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Abstract: With the development of science and technology, UAVs are increasingly being used and serving humans, 
especially in the wilderness environment, due to their portability and the ease with which they can reach 
places that are beyond human reach. In this paper, we present a technique for drones to help humans 
intelligently plan routes in a field environment. Our approach is firstly based on road extraction techniques in 
the field of image segmentation, using state-of-the-art D-LinkNet to extract roads from images captured by 
real-time UAVs. Secondly, the extracted road information is analyzed, the set of main roads and that of the 
secondary road are distinguished according to the width and the real-time road conditions on the ground, and 
different weights are assigned to them. Finally, the A star algorithm is used to calculate a route plan with 
weights based on the human-defined starting and ending points to obtain the optimal route. The results of our 
task are the simulations on publicly available datasets to show that the method works well to provide the 
optimal intelligent routes in real-time for people in the field. 

1 INTRODUCTION  

With the development of computer vision technology, 
drone vision technology is increasingly used in 
various fields of human life, providing convenience 
for human daily activity. For example, in agriculture, 
drones can help farmers to estimate the yield and size 
of citrus fruits (Apolo, 2020); in the field of medicine, 
the fleet of drones available for logistics to deliver 
medical items (Ghelichi, 2021); in the field of disaster 
relief, drones can detect fires (Moumgiakmas, 2021) 
and floods (Rizk, 2022), and so on. In the field of 
wilderness rescue, one of the biggest advantages of 
drones is their flexibility, as they can easily reach 
places that are inaccessible to humans, i.e. rescuers, 
making the use of GPU-equipped drone vision 
technology a viable option for rescue in difficult 
environments in the field, especially where there is no 
internet. The development of drone technology 
allows for endless possibilities in the future, but of 
course, we also have to take into account the 
performance of the GPU we are equipped with and 
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the battery life, among other things (Galkin, 2019), 
which are closely related. When it comes to the 
wilderness, which can be accompanied by poorly 
developed networks and roads that are not in good 
condition, or even roads that are not included in 
Google Maps (Ciepłuch, 2010), we consider the use 
of flexible drone vision technology to provide 
intelligent route planning for these people in the 
wilderness. In addition to its flexibility, the images 
captured by drones have a higher resolution than 
those captured by satellites and are more practical in 
people's daily lives, as they are still more accessible 
and on time to humans than satellites, and they can 
better serve people's lives. Based on our previous 
work (Liu, 2021), drones can interact well with 
humans in the wild and can recognize some hand 
gestures, and communicate more easily. 

This work proposes a method for UAVs to plan 
intelligent routes in real-time for people in the wild 
field. The desired usage scenarios and the 
introduction diagram are shown in Figure 1. The 
method mainly extracts map images from the real-
time video sequences captured by the UAV, converts 
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them into three-channel fixed resolution images 
through image processing techniques, these images 
are used as input for the road extraction process, 
outputs the road extraction results through D-LinkNet 
(Zhou, 2018), and finally gives different weights for 
intelligent route planning through road information 
analysis. Combining weather information with road 
information, it is important to assign weights to the 
proposed roads to help humans avoid roads in bad 
condition (e.g. muddy areas in the rain or snowy after 
snowing, or sandy after sand-storm) and choose roads 
in better condition. This is the starting point for 
assigning weights to different roads of specific 
conditions. Road information mainly includes road 
width, road surface material, and the environmental 
pollution covering the road surface (flood, mud, 
rubble), estimated from satellite hyperspectral data 
and the weather conditions. Generally speaking, 
large, spacious roads are in better condition than 
small, narrow roads on rainy days, and roads with 
asphalt surface material are in better condition than 
soil roads. Hyperspectral images’ classification 
seems to offer a solution for the detection of road 
material (Hong, 2020). Hyperspectral images can also 
be used to classify and determine the condition of 
roads (Mohammadi,2020). Some fusion of satellite 
hyperspectral images with UAV RGB images are 
used to detect the constituent materials of the road 
surface (Jenerowicz, 2017). The fusion technique is 
also used very successfully in other areas 
(Maimaitijiang, 2017). In the weather stations in the 
map, we can get information on the amount of 
precipitation in the area and thus determine the 
muddy, flooded, snowy, or sandy state of the soil or 
soil roads or contaminated or spilled with soil based 
on the amount of precipitation. (Kim, 2021) provides 
a viable solution for predicting road conditions in 
rainy weather using artificial neural networks. Soil 
properties (Ben-Dor, 2002) can also be obtained by 
imaging spectroscopy (Ben-Dor, 2009). All of the 
above provide a firm basis for the road weighting 
process. 

