
Integrity: An Object-relational Framework for Data Security

Elder Costa, João Pedro Lorenzo De Siqueira, Carlos Eduardo Pantoja a and Nilson Mori Lazarin b

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (Cefet/RJ), Rio de Janeiro, RJ, Brazil

Keywords: Software Engineering, Cryptography, Database.

Abstract: Considering the recent laws that discuss how user data must be collected, treated, stored, and protected, design-
ing and developing projects considering the information security in application systems is necessary. Given
that cryptographic functions available in database management systems are limited to some data types, this
work proposes an object-relational framework to add data security using a process to mask data in the persis-
tence layer of a layered application.

1 INTRODUCTION

Recent scandals involving cyberattacks, such as data
leaks of more than 540 million Facebook users and
Twitch streamers’ billing, have become increasingly
recurrent and show that information security plays
a significant role in protecting sensitive information
from your users.

The growing number of internet users, the services
digitization, and the need to ensure the security of
users’ sensitive data have led governments worldwide
to reformulate, approve and enact new laws that ad-
dress these issues. The General Data Protection Reg-
ulation (GDPR), the California Consumer Privacy Act
of 2018 (CCPA), and the Personal Information Pro-
tection and Electronic Documents Act (PIPEDA) are
some examples of current laws in Europe and North
America. These legislations pressure companies to
develop security and protection solutions for the data
that travels through their systems and are susceptible
to the most varied types of attacks.

Regarding data storage, some Database Manage-
ment Systems (DBMS) such as MariaDB/MySQL,
PostgreSQL, Oracle or SQLServer, provide native en-
cryption functions, such as AES ENCRYPT, pgcrypto,
DBMS CRYPTO or ENCRYPTBYKEY. However, all
these DBMS have some limiting factor in providing
the information security of the stored data due to the
cryptography functions that are restricted to certain
types of data, not covering types such as date, int or
decimal. Thus, these systems do not provide secu-

a https://orcid.org/0000-0002-7099-4974
b https://orcid.org/0000-0002-4240-3997

rity for data that may contain sensitive information
about a user or company, such as date of birth or a
customer’s cash balance, for example. There are also
limitations in services that do not work on data that
are in production like (Zhang et al., 2018), which of-
fers the data masking.

This work aims to present Integrity, an object-
relational mapping framework for information sys-
tems development that presents a model based on
combinations of existing cryptographic algorithms to
mask the data. Integrity gets application data and per-
forms data masking on selected columns using a pre-
defined application-level and design-time key defined
by the developer team. In this way, the data is stored
masked in the relational database. The data will only
make sense when the inverse process is carried out at
the application level by Integrity. With this other data
types like date can be encrypted.

The Integrity framework was developed using the
C# programming language and tested through a proof
of concept to demonstrate the assertiveness of its main
features. The main contribution of this work is an
object-relational framework to encrypt varchar data
and mask date data in relational databases.

This work is structured as follows: Section 2 ex-
plains the basic concepts and algorithms needed to
understand how Integrity works. In Section 3, some
related works are discussed. In Section 4, the frame-
work and its implementation are presented. In Section
5, a case study is presented, showing how the frame-
work works, and, finally, in Section 6, the conclusions
are presented.

Costa, E., Lorenzo de Siqueira, J., Pantoja, C. and Lazarin, N.
Integrity: An Object-relational Framework for Data Security.
DOI: 10.5220/0011088100003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 1, pages 259-266
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259



2 THEORECTICAL REFERENCE

Information Systems Security is the set of actions
that protect information systems and their stored data
meeting three fundamental principles: Confidential-
ity, where only authorized users can access the stored
information; Integrity, in which only authorized users
can change the information stored; Availability, in
which the information must be available whenever
necessary (Kim and Solomon, 2014).

Encryption is one of the most used methods to
provide Confidentiality to data in information sys-
tems. This technique consists of processing unen-
crypted data, operating at the bit level, combined with
a key, producing an output called ciphertext without
linguistic cohesion. This ciphertext can be transmit-
ted or stored in insecure channels or media because
if this information is stolen, it cannot be viewed by
an unauthorized user (Tanenbaum, 2003)(Kim and
Solomon, 2014).

