UX of Chatbots: An Exploratory Study on Acceptance of User Experience Evaluation Methods

Marcus Barbosa¹, Walter Nakamura², Pedro Valle³, Guilherme C. Guerino⁴, Alice F. Finger¹, Gabriel M. Lunardi¹ and Williamson Silva¹

¹Universidade Federal do Pampa (UNIPAMPA), Avenida Tiarajú, 810, Ibirapuitá, Alegrete, Rio Grande do Sul, Brazil
²Instituto Federal do Amazonas (IFAM), BR 230, KM 7, Zona Rural, Humaitá, Amazonas, Brazil
³Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer - Martelos, Juiz de Fora, Minas Gerais, Brazil
⁴Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá, Paraná, Brazil

Keywords: Chatbots, Conversational Agents, User Experience, Evaluation.

Abstract: Companies increasingly invest in designing, developing, and evaluating conversational agents, mainly text-based chatbots. Chatbots have become the main and the fastest communication channel for providing customer service and helping users interact with systems and, consequently, obtain the requested information. Despite this, the potential market for chatbots, there is still too little known about evaluating the quality of chatbots from a User eXperience (UX) perspective, i.e., the emotions, feelings, and expectations of users towards this application. Besides, relatively little research addresses the feasibility and applicability of UX methods (generic or not) or how to adapt them (if necessary) to evaluate chatbots. The goal of this research is to investigate the adequacy, feasibility of use, and acceptance by users of UX methods when employed to evaluate a chatbot. To achieve this objective, we conducted an exploratory study comparing three UX methods: AttrakDiff, Think Aloud, and Method for the Assessment of eXperience. We compared these methods by assessing the degree of ease of use, usefulness, self-predicted future use from end-users. Also, we performed follow-up interviews to understand users' perceptions about each method. The results show that users preferred to use the Think Aloud method due to the ease and freedom that the user has to express their positive and negative emotions/feelings while using the chatbot. Based on the results, we believe that combining the three methods was essential to capture the whole user experience when using the chatbot.

1 INTRODUCTION

Conversational Agents (CAs) have become more present in software applications because they allow users to interact with machines through a natural language (Rapp et al., 2021). The industry is increasingly using CAs, especially those text-based natural language (or chatbots), because chatbots serve as a first line of support for customers seeking help and product information in stores (Følstad and Skjuve, 2019). In recent years, chatbots have been the human-machine interfaces that have received the most attention and investment from the software industry (Luger and Sellen, 2016). Evaluating, collecting, and understanding user perception is a critical factor for the success of a software application (Følstad and Skjuve, 2019). In the chatbot’s context, quality assessment helps developers understand if the chatbot is easy to use, usefulness, pleasant, meets expectations, and has an easy-to-understand language, and other. Therefore, it is essential to evaluate the chatbot’s quality.

In literature, a commonly way to assess the software quality is through User Experience (UX) assessment (Guerino et al., 2021). UX assessments help software engineers to identify system problems, as well as reveal user patterns, behaviors, and attitudes during interaction with a particular product or service (da Silva Franco et al., 2019). Based on these
results, developers can understand and improve the main points that resulted in a negative UX for users, in addition to exploring the topics that positively influenced users (Guerino et al., 2021). In recent years, researchers have proposed several methods to evaluate UX at different stages of the development (Rivero and Conte, 2017). However, there is an emerging body of empirical evidence research on the feasibility and applicability of UX methods in chatbot contexts (Folstad and Skjøve, 2019).

This work presents an exploratory study to verify the adequacy, feasibility of use, and acceptance by users of UX methods when employed to evaluate a chatbot called ANA. ANA is a chatbot created to assist users with information related to COVID-19, and its interaction is the textual-based conversation. We chose the main UX methods that can be used by different users and allow evaluation in non-conventional systems (as chatbots): AttrakDiff (Hassenzahl et al., 2003), Think Aloud (Sivaji and Tzuaan, 2012) and Method for the Assessment of eXperience (MAX) (Cavalcante et al., 2015). All three UX methods are commonly known and adopted in the literature during UX evaluations (Lewis and Sauro, 2021). Besides, these UX methods could be easily adapted in the remote context (due to the COVID-19 pandemic), both for data collection and analysis.

