course:

* Build a Drone: A Step-by-Step Guide to De-
signing, Constructing, and Flying Your Very Own
Drone (Davies, 2016) required

I Sa et al -2016

¢ Hands-on Machine Learning with Scikit-Learn,
Keras, and TensorFlow 2nd Edition (Géron, 2019)
required
A Géron - 2019

e Machine Learning with Python for Everyone
(Fenner, 2019) supplemental

M Fenner - 2019

4.3 Lesson Organization

CS 472’s lessons are organized into five blocks. In
this section, we outline the structure of each block,
the learning outcomes, and the tools used to assess
student learning.

4.3.1 Block One: Drones, Multi-copters, and
Mission Planning

The first 6 lessons of CS 472 introduce the course cur-
riculum while taking a fresh look at modern drones,
their importance, and application in industry and de-
fense. Four lessons focus on multi-copter drones,
flight theory surrounding them, and general tools and
application.

The key objectives of these introductory lessons
are to help students: (1) understand the difference be-
tween automated vs. autonomous systems, (2) know
the immense potential in applied autonomous systems
as well as their limitations, (3) become familiar with
the devices that enable autonomous flight & opera-
tion, (4) describe the role of Software In the Loop
(SITL) and Mission Planner, and (5) understand the
technology stack used throughout the course. We
use a combination of PowerPoint slides, videos, and
hands-on labs to teach the material. Two in-class labs,
one quiz, as well as homework activities are used to
assess how well these objectives are met.
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4.3.2 Block Two: Machine Learning

This block consists of 10 classes centered around ML.
The first 3 lessons focus on some general machine
learning approaches as well as their uses. The next 4
lessons focus on feed-forward neural networks, con-
volutional neural networks (CNNs), and computer vi-
sion. The final 2 lessons in the block focus on transfer
learning.

Through these lessons, students are able to: (1)
understand what ML is and what it is used for, (2) un-
derstand how “learning” takes place in ML, (3) gain
awareness of inherent challenges of training and us-
ing ML, (4) understand deep feed-forward neural net-
works as well as deep CNNss, (5) gain a rudimentary
understanding of how convolutions work, (6) learn the
architecture of a basic CNN, (7) obtain hands-on ex-
perience using TensorFlow, Keras and Open-CV, (8)
learn how to train and evaluate a simple CNN, (9)
experiment with computer vision, object recognition
and tracking, (10) learn about transfer learning, and
(11) gain skills in transfer learning using Keras and
TensorFlow.

As in block one, we use a combination of Pow-
erPoint slides, videos, and hands-on labs to teach the
material. 3 in-class labs, 2 quizzes, as well as home-
work activities are used to assess how well these ob-
jectives are met. The midterm exam is also adminis-
tered and evaluated at the end of this block.

4.3.3 Block Three: Integrating with
Autonomous Systems (AS)

By the third block, students are ready to learn how
their AI/ML systems will work with real-time data
collected by sensors on the drone. For the next 6
lessons, students complete hands-on lab experiments
via SITL as well with the actual drone hardware. Stu-
dents learn how to enable communications between
the assistive computer and the autopilot, then they be-
gin uncovering ways to coordinate functionality be-
tween them to accomplish tasks.

These lessons give students: (1) a deeper under-
standing the drone’s autopilot, configuration, and sen-
sors, (2) an understanding of how communications
work between the autopilot and the assistive NVIDIA
computer, (3) time to explore the ethical concerns of
using autonomous drones, (4) an overview of drone
safety and precautions, (5) manual drone flight train-
ing, and (6) experience processing and utilizing drone
telemetry and sensor information in preparation for
the following block’s autonomous target acquisition
and landing exercise.

Performance is assessed though in-class labs,
completion of manual drone flight training, an ethics
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Figure 3: A student submission for Mission Exercise 1. Stu-
dents must demonstrate that their code (top) can safely op-
erate the drone in the SITL environment (bottom) before
being run on real-world hardware.

paper, and one quiz.