2.1 AES Key Expansion

Advanced Encryption Standard (AES) is a symmetric
iterated block cipher in which the processed plaintext
block size is 128bits, and the cryptographic key can
vary from 128, 192, or 256 bits. The algorithm’s in-
ternal operations are performed on a byte array called
state that has four rows and four columns. The given
key defines the number of iterations to be performed
on the state array. A subkey, generated through an
expansion process, is used at each iteration of AES
(Dworkin et al., 2001).

During the expansion process, the received key is
copied to the first four words as shown in the gen-
eral algorithm of Figure 1, and the expanded keys are
filled with four words of each turn. Each word in-
cluded Wi depends on the previous word, Wi−1, and
the word four positions behind, Wi−4. For each word
in the array where the position is not a multiple of 4,
only one XOR operation is performed, otherwise it is
submitted to a function. The function illustrated in
Figure 1, has three processes, according to (Stallings,
2015):

• RotWord: Byte-by-byte circular shift to the left.
• SubWord: A byte-by-byte substitution of the word

is performed using the AES substitution table,
available in (Dworkin et al., 2001).

• RCon: The result of steps 1 and 2 goes through
a logical operation XOR with the round con-
stant, represented in hexadecimal, where: RC1 =
[01] ; RC2 = [02] ; RC3 = [04] ; RC4 = [08] ; RC5 =
[10] ; RC6 = [20] ; RC7 = [40] ; RC8 = [80] ; RC9 =
[1b] ; RC10 = [36].

Figure 1: AES Key Expansion, adapted of (Stallings, 2015).

2.2 Feistel Networks

According to (Stallings, 2015), the Feistel Cipher is
an encryption/decryption algorithm, which takes as
input a key and a block of bits called plaintext. This
block is divided into two halves, L0 and R0. These
halves go through rounds of processing and then com-
bine to produce the ciphertext. The blocks produced
in the previous round and a subkey derived from the
initial key are used as input for each processing round.

All rounds follow the same pattern, where a re-
placement is performed on the left half using an XOR
operation with the right half of the operation associ-
ated with a predefined function using the round key.
After all the described operations, a permutation is
made between the blocks where the right side be-
comes the left side and vice versa, thus forming a
substitution-permutation network.

2.3 Secure Hash Standard

Hash functions are iterative, one-way algorithms that
can process a variable-length input message to pro-
duce a fixed-size, condensed representation called di-
gest. These algorithms work on the Integrity pillar
since they determine the integrity of a message. Any
change in the input message will, with high proba-
bility, result in a different digest. The SHA-256 al-
gorithm deals with messages of up to 264input bits,
providing a fixed output of 256bits (Dang, 2015).

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

260



3 RELATED WORK

Transparent Encryption for the database Abstraction
Layer (TEAL) (Lorey et al., 2016) says that data se-
curity is guaranteed as there is no need for the storage
service provider to obtain data encryption keys. The
Database abstraction layer is a way of translating dif-
ferent specific commands of the existing DBMS on
the market.

Likewise, DBCrypto (Deshpande et al., 2012) en-
crypts data by rewriting queries using the Vigenère
cipher, a form of simple sum-of-numbers encryption.
The keys are stored in the application, and, therefore,
whoever has access to the data in the database will not
be able to know their real values. There is a different
operation for each type of query. At each call, the
query changes to adapt to the encrypted database.

In LGPD Compliance (Pitta et al., 2020), the au-
thors’ main objective was legacy systems using a
technique to perform a dump of the original base and
change the structure of the tables, changing the types
of stored data and later applying AES for disk per-
sistence. This technique also employed data tables in
primary memory with data obfuscation to speed up
queries. They use query modifier codes to store data
inside the database. However, DBCrypto searches the
encrypted database only for specific data types.

In this work, we use obfuscation for date data
type. Different from TEAL, our proposed approach
allows comparisons with an obfuscated date without
the need to decipher, consequently speeding up query
processing in this case. Because it is not necessary
to decipher all table data to perform the comparison
with the date in plain text, like (Lorey et al., 2016).