We are interested in investigating how researchers can employ UX methods in context assessments chatbots. Then, we compared the methods in terms of ease of use, usefulness, and self-predicted future use. To do this, users answered a questionnaire, adapted from the Technology Acceptance Model (TAM) (Venkatesh and Davis, 2000), and they expressed their perceptions about each of the methods. In addition, we conducted follow-up interviews with users to better understand the strengths and weaknesses and understand whether the methods can be complementary during the evaluation.

This paper is organized as follows: Section 2 presents background about the UX and the UX evaluation methods; Section 3 presents the related works; Section 4 describes the exploratory study; Section 5 presents the results obtained in this study; Finally, Section 6 presents the discussions and future work.

2 BACKGROUND

User eXperience (UX) emerged as a research area that studies the experiences generated from the relationship between users and the final product. UX is defined as "a person’s perceptions result from the use and/or responses that UX use of a product, system, or service” (ISO9241-210, 2011). In this sense, evaluating the UX of an application helps to assess positive experiences that influence end-user satisfaction and loyalty, and negative experiences can lead to product abandonment (da Silva Franco et al., 2019). Researchers are investigating how to evaluate and measure UX, and for that, several types of UX evaluation methods have been proposed (Rivero and Conte, 2017). The UX evaluation methods commonly used and adopted by software engineers are: AttrakDiff, Think Aloud and MAX. Below we explain each one.

AttrakDiff is a UX method based on questionnaires that assess attractiveness through different aspects of an application (Hassenzahl et al., 2003). The questionnaire compares the users’ expectations (before) and experience (after using the application). AttrakDiff has opposing adjective pairs so potential users can report their perceptions of the product. Each pair represents an item that must be answered based on a scale with a seven-point semantic differential, ranging from -3 to 3, with 0 being the neutral point (Hassenzahl et al., 2003). The AttrakDiff grouped the adjective pairs into four dimensions: Pragmatic Quality, Hedonic Quality-Stimulation, Hedonic Quality-Identity and Attractiveness. Figure 1 presents the set of words from the AttrakDiff.

![Figure 1: Part of AttrakDiff Questionnaire](image)

Another way to evaluate the UX of an application is using UX Testing (also known as user experience test) (Sivaji and Tzuaan, 2012). UX Testing is a kind of evaluation based on real users’ feedback on the application. One type of method, commonly known and adopted in the literature for performing UX Testing, is Think-Aloud Protocol (Alhadreti and Mayhew, 2018). By using Think Aloud, users perform predefined tasks and are encouraged to comment on what they are doing and why. At the same time, moderators record users’ difficulties of use, comments, and errors in a report. In addition, when the user verbalizes what feeling when using an application, observers can interpret a problematic part of the application and note their remarks about the evaluation (Baravalle and Lanfranchi, 2003).

Finally, MAX (Method for the Assessment of eXperience) is a method that aims to assess the overall experience after user interaction with the application. MAX v2.0 allows users to report their experience through five categories arranged in a table.
They are Emotion, Ease of Use, Usefulness, Attractiveness, and Intent. Each category has a symbol, a color, and a set of cards. Related to the cards, each one has a phrase and an avatar combined to represent the emotions/feelings. During the evaluation, users choose the cards that best express their emotions/feelings about that application in each category. Figure 2 shows an example of MAX Board with some cards in the categories.

Due to the lack of sufficient experimental evidence on the feasibility and acceptability of these UX methods in the context of chatbots, we selected them to conduct the exploratory study (Følstad et al., 2018).

3 RELATED WORK

In the literature, some works report evaluations conducted on based-texts conversational agents from the perspective of HCI. Below, we will present some of the main works found.