4.3.4 Block Four: Mission Exercise 1:
Automated Drone Target Acquisition

In the fourth block we transition from lectures and
labs to hands-on workshops focused on executing
missions. Here, students must program their drones
to fly a search pattern and locate a ground target (e.g.,
an area of terrain with a particular color) using the on-
board camera and computer vision algorithms. Once
that target is located, the drone will center itself over
the target and safely land on top of it.

Key objectives are: (1) learning how to control
drone movement via Python, (2) learning how to
code, debug & test drone missions in the SITL envi-
ronment, and (3) to successfully complete the in-field
drone mission execution.

To prevent students from trying to complete the
assignment in an “all-nighter” session (and, conse-
quently, to reduce the risk of the drones being dam-
aged), we divided the assignment into two progress
checks”, which were separated by a week. In the first
progress check, students are evaluated on how well
their code initially runs in the SITL environment (Fig-
ure 3). The second progress check occurs the day be-
fore the real-world flight, and tests all aspects of the
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mission (i.e.,target acquisition, navigation, and land-
ing); if a team’s code fails the SITL test, it will not
be executed on the actual drone, and students will re-
ceive at best a 70% for the exercise. The final step
is executing the mission outdoors where the target is
placed in a random location on the ground in a very
large, outdoor field. A flight plan unknown to students
is uploaded into the drone. The mission is graded on
2 items: (1) the overall time to acquire target and land
and (2) how closely to the target the drone lands. If the
mission fails, the best grade a team receives is 80%.

4.3.5 Block Five: Mission Exercise 2: Saving
Lives with Autonomous Search and Rescue

The final 12 lessons of CS 472 are dedicated to the
final project. Students are presented with a hypothet-
ical scenario in which an individual is injured and
stranded in a hard-to-reach place. This person must
be found, receive medical attention, and ultimately be
rescued. Students are asked to devise a way to locate
this person, deliver much-needed medical supplies,
and then report the location of the injured person to
search and rescue personnel. They are asked to con-
sider what is involved with locating and identifying
a stranded person and then delivering a care package
to that person. There are many technical challenges
that the students need to overcome in order to accom-
plish this mission. The first challenge is determining
how the drone can identify a person from the air. The
class is asked to think of a better, more refined object
tracker over the tracker used in the previous mission
to track an object (the person) once the individual has
been identified. Other problems that the students must
solve include:

* How might they estimate the stranded individual’s
location?

* How could a package be delivered to the person’s
location?

* What code could be repurposed from the previous
mission?

¢ What are some new elements that need to be cre-
ated?

The mission starts with the drone on the ground in
a designated field with a care package attached to it
by a cable (package contains 3 eggs). The drone will
lift off with the package and fly a predetermined flight
pattern; could be any pattern loaded by the instructor,
students will not know the pattern ahead of time. The
objective is to find the stranded person (dressed, man-
nequin) in the field, safely deliver the care package
within ten feet of that person, report the geolocation
of the individual and return home. Each team will put
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together all the code necessary required to complete
the mission. Teams may use any code covered in class
as well as any code team members created throughout
the course.

Teams must determine how to prepare and imple-
ment the object recognition model, which requires the
use of transfer learning on Yolo4-tiny using the Vis-
Drone dataset (Zhu et al., 2018) to get the model to
learn to recognize people from the air, how to locate
and track the person in need of help, which requires
the implementation of an object tracker, and how to
deliver the care package undamaged, which requires
the use of the a range finder and a simple trigonomet-
ric formula. While some aspects of the project cannot
be easily tested with SITL before executing the actual
mission, many of the important pieces can. It is up
to each team to discover how SITL can help as they
build out and test their code.

The final project grade is determined by consider-
ing the following elements:

* First, how well the drone was able to identify the
objective

 Second, how close to the 10-foot radius the drone
was able to deliver its payload without injuring the
person (dummy)

e Third, how much damage the payload incurred
during the process (ideally, none)

¢ Forth, how quickly the drone was able to complete
its mission

* Fifth, how smoothly the mission was executed
overall

S VALIDATION

CS 472 debuted in Spring 2021 with a total of nine
3rd-year and 4th-year undergraduate CS majors—all
of which voluntarily enrolled in our class. All stu-
dents had some initial exposure to Python from prior
courses, and were found to be moderately proficient in
the language. All students in the group had taken an
elementary Al course in the prior semester, but had no
experience with machine learning. As a result, they
came to the class with a theoretical understanding of
Al concepts and algorithms.