 

Figure 1: Desired usage scenarios and the introduction 
diagram. 

Another point worth mentioning is that for the 
field environment, the network connection can 
sometimes be poor, even if the user has downloaded 
a map of the area in advance. For some unavoidable 
reasons, such as those mentioned above, some 
feasible roads in the field environment are not 
included in the map, and the roads contained in that 
map are not weighted with information, so it is not 
possible to plan an intelligent route in real-time, but 
the user can provide us with the departure location 
and destination, and we input the two coordinate 
points on this map into the A star algorithm of (Cui, 
2012) and use the weights to perform a route search. 
An optimal route with good road conditions can then 
be quickly fed back to the user. If there is no road, we 
can generate paths, as tracks through the terrain, 
estimating the “road” usability from the UAV-based 
scanning and searching for tracks, and the 
hyperspectral soil evaluation from earlier satellite 
data for these paths. 

2 BACKGROUND 

2.1 Related Dataset and Assumptions 

We test our proposed approach to intelligent road 
route planning on the DeepGlobe Road Extraction 
dataset (Demir, 2018), which is publicly available and 
consists of 6226 training images, 1243 validation 
images, and 1101 test images. Each RGB image has 
a resolution of 1024 * 1024. Roads in this dataset are 
labeled as foreground and other objects are labeled as 
background. The imagery has 50cm pixel resolution, 
collected by DigitalGlobe's satellite (PGC, 2018). 
This also means that each picture corresponds to an 
actual true distance of 512 m * 512 m, and each 
picture covers an area of 262,144 m2. Specific 
satellite information for data collection is shown in 
Table 1, which shows the satellite's altitude, sensor 
resolution, dynamic range, and other information. In 
Table 1, in addition to the satellite data Word-View 1 
used for the collection of the above public dataset, 
information on Word-View 3 is shown as it provides 
30cm panchromatic resolution and 1.24m 
multispectral resolution which can be used for 
pavement soil information estimation. 
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Table 1: DigitalGlobe Satellite (PGC, 2018). 

Satellite 
Specifications WorldView-1 WorldView-3 

Launched:  2007 2014 

Operational 
Altitude:  

496 km 617 km 

Spectral 
Characteristics: 

Panchromatic 

Panchromatic + 
8 Multispectral + 

8 SWIR + 12 
CAVIS 

Sensor 
Resolution: 

50 cm GSD at 
nadir 

31 cm GSD at 
nadir 

Dynamic Range:  11-bits per pixel 
11-bits per pixel, 
14-bits per pixel 

SWIR 

Swath Width:  17.7 km at nadir 13.1 km at nadir 

Capacity:  1.3 million km2 680000 km2 

per day Stereo 
Collection:  

 Yes  Yes 

The dataset mentioned above was collected by 
satellite and, considering the practical applicability 
and implementation ability for real-life humans, we 
also tested it on an open-source dataset provided by 
senseFly UAV (SenseFly, 2009). This is an example 
dataset of a small Swiss village called Merlishachen. 
The imagery was collected during a single eBee 
Classic drone flight. The number of images in this 
dataset is 297, each image is (4608*3456*3), and 
other specific information is given in Table 2.  

Table 2: eBee Classic drone dataset (SenseFly, 2009). 

Technical data 
Ground resolution Coverage Flight height 

5 cm (1.96 in)/px 
0.57 sq. km 
(0.22 sq. mi) 

162 m (531.4 ft) 

The hypothetical scenarios set for this study are 
as follows: 
 The user is in a wild and uninhabited 

environment, preferably after rainy or 
otherwise bad weather. 

  Even if the user is in a place with poor or no 
internet connection, the user can provide the 
drone with its preferred starting and ending 
coordinates via a previously downloaded map. 
It can be done through a WiFi connection or by 
using hand gestures (Liu, 2021). 