Fiore et al. (2019) conducted user studies to assess the acceptance and experience of 12 employees after using a problem-solving chatbot. The results showed that the chatbot actively guided the user through the process and received very positive feedback. However, users had some negative comments when interacting textually with the chatbot. Similarly, Jain et al. (2018) evaluated the UX of 16 users while they were interacting with eight chatbots for the first time. As a result of the UX assessment, users commented that they were frustrated and disappointed with the few features provided by chatbots. The authors also reported that users preferred chatbots that provided a “human-like” natural language conversational ability.

Smestad and Volden (2018) performed a user study that compared two versions of chatbots (one customized according to the user and one not). The authors used AttrakDiff to evaluate the experience of using the two chatbot versions. As a result, the authors noticed that the customized version of the chatbot performed better in hedonic and pragmatic qualities than another version. Følstad and Skjuve (2019) interviewed with 24 users of customer service chatbots to understand their experiences with chatbots. As a result, the authors identified that users expect to use chatbots more efficiently and always available. In addition, users expect answers to be easy to understand and online self-service features always available.

From the studies mentioned above and other relevant works in the literature (Guerino et al., 2021; Rivero and Conte, 2017), the focus on evaluating the users’ perceptions of generic chatbot aspects. Besides, we observed that there is a lack of studies reporting the feasibility and applicability of UX methods (generic or not) or how to adapt them (if necessary) to assess the UX in chatbots (Smestad and Volden, 2018). This is essential due to the growing number of chatbots developed each year to meet the needs of the industry. Moreover, the existence of different UX evaluation methods makes it difficult to identify those that are most suitable for the context of chatbots or which of them can bring better results.

4 EXPLORATORY STUDY

We describe the activities of the study in the following subsections.

4.1 Context

In this exploratory study, we selected the TeleCOVID chatbot as an object of study to be evaluated by UX techniques. A team of physicians and information technology professionals developed the TeleCOVID. The chatbot is based on two goals: screening COVID-19 suspects and educating the population about COVID-19 (Chagas et al., 2021). TeleCOVID has a conversational agent called ANA. The ANA conversation agent interacts directly with the general public, providing information related to COVID-19 such as types of symptoms, what kinds of treatments, diagnoses, types of care that the population should have, how to use the masks correctly, among others (Fernandes et al., 2021). We chose this type of application because it has become widely used during the pandemic. This was possible due to providing information related to COVID-19 such as types of symptoms, what kinds of treatments, diagnoses, types of care that the population should have, how to use the masks correctly, among others (Fernandes et al., 2021). The chatbot is available to the public at the following link: https://telessaude.hc.ufmg.br.

Figure 2: MAX Board (v2.0) with some cards.
where a user is looking for information to understand what the coronaviruses are.

4.2 Subjects

We recruited seven users by convenience, all computer science students. Their ranged from 22 to 26 years. Four of them were undergraduate students, and three were master’s students. They all knew how to program and had participated in at least one UX evaluation and software development project (Academy or Industry). All subjects use tablets/smartphones every day. Regarding using voice-guided conversational agents: (i) two users know about it but have never used it; (ii) four users have already used it, but not very often; and (iii) only one commented that he uses it more often. Regarding the use of chatbots, six users had already used this type of application, but not very often. Table 1 depicts an overview of users’ profiles. The label “U” and a number identify each user, e.g., U1 identifies user 1.

Figure 3: Screenshots of user interaction with ANA chatbot.

4.3 Indicators

We evaluated the acceptability of UX evaluation methods from the users’ point of view. After evaluating the ANA chatbot using the methods, users answered an online post-study questionnaire adapted on the indicators of the Technology Acceptance Model (TAM) (Venkatesh and Davis, 2000). The TAM indicators are: Perceived Usefulness, the degree to which the subject believes that technology can improve their performance at work; Perceived Ease of Use, the degree to which the subject believes that using the specific technology would be effortless; and Self-predicted Future Use, the degree to which a subject believes they will use the technology in future.

In this questionnaire, users answer according to their degree of acceptance regarding the usefulness, ease of use, and the self-predicted future use of each method employed. Users provided their responses on a seven-point scale (Strongly Agree, Agree, Partially Agree, Neutral, Partially Disagree, Disagree, and Strongly Disagree). Table 2 describes the questions, based on the TAM indicators. We changed the name of each method to only [method] to illustrate where the identification of each method in the questionnaires would go. We focus on these indicators because they strongly correlated with user acceptance of the technology (Venkatesh and Davis, 2000).