Table 1 summarizes students’ grades. In addition
to traditional grade performance, we evaluated stu-
dent feedback so as to improve the next offering of
the course. Some of the more important feedback we
considered follows:

* 86% of respondents felt that the course activi-
ties (readings, lectures, discussions, labs, projects,
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Table 1: Overall Class Performance.

Assignment Avg Grade (%)
AI/ML Application & Eval 87.38%
Mission 1: Target Acquisition 97.71%
Mission 2: Search & Rescue 83.33%
Midterm 76.00%
Quizzes 79.45%
In-class & Take-home Labs 88.60%
Ethics paper 94.56%
Gate Checks 88.64%
Overall 86.33%

etc.) were effective in helping them to accomplish
the learning goals set forth in the course; 14% dis-
agreed.

* 57% of students felt that graded events (exams,
quizzes, homework, projects, papers, etc.) pro-
vided them the opportunity to demonstrate their
accomplishments related to the course objectives;
28% disagreed and 14% had no opinion.

* For every 1 hour in class, students spent on aver-
age 2.4 hours outside of class completing course-
work.

* Nearly all respondents indicated that they regard
the hands-on nature of the assignments as the
most-liked aspect of the course.

* The majority of respondents indicated that they
felt the course moved too quickly from learning
to application.

* 86% of respondents were either satisfied or very
satisfied with the knowledge they gained from the
course.

* 100% of respondents felt that they got out of the
course what they desired to know and understand
about ML and autonomous drones.

6 CONCLUSIONS AND FUTURE
WORK

We acknowledge the fast-paced nature of this course,
and we worked hard to ensure students did not feel
overwhelmed with learning material and work. How-
ever, some students expressed frustration with putting
various elements together to form a solution when
working on the major mission projects. 25% of stu-
dents felt they were being “thrown into the fire” at
times. We are reexamining the course material and
considering ways that might alleviate frustration for
some students. We are using student feedback to de-
termine where hand-holding makes more sense and
when to take off the proverbial training wheels. Most
of this can be addressed with some additional lab in-

struction as well as more skeleton code that better or-
ganizes drone state during mission execution. We also
realize the need for further evaluation of this course
that includes comparisons with more traditional ML
courses. We plan to further evaluate and compare our
methods after Spring 2022 ends.

COVID-19 presented unique challenges for the
new course. Much of our hardware was delivered late
- well after the semester started. The original intent
was to have students interact with the hardware early
on, within the first two weeks. We wanted to motivate
students by demoing the hardware and allowing stu-
dents to learn to manually fly the drones very early in
the course. Critical hardware items did not arrive until
five weeks into the course. This delayed proving out
the two main drone mission exercises before issuing
them to the students; uncertainty surrounded the chal-
lenges that could arise during execution outside of the
virtual environment. We encountered a range of is-
sues while initially executing missions outdoors: scat-
tered light, high winds, ground shadows, background
trees, even varying visual patterns on the ground. In
addition, we encountered unforeseen technical issues
with sensors and defective hardware. These problems
required quick solutions that allowed the instructor to
guide students towards successful project execution.

COVID-19 jeopardized our ability to conduct the
course altogether, since much of the course design re-
quired students to be in-person and on-site for most
labs and projects. The first several weeks from the
beginning of the semester was conducted over Mi-
crosoft Teams, forcing us to rearrange the order of
certain lessons to accommodate remote learning. For-
tunately, our class size was small, allowing us to prac-
tice social distancing during in-person class time, and
by mid-semester we were able to consistently be on-
site for labs.

We are considering expanding drone exercises for
the next offering (Spring 2022). We are currently ex-
perimenting with elements such as targeting moving
objects and coordinating exercises between ground-
based rovers and aerial drones. We may outfit our
drones with gimbals that enable cameras and sensors
to move independently from the drone’s body coordi-
nates.
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