 The drone has sufficient range onboard and 
with a sufficiently charged battery. 

 Except in the case of fog or other conditions 
that obstruct the drone's view.  

2.2 Proposed System 

The overall flow chart of this system is shown in 
Figure 2, the input is the real-time video sequence 
captured by the UAV camera, which flies at a high 
altitude in the sky. The captured video sequence is 
segmented into images by frame. The RGB image 
obtained is turned into a three-channel image with a 
resolution of 1024*1024 after image processing, at 
this time the data preparation work is completed. The 
next step is to input the processed images into D-
LinkNet for road extraction. The extracted part of the 
image with the road labeled as foreground and other 
objects are labeled as background.  

By combining this with the original RGB image 
and other supporting data, we weigh the extracted 
roads, where the main considerations are the width of 
the road, the connectivity of the road, and the material 
of the road. We mark the roads in good condition as 
green, meaning that the road is in better condition 
than the rest and that humans walk faster than the rest 
after rain. The rest of the roads that have not been 
given green priority remain white. Most of the white 
roads are very narrow and muddy after rainy, flooded, 
snowy or sandy, and are not suitable for humans to 
walk on. As this paper is the basis of our current 
research work, this section mainly presents ideas and 
feasible solutions, and the implementation work will 
be carried out in detail for the road weighting section 
in the future. 

Finally, according to the most commonly used A 
star algorithm (Cui, 2012), we assign different values 
to the green and white pixel parts and use the A star 
algorithm to calculate the shortest and/or fastest path 
from the start point to the endpoint, to provide the best 
route for people in the field in any weather conditions, 
like being after a muddy rain. 

 

Figure 2: Flowchart of the proposed system.  
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3 METHODOLOGY 

Figure 3 shows the key steps of this work: after the 
video sequence is cut into images and image 
processing in data preparation, the input RGB drone 
image is passed through D-LinkNet's road extraction 
(Zhou, 2018) to get the extracted road-map, next the 
different results are shown, the right side is given the 
green priority road with good condition and the left 
side is the white normal road. For the results, the blue 
circles are marked with the starting point and the 
yellow circles with the destination, as shown by the 
labels on the enlarged image. 

 

Figure 3: Key steps and comparison of results.  

3.1 Data Preparation and Road 
Extraction Analysis 

According to weather information, when bad weather 
has passed, which means that some roads in the field 
are muddy, flooded, snowy or sandy, GPU-equipped 
drones can capture video in real-time from high 
altitudes to provide route planning assistance to 
humans in the air below that view. The video 
sequence captured in real-time can be split into 
different images according to the frame, which is an 
RGB image, and then through image processing such 
as resize, we can get a three-channel image of the 
ground in the current state with a resolution of 
1024*1024. This step is the data preparation stage. It 
lays the foundation for the subsequent road extraction 
and road condition analysis. The main purpose of this 
process is to unify, different UAVs capture images at 
different resolutions so the images are unified using 
the data processing part. For example, the images in 
dataset 2 will change from (4608*3456*3) to 
(1024*1024*3) after this process and thus enter as 
input into the subsequent processes of the system. 

Figure 4 shows the processed RGB image input to 
the road extraction network. D-LinkNet can perform 
road segmentation well, labeling the roads as 
foreground and the others as background. The grey-
scale image is combined with the original color map 
for road analysis, where we mainly consider the width 

of the road, the connectivity of the road, and the 
material of the road surface, because generally 
speaking if the road is spacious, well connected, and 
made of asphalt, the road will be more suitable for 
pedestrians or vehicles after muddy, flooded, snowy 
or sandy weather. Conversely, if the road is narrow, 
poorly connected, and composed of soil, such roads 
can become muddy after heavy rainfall or snowy or 
sandy weather. The pedestrians or drivers will find it 
difficult to walk or drive on them. It is therefore 
important to choose a road that is in good condition 
after the bad weather to save some time and bring 
convenience to humans. However, road-sections of 
bad conditions can also be considered if it can connect 
other road networks to make shortening of the path 
with acceptable difficulties. 

 

Figure 4: Road extraction, analysis, and marking of green 
priority roads. 