4.4 Instrumentation

Due to the social distancing caused by the pandemic, we had to adapt the artifacts we would use during the exploratory study. We used online tools available through Google Workspace to support the elaboration of the study instruments: (i) consent form guarantees the confidentiality of the data provided and the user’s anonymity; (ii) characterization questionnaire to characterize users in UX design/evaluation, software development projects, use of mobile applications, and voice-based (e.g., Alexa, Siri) and text-based conversational systems; (iii) documents contain the study script, instructions on performing the chatbot evaluation, and adaptation of the Methods (AttrakDiff and MAX Board); (iv) presentation with generic instructions about the chatbot; (v) post-study questionnaires contain questions based on TAM indicators; and (vi) online rooms for conducting experiments.

4.5 Execution

Before the execution, we carried out a tutorial for the users with basic instructions for accessing the chatbot platform. After that, we started the study. The study had its execution fully adapted to the online context. So, at first, we created the rooms for online meetings via Google Meet and sent the links to each selected user. We conducted each evaluation individually. As mentioned before, we performed the study with only seven users. However, our study has been of exploratory nature, we consider it acceptable.

After preparing the online rooms and waiting for users to enter the rooms, we recorded the study. Then we sent the link to an online document with the preparation roadmap via chat. This document shows the links to online consent and characterization forms for users to respond. We emphasize that the participation was voluntary, and all participants responded to...
Table 1: User demographics.

<table>
<thead>
<tr>
<th></th>
<th>Ages (years)</th>
<th>Gender</th>
<th>Academic Degree</th>
<th>Familiarity with UX</th>
<th>Familiarity with Development</th>
<th>Familiarity with Apps</th>
<th>Familiarity with Voice</th>
<th>Familiarity with Chatbot</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>22</td>
<td>Male</td>
<td>Student MSc</td>
<td>Academic Projects</td>
<td>Academic Projects</td>
<td>Every day</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>U2</td>
<td>23</td>
<td>Male</td>
<td>Student MSc</td>
<td>Academic Projects</td>
<td>Academic Projects</td>
<td>Every day</td>
<td>Always</td>
<td>Rarely</td>
</tr>
<tr>
<td>U3</td>
<td>22</td>
<td>Male</td>
<td>Industry Projects</td>
<td>Industry Projects</td>
<td>Academic Projects</td>
<td>Every day</td>
<td>Rarely</td>
<td>Always</td>
</tr>
<tr>
<td>U4</td>
<td>25</td>
<td>Female</td>
<td>Undergrad</td>
<td>Academic Projects</td>
<td>Academic Projects</td>
<td>Every day</td>
<td>Never</td>
<td>Rarely</td>
</tr>
<tr>
<td>U5</td>
<td>21</td>
<td>Male</td>
<td>Industry Projects</td>
<td>Industry Projects</td>
<td>Academic Projects</td>
<td>Every day</td>
<td>Never</td>
<td>Rarely</td>
</tr>
<tr>
<td>U6</td>
<td>26</td>
<td>Female</td>
<td>Undergrad</td>
<td>Industry Projects</td>
<td>Industry Projects</td>
<td>Every day</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>U7</td>
<td>22</td>
<td>Male</td>
<td>Undergrad</td>
<td>Industry Projects</td>
<td>Industry Projects</td>
<td>Every day</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
</tbody>
</table>

Table 2: Questions based on TAM indicators.

Perceived Usefulness
- PU1 Using the [method] improves my performance by reporting my experience with the chatbot.
- PU2 Using the [method] improves my productivity by reporting my experience with the chatbot.
- PU3 Using the [method] enhances my effectiveness in reporting aspects of my experience.
- PU4 I find the [method] useful for reporting my experience with the chatbot.