In this work, we use Advanced Encryption Stan-
dard to cipher data type varchar different from
DBCrypto our proposed approach uses a modern
cryptographic algorithm. Furthermore, (Deshpande
et al., 2012) uses a cryptographic method that has al-
ready been broken and has fallen into disuse for a long
time, compromising the effectiveness of the security
applied.

Finally, this work presents a data obfuscation pro-
cess for disk persistence keeping the column’s origi-
nal data type, unlike LGPD Compliance. (Pitta et al.,
2020) transforms all tables in the database on blob
data type to storage on the hard disk, and part of
the unencrypted database is mirrored in a temporary
database in primary memory.

4 INTEGRITY FRAMEWORK

This work presents an alternative for protecting data
types that are not supported by the native crypto-
graphic functions of the main DBMS. Situated in the
data persistence layer, at the application level, the
proposed model acts on a pillar of information secu-
rity not conventionally explored, Integrity. According
to (Hintzbergen et al., 2018), Integrity refers to the
consistency and accuracy of the intended state or in-
formation, and any unauthorized modification of data
is a violation of data integrity. In this way, the pro-
posed model acts by deliberately manipulating the in-
tegrity of the data to be stored.

A scenario where a buyer interacts by entering
some personal and sensitive data on a large retailer’s
purchase site is proposed to illustrate the functioning
of the Integrity framework. Bob accessed a large re-
tailer’s site to purchase a product he had been look-
ing for in a while. Bob was redirected to the pay-
ment page upon selecting his product and placing it
in the shopping cart. Bob then enters his personal and
credit card details for payment. The system asks if
Bob wants to keep his card details registered in the
system. As Bob wants to make future purchases eas-
ily and quickly, he confirms his credit card details into
the system. The system then stores the name printed
on the card, the expiration date, and Bob’s secret card
number. However, after a while, due to an internal se-
curity breach, the database with the card information
of several users was leaked, exposing Bob’s data.

The Integrity framework can be used at the ap-
plication level as an object-relational mapping frame-
work where data is already encrypted in the database
to avoid data exposure in these situations. In this
way, once the data is sent from the model layer to the
data persistence layer, Integrity performs an object-
relational mapping, transforming the object model
into a relational model preparing it for storage in a
database. After this, the Data Masking process ob-
fuscates the data using Feistel and AES Key Expan-
sion ciphers in the case of Date fields. If the data is of
String type, the data is encrypted. Next, Integrity SQL
(ISQL) automatically assembles the SQL query for
the data store. In case of a query to retrieve encrypted
or masked information from the database, ISQL does
the opposite process, taking the encrypted String data
and leaving the text unencrypted.

However, in the case of the Date type, as there
is a maximum representation limitation, masking can
leap. Then, ISQL builds the query considering the fi-
nite body size. Therefore, when using Integrity, even
if the data were exposed, it would not make any sense
to whoever obtained it. Figure 2 shows the architec-

Integrity: An Object-relational Framework for Data Security

261



ture of the Integrity framework. For example, if the
retail company system adopts Integrity when register-
ing the name Bob and the credit card expiration date
of 2022-01-01 the framework would encrypt the name
and obfuscate the expiration date by taking a leap in
the finite body, storing the information in the database
with the values X5rMlOVrdE0BqjXKii3VvA== and
8806-12-14.

Figure 2: Schema of Integrity.

In Date types, the value is limited to the size of
the finite field, so it is possible to jump with the date
beyond the pre-established limit in the DBMS. For
example, the Date type in MySql only supports dates
with limits between 0001-01-01 to 9999-12-31, or a
range of 3652060 days. With the proposed cipher and
algorithm, a date 2022-01-01 could exceed this limit,
causing an error when inserted into the database. In-
tegrity uses the MOD operation to overcome this is-
sue, limiting the field’s size and creating a new date
with its integrity broken, but within the range limits,
without generating an overflow error when saving it.

Integrity does not intend to prevent data from be-
ing leaked but rather, if attacked, to be exposed in a
non-integral manner, so the data do not make sense to
the attacker and prevent its use in any way.