It is important to note here that the D-LinkNet 
segmentation does not reach 100%, so there is a 
difference between the results of the road extraction 
and the real situation of the original image. For road 
material detection, researchers (Hong, 2020) have 
been able to identify asphalt and soil based on 
hyperspectral image segmentation techniques, 
although the two tasks are based on different data sets. 
Hyperspectral images can also be used to classify and 
determine the condition of roads (Mohammadi, 2020). 
Last but not least, weather information is also 
important and we can get relevant real-time and past 
period weather information from the radar. The 
weather information was downloaded by the scouting 
UAV before starting into the wild. It can provide the 
amount of precipitation in the area, and there are 
precipitation values whose magnitude directly affects 
the road conditions of the material is soil, so this 
information coupled with the fusion of hyperspectral 
imagery with drone imagery will be added to our 
research work in the future. By combining these 
elements, we can assign weights to the roads extracted 
from the map in a very comprehensive way. And now 
we compare only the original RGB image with the 
segmented road grey image, which is given priority 
based on the two factors of road connectivity and width 
and is labeled as a green road, the rest remaining white. 
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3.2 A Star Algorithm and Weighted 
Route Planning 

The A-star algorithm (Cui, 2012) is a heuristic search 
algorithm for global path planning. It has been 
successfully implemented and tested as a path 
planning algorithm for mobile robots. The results can 
be found in (Kuswadi, 2018). This algorithm uses a 
combination of heuristic searching and searching 
based on the shortest path. It is defined as the best-
first algorithm because each cell in the configuration 
space is evaluated by the value:  ݂ሺ݊ሻ ൌ ݄ሺ݊ሻ  ݃ሺ݊ሻ (1)

where g(n) represents the cost from the starting 
point to the current node; h(n) represents the 
estimated cost from the current node to the ending 
point; n is the current node.  

The definition of a white node is a no-priority road 
and the green node is the road with priority. Figure 5 
shows the assignment of values for g(n) in different 
pixel cases when the node is surrounded by white 
pixels, which means the node without priority and be 
accessible, then the point is the top and bottom left 
and right nodes are each assigned a value of 100, the 
diagonal length of the four points in the diagonal 
direction of the node is 140. The other case, when the 
node is surrounded by green pixel points, that is, with 
priority access to the road, then the corresponding 
value is reduced by a factor of 100, again when both 
are present as shown in Figure 5, the algorithm gives 
preference to the green node with a small loss value 
since the minimum f- value is to be obtained. In 
Figure 5, the leftmost plot shows that the pixel is on a 
road that is not given priority and that the pixel is 
surrounded by non-priority roads, the middle plot 
shows that the pixel is on a road that is given priority 
and that it is surrounded by pixels that are given 
priority, and the rightmost plot shows a critical state 
where the intersection of the two, the road that is 
given priority and the road that is not given priority 
We randomly select the top right two pixel points to 
be labelled as priority roads and the rest as non-
priority roads, then the algorithm comes into play, 
and this is where the assignment of values at the pixel 
level in the g(n) function comes into play. 

 
Figure 5: Different assignment of g(n) cost value to 
different pixel points. 

There are several well-known heuristic 
mathematical functions h(n) that can be used 
(Heuristics, 2019), the most commonly used are 
Euclidean distance hE, Manhattan distance hM, or 
Diagonal distance hD. In this work, we have chosen to 
use the hD to calculate the diagonal distance with the 
weighted modification: ݀ݔ ൌ หݔ െ ห (2)ݔ

ݕ݀  ൌ หݕ െ ห (3)ݕ
 ݄ாሺ݊ሻ ൌ ඥ݀ݔଶ  ଶ (4)ݕ݀

 ݄ெሺ݊ሻ ൌ ݔ݀  (5) ݕ݀
 ݄ሺ݊ሻ ൌ ݀ଵ ∗ ,ݔሺ݀ݔܽ݉ ሻݕ݀  ሺ݀ଶ െ ݀ଵሻ∗ ݉݅݊ሺ݀ݔ, ሻ (6)ݕ݀

Where (xn,yn)  is the coordinate of the current node 
n; (xg, yg) is the coordinate of the end node n; For 
green cell d1=1 and d2=1.4 (octile distance), white cell 
d1=100 and d2=140. 