Perceived Ease of Use
- PE1 The [method] was clear and easy to understand.
- PE2 Using the [method] did not take much mental effort.
- PE3 I think the [method] is easy to use.
- PE4 I find it easy to report my experience with the chatbot using the [method].

Perceived Self-Predicted Future Use
- SP1 Given that I have access to the [method], I predict that I would use it to evaluate my experience with an chatbot.
- SP2 I plan to use the [method] to evaluate my experience with an chatbot.

the consent form. After that, the users received the study instructions script via chat and watched the online presentation about the chatbot. Each user performed the following steps in the study:

- **STEP 1 - Evaluating the User Expectations**
 - Watch a short presentation about the ANA chatbot.
 - Report your user expectations via the AttrakDiff method (online questionnaire).

- **STEP 2 - Using the ANA Chatbot**
 - Share your device screen with the researchers.
 - Access the chatbot via link: https://telessaude.hc.ufmg.br.
 - Please express your opinions aloud while you perform the tasks described below. In this way, we cantrack and understand what you are doing and feeling.
 - Please note the initial time.
 - Do the following tasks in the Ana chatbot:
 - **Task 01**: Report that you are having difficulty breathing;
 - **Task 02**: Report that you have had a fever for at least two days;
 - **Task 03**: Search for information on how to remove and put on the mask;
 - **Task 04**: Search for information about what COVID-19 is;
 - **Task 05**: Search for information about COVID-19 infections in dogs and cats.
 - Note the final time of the chatbot.

- **STEP 3 - Evaluating the Experience After Use**
 - Report your experience after using ANA chatbot via the AttrakDiff method.
 - Report your experience using the MAX Board. To do so, choose the cards (two at least) and self-report your experience, explaining aloud the choice of each card.

- **STEP 4 - Evaluating the UX Methods**
 - Please, answer the TAM questionnaire describing your perception of each method employed in this study.
 - Briefly comment on your perceptions about each method.

5 RESULTS

We adopted the median and the mean in this work for comparison purposes. We used the mean to compare the methods based on the TAM indicators. First, we calculated the mean provided by users per item. Then, we calculated the mean of each indicator. The results with score for each indicator per method can be seen in Table 3. We also used the median as the measure to compare ordinal scales with the same number of items (Wohlin et al., 2012), i.e, each item of the TAM
indicators. Table 4 represents the results of the median values (per method) related to each item of the TAM.

Table 3: Mean for each TAM indicator per UX method.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>AttrakDiff</th>
<th>Think Aloud</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>4.67</td>
<td>5.78</td>
<td>4.75</td>
</tr>
<tr>
<td>PE</td>
<td>4.89</td>
<td>5.64</td>
<td>5.67</td>
</tr>
<tr>
<td>SP</td>
<td>3.28</td>
<td>5.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Table 4: Median for each item per UX method.

<table>
<thead>
<tr>
<th>Items</th>
<th>AttrakDiff</th>
<th>Think Aloud</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU1</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PU2</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PU3</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>PU4</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PE1</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PE2</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PE3</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PE4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SP1</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>SP2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Regarding Perceived Usefulness, the Think Aloud obtained the highest mean and when we looked at the indicator items, these also obtained the best results. Thus, we conclude that this method was the one that users found the most useful to be used. Regarding AttrakDiff and MAX, these methods had very close mean values of Usefulness. When we also observed the medians of each item, we noticed a variation only in item PU3 (AttrakDiff: 5; MAX: 4).

Think Aloud and MAX had the highest medians in all items regarding the Perceived Ease of Use. When we looked at the mean, MAX obtained 5.67 and Think Aloud 5.64. We concluded that both methods are easy to use. AttrakDiff, in this indicator, obtained an mean value of 4.89. In items PE1 (ease of understanding of the method), PE3 (ease of use of the method) and P4 (it easy to report my experience), the AttrakDiff obtained a median of five (5). We could relate it to the fact that AttrakDiff is a questionnaire and that some adjectives were confusing for users to understand.

Related to Perceived Self-predicted Future Use, we noticed that this indicator had relatively low mean values compared with the other two TAM indicators. The think Aloud method got the best mean result (5.00), followed by MAX (4.00) and AttrakDiff (3.28). Observing the median of item SP2, AttrakDiff, and MAX methods had medians equal to

3. Users remained neutral when answering whether they intend to use the methods to evaluate their experience with an application in the future. For Think Aloud, the median value was higher (4.00). We concluded that users had a positive perception of Think Aloud regarding the prediction and intention of using it to evaluate chatbots in the future.

At the end, we also performed follow-up interviews with users to obtain more in-depth information about the methods. The discussions help us understand some issues that users faced when using the methods, thus enriching some of the findings from the quantitative results. We present the users’ positive and negative perceptions about each one following.

Users commented that the Think Aloud method is the easiest to use (mentioned by four users) because it allows collecting a genuine user action: “I think it captures the most genuine reaction possible from the user” - U1. The method also gives freedom for the user to express themselves openly (“(the method) gives for user freedom to talk about how they are feeling, their perception, and their actions” - U07), and the evaluation makes something more personal (“I think the method makes the evaluation a personal thing” - U5). Users also commented that they would probably use the method again in the future: “Think Aloud was the easiest for me to use, and I would probably use it to evaluate some applications” - U2.

Related to MAX board method, users also found it easy to use (mentioned by three users). It happened because MAX presents more visual aspects than the other methods (“(MAX) is interesting because it brings emotions, I think it is more visual, and I can explain myself better” - U3). Users need to choose what card best represents their emotion making easier how to express their experience and feelings (“I found him easy to identify and express my feelings. It considered my feelings” - U4).

Although users did not mention the AttrakDiff method as easy to use, U7 commented that he enjoyed evaluating using AttrakDiff because of how the word pairs are structured: “I liked this method to evaluate (...), I liked the axes that are dividing the words.” U6 also commented that the feedback provided by AttrakDiff could help the researcher to make comparisons of the results of expectation and experience: “the before and after answer helps the researcher compare the user’s expectation with what he felt even after doing the evaluation.”

The quotes presented above present users’ positive perceptions about the methods. However, we identified some difficulties faced by users while employing each method. The first negative point is related to Think Aloud method. Users were afraid to say what
they were thinking in the beginning: “at first, I was a little apprehensive because I said a lot of things good or bad...” - U5. We also realized this problem during the evaluation and, whenever possible, we commented to the users that they could express themselves openly. Users often forgot to express themselves aloud, U3 said that it was challenging to comment every actions while using the chatbot: “I was trying to focus between doing and speaking, this I found more complicated.”

Concerning the negative points of the MAX method, U7 commented that the cards with emotions are a little bit limited: “due to limited cards, I missed some emotions and some affirmations.” U5 had some difficulty choosing which cards best represented his feeling due to the lack of emotions: “MAX doesn’t give so many options. The blue (Usefulness), yellow (Intention), and purple (Attractiveness) could also have more choices, so I took a moment to choose which cards I would put on the board.”

Related negative points of AttrakDiff, users felt confused answering the questionnaire, because they did not understand some adjective pairs (“some words I got confused, you need to make a cognitive effort for you to understand.” - U2). Users also commented that some adjectives pair were vague or allowed users had ambiguous interpretations: connective/isolating (“do I feel isolated from chatbot?... do I feel connected from the chatbot?” - U2); professional/unprofessional (“Professional regarding what? the information? professional regarding the construction of the chatbot?” - U2). Users also reported that some pairs did not make sense for the application context: “sometimes the words did not seem to make sense, what do you mean appealing?” - U4. In these cases, users commented that they answered in the central item, as reported by U6 and U7, respectively: “several questions I answered four because the item did not make sense, and I’m trying to be neutral”; “I marked half the scale because I wouldn’t be able to respond.” Finally, the users pointed out the seven-point scale adopted by AttrakDiff is quite large and requires a certain cognitive effort from users, as mentioned in quotes below: “the questionnaires has a relatively large scale for you put your opinions.” - U1; “to me, there is a certain cognitive effort to answer on that seven-point scale. I thought it was strange to have a seven-point scale.” - U2

In general, we noticed that the users’ perceptions corroborated the quantitative results identified in the TAM. In addition, the results also reflect directly with the results of the evaluations using the UX methods in the ANA chatbot.