Put the 8 adjacent nodes of the starting point into 
the open list and if the adjacent node is unreachable, 
then remove this node from the open list. Using 
Equation (1) to calculate the cost function formula for 
the adjacent nodes, the one with the smallest f-value 
is chosen as the next node and the previous nodes are 
put into the closed list. The sequence continues until 
the current node is the end position, and finally, a path 
with the smallest f-value from the start to the end will 
be found, which is the optimal path.                               

4 EXPERIMENTS  

We tested the main part of this work on the publicly 
available DeepGlobe Road Extraction dataset (Demir, 
2018) and SenseFly dataset (SenseFly, 2009). We 
also evaluated the time required for each phase of this 
work. Three sets of experiments were carried out in 
the DeepGlobe Road Extraction dataset and the 
results can be found in Table 3 the three tests are 
shown in Figure 6, Figure 7, and Figure 8. In these 
figures, blue circles indicate the starting point, yellow 
circles indicate the destination and the route is in red. 
The route is pixel level, so we have intercepted a 
portion of the map to zoom in on the results. For better 
presentation, we have deepened the route color by 
also labeling the 8 neighboring points near each pixel 
of the route as red. 

In the data preparation phase, the time required for 
this part of the conversion of the live video sequence 
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captured by the UAV onboard camera into the input 
image needed for the road extraction part is directly 
related to the duration of the video sequence, in 
general for a video with a duration of 17 seconds, the 
real-time time required for data processing is 1.25 
seconds, and the time required for road extraction by 
D-LinkNet is about 5 seconds, followed by the 
assignment of road priority, which will be extended 
to be done automatically in the future, based on the 
research of other researchers (Hong, 2020). We were 
able to extract the two indices they had classified 
well, namely asphalt and soil in the Pavia University 
data set (Zhu, 2021), and assign road priority based 
on the results of the road material classification and 
road conditions. We also combine weather 
information and soil information from the fusion of 
satellite and drone imagery to carry out automatic 
road weighting. The time required for the final route 
planning is around 20 seconds, which is related to the 
location of the starting point and ending point. 

Table 3: Testing results on the DeepGlobe Road Extraction 
dataset. 

Table 
Head 

Comparison 
Starting 

point 
Ending 
point 

f -value 

Fig 6 
(left) 

(663,673) (975,445) 36110 

Fig 6 
(right) 

(663,673) (975,445) 24436 

Fig 7 
(left) 

(719,545) (566,127) 4733 

Fig 7 
(right) 

(719,545) (566,127) 1004 

Fig 8 
(left) 

(450,440) (890,264) 36230 

Fig 8 
(right) 

(450,440) (890,264) 36230 

In Figure 6, the starting point is at (663, 673) and 
the ending point is at (975, 445). For the graph 
without priority road assignment, the final f-value 
from the starting point to the ending point is 36110 
based on the A star algorithm, noting that the value of 
f here only represents the cost value calculated under 
a specific parameter setting and does not represent the 
real length of the route, which is positively correlated 
with each other. The relationship between them is 
positive. On the right-hand side of Figure 6, when the 
map has green roads, i.e. roads with priority, it is clear 
that the route length increases, but the f-value 
decreases, with a value of 24,436 and 32.3% less than 
on the left-hand side. A smaller f-value means that the 
user can reach the destination faster. 

 

Figure 6: Test result 1 on the DeepGlobe Road Extraction 
dataset (The right half comes with road priority, while the 
left half does not). 

Figure 7 shows the same experiment in another 
map with the coordinates of (719,545) for the starting 
location and (566,127) for the ending location. The 
range of this experiment is smaller compared to that 
of test 1 in Figure 6, which means that the place the 
user needs to go is not very far away, it is nearby. 
From the results in Figure 7, the f-value without road 
priority is 4733 and the f-value with road priority is 
1044, which is 78% lower than the former, which 
largely helps the user to choose the best route. 

 

Figure 7: Test result 2 on the DeepGlobe Road Extraction 
dataset (The right half comes with road priority, while the 
left half does not.). 

Figure 8 shows another representative aspect of 
the experiment, when the destination that the user 
wants to go to and the priority path that can be 
resorted to are in opposite directions, the results of the 
experiment also show that the path with priority does 
not come into play at this point, i.e. the two results are 
the same, and from Figure 8 we can see that the 
coordinates of the position of the starting point are 
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(450,440). The position coordinates of the endpoint 
are (890,264) and the value of  f  is the same in both 
cases. Similarly, if the user is on a road in poor 
condition, but his or her destination is close, or even 
insight, then the user will certainly not take a detour 
to a road in good condition to reach his or her 
destination. The final decision depends on the 
smallest f-value. 

 

Figure 8: Test result 3 on the DeepGlobe Road Extraction 
dataset (The right half comes with road priority, while the 
left half does not). 

As the main application of this system is for 
UAVs rather than satellites, we also tested it in 
dataset 2, and the results obtained are shown in Figure 
9 and Figure 10. Figure 9 illustrates the change in the 
size of the drone image from (4608*3456*3) to 
(1024*1024*3) after basic image processing. After 
D-LinkNet 's road extraction the greyscale image 
containing the roads is obtained and finally, the 
weighting of the roads is assigned. As the data images 
collected for this dataset are small villages, in this 
image unlike the satellite image above, where asphalt 
roads are predominant, most of the roads are given 
priority. The actual application environment is a 
sparsely populated wilderness where the roads are not 
in such good condition and the area covered is larger 
than this. 

 

Figure 9: Test result on eBee Classic drone dataset. 

Figure 10 shows the results of route planning, 
where the coordinates of the starting point are 
(718,190) and the coordinates of the ending point are 
(288,420). The left half represents the real-time route 
planned when the road is not given priority, and the 
final f-value obtained is 45250. In contrast, the right 
half of Figure 12 shows the route planned for the 
green road given priority, and the f-value obtained in 
this case is 560, which shows that there is an 
improvement of 98%. 

 

Figure 10: Test result on eBee Classic drone dataset (route 
planning). 

5 DISCUSSION AND 
CONCLUSION  

This paper focuses on a project to provide users with 
optimal route planning based on the latest road 
extraction techniques, which are of interest in the 
field after heavy rain or the strong snowing, or heavy 
sandstorm contaminating the road surface. The 
satellite hyperspectral info can address the 
information of road conditions as the close 
neighborhood soil, vegetation hiding, 3D info for 
floods. Drones offer a great deal of flexibility, and 
GPU-equipped drones can fly in the field in real-time 
to provide some assistance to users in that 
environment by WiFi or human gesture recognition. 
The images captured by the UAV also have a high 
resolution, and drone communicates more easily with 
people than satellites. In this paper, we have tested 
both on publicly available satellite images and on 
smaller publicly available UAV images, both of 
which achieved the desired results. The first step in 
this work is to segment the live video sequence 
captured by the UAV into a fixed pixel RGB three-
channel image. The next step is to input this map 

IMPROVE 2022 - 2nd International Conference on Image Processing and Vision Engineering

208



image into D-LinkNet for road extraction, resulting in 
a grey image with white-labeled as the road and the 
rest black as the background. Finally, the roads are 
given weight after some road analysis, where the road 
information refers to the width, connectivity, and road 
surface material. Roads with green pixels have 
priority. The A star algorithm was used for route 
planning and the results were compared between the 
map image with priority roads and the map image 
without priority roads. 

This work also has some limitations due to the 
presence of many assumptions in this work. For 
example, the environment to which this work applies 
would ideally be in the wild and after bad weather, 
when some roads in the wild are in a very muddy, 
flooded, snowy or sandy state unsuitable for human 
walking. Next, we need to automate this part of the 
road weighting process. Based on the weather 
information provided by the weather stations on the 
map, the amount of precipitation can be further 
assessed. The value of precipitation directly affects 
the road condition of a soil road in a field environment, 
which is one of the factors to be considered. Secondly, 
according to the mature hyperspectral classification 
technology, we can choose to fuse hyperspectral 
images of satellites and recent UAV RGB images to 
extract the index of asphalt and soil, which is the 
second point of the basis for weighting, and finally, 
we can integrate the length and width information of 
the segmented road to achieve the automated road 
weighting. In the future, a comparative analysis of the 
impact of different h(n) functions on route planning 
will also be carried out, as well as some 
improvements to the algorithm. In the end, we also 
need to test this in the real world with GPU-equipped 
drones rather than on publicly available datasets. 
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