6 DISCUSSIONS AND FINAL CONSIDERATIONS

Chatbots have become the main communication channel for providing customer service. However, there is a lack of studies reporting the feasibility and applicability of UX methods in chatbots contexts. In this paper, we presented an exploratory study to understand adequacy, the feasibility of use, and users’ acceptance while using UX methods (AttrakDiff, Think Aloud and MAX) to evaluate chatbots.

The results showed that users preferred to use the Think Aloud method in the chatbot evaluation. This preference is related to the ease and freedom that the user has to express their positive and negative emotions/feelings while using the chatbot. Although the method allows this freedom, a negative point from the users’ point of view, is a shame, shyness, or even fear of speaking, as users are afraid to comment on something inappropriate. In this sense, researchers need to make users as comfortable as possible to express themselves without fear. Furthermore, using this method requires a lot of effort from the observer since he/she needs to be aware of what the user will comment on, observe his/her expression while using the application, and then report. Also, depending on the metrics used, the time to analyze the results can be high. Our study only used the method to collect UX issues that users reported. Thus, we spent more time analyzing the recordings and the identified problems.

About AttrakDiff, the problems pointed out in this work corroborate the results of other works. Marques et al. (2018), for example, reported that the participants also had difficulties understanding some AttrakDiff adjectives. Another problem, also mentioned by Marques et al. (2018), is that some of the adjectives not fully fit into chatbots applications. Researchers use the AttrakDiff in different contexts. Consequently, this can negatively impact the results of UX assessments in chatbots since users can answer the questionnaire randomly and do not represent their user experience, as mentioned by the users of our study. From the researchers’ point of view, we identified an issue concerning the data analysis. The AttrakDiff authors provided a free website for other researchers to adopt for analyzing the results in an automated way. However, when we tried to use it, it was offline. As a result, we had a higher cost in analysis time than expected since we had to create our own spreadsheet to analyze the data.

Finally, we noticed that users felt comfortable during the evaluation regarding MAX. Some users commented that the method was easy to apply due to the minimal cognitive effort required to use it. It pro-
vides letters with phrases and emotions that reflect the users’ experience. On the other hand, users also commented it limits users to adapt their perception to the available cards.

From our point of view, we believe that the methods complemented each other. AttrakDiff measures UX through hedonic and pragmatic chatbot, comparing users’ expectations and experience. However, because it is a scale-type questionnaire, users cannot effectively point out UX problems since this can only be identified during interaction with the chatbot. The Thinking Aloud method helped us to get explicit feedback from users with suggestions that can help designers improve the chatbot. In AttrakDiff, the user only chose among adjectives, and in Think Aloud, the user was concerned with reporting their actions. Complementarily, MAX helped users express themselves more openly about their user emotions, how easy and helpful it was to use the chatbot, and their intention to use it again. Therefore, we believe that the three methods were essential to capture the whole experience of users when using the chatbot. A limitation of this research was that we evaluated from the perspective of only one chatbot, and the usability of UX methods depended only on this artifact.

Overall, we hope that the results of this study will help promote and improve current practice and research on UX in chatbots. In addition, we hope that suggestions for improvements can contribute to the evolving ANA chatbot. This work opens the possibility for different relevant results: What are the main factors that positively and negatively influence the experience of chatbot users? How can UX methods be designed to capture the UX better? Is it better to adopt quantitative, qualitative, or mixed metrics to evaluate UX? How can we adopt machine learning to automate UX assessments? In this sense, as future work, we intend to carry out new UX evaluations with different types of chatbots to verify a divergence between the generated UX, adopting other UX methods, with a larger sample, and in other domains (educational, health, commerce).

REFERENCES

Sivaji, A. and Tzuaan, S. S. (2012). Website user experience (ux) testing tool development using open source software (oss). In 2012 Southeast Asian Network of Ergonomics Societies Conference (SEANES), pages 1–6. IEEE.