4.1 Data Masking

The Data Masking process, represented in Figure 3,
receives the data to be manipulated, a 128-bit key de-
fined by the developer in the system’s source code and
an automatically generated seed. This seed is derived
from the initial seed, the table structure, and the col-
umn chosen to be encrypted. Consequently, the aim
is to increase entropy and make difficult an attack by
frequency analysis since each table column will use a
different seed in the masking process.

The Data Masking process follows the following
steps:

• The encryption key [K] is submitted to the AES
Key Expansion routine (Dworkin et al., 2001),
generating 10 128-bit subkeys [K1], [K2]...[K10].

Figure 3: Data Masking.

• The seed is submitted to SHA-256 (Dang, 2015),
generating a fixed-length 256-bit output that is
later split into two 128-bit parts, [Ri] and [Li] .

• The two parts of the SHA-256 digest and the 10
subkeys are subjected to a 10-round Feistel Net-
work.

• Each round, a logical operation XOR is performed
between the round subkey [Ki] with the 128bits
[Ri] right side.

• The output of this operation becomes the left side
of the next round [Li+1], besides it is operated
again (XOR) with the left side of the [Li] round,
generating the right side of the next round [Ri+1].

The output of the Feistel Network generates a 256bit
Token that is submitted to a function.

For data masking of the date the token into an In-
teger, representing the amount of ”leaps” that will be
added to the data to be obfuscated unsing the follow-
ing: DataMasked = DataClear +(Token mod N).

• N is the field limit according to the data type in
the chosen DBMS, being responsible for the leap
assigned to the overflow of the field limit.

The same output will be when the same input (key
and seed) enters the algorithm’s tokenization process.
In this way, the data restoration process takes place
by reducing the Data Obfuscated by the Token, as fol-
lows: DataClear = DataOb f uscated− (Token mod N).

For data encryption of the varchar type, the AES
algorithm is used because native functions such as
AES ENCRYPT() require varbinary or blob. In this
case, the 256bit token is used as the encryption pass-

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

262



word (128bit MSB) and initialization vector (128bit
LSB).

4.2 Implementation

Integrity can be used to extend an application’s per-
sistence layer, implemented as a library. It is based
on three main features:

• Object-relational Mapping: represents database
tables in the application as objects so that entropy
generation is possible using the attributes defined
in the class combined with the key also configured
at the application.

• Data Persistence: must be able, through object-
relational mapping, to create commands and
queries for persistence in the database.

• Security and Obfuscation: it obfuscates and re-
stores the data integrity using the algorithm pre-
sented in section 4.1, considering commands cre-
ated for data persistence and the entropy gener-
ated by the object-relational mapping.

This version1 was built in the C# language using
the .NET Core 5.0 development platform and the Vi-
sual Studio IDE. The development considered only
the MySql DBMS and only dealt with the Datetime
and varchar data types. The Integrity class diagram
can be seen in Figure 4. Integrity is structured in three
class libraries:

• Core, which contains the main classes for the li-
brary functioning.

• Attributes, which contain everything related to
the classes’ attributes for the library’s object-
relational mapping.

• Lib, which contains useful classes for implement-
ing data persistence and security.

The Core class library is the core of the package. It
contains the main classes for configuration, relational
mapping, base repository, and security, namely:

• IntegrityConfiguration is responsible for the ini-
tial configuration of the application by invok-
ing the ConfigureIntegrity method. It invokes
the other major libraries’ methods to store the
database Connection String, the Cipher Key, and
the Entropy Key.

• IntegrityBaseRepository is the abstract class that
must be extended by the application’s persistence
layer classes and provides the methods developed
for integrity functioning for persistence and data
reading.

1https://gitlab.com/eldercosta/integrity-csharp

• IntegrityMapperRepository is the class responsi-
ble for the object-relational mapping of the li-
brary. It is responsible for creating the insert,
delete, update, and select commands. In addition,
when using the methods of the IntegritySecurity-
QueryLanguage class, it defines the parameters to
be saved in the database.

• IntegritySecurityQueryLanguage is the class that
has the definitions and encryption algorithm of the
library and this approach. It provides the methods
for obfuscating the data and recovering the origi-
nal data.

The Attributes class library has everything related
to object attributes for implementing the library’s
object-relational mapping and contains the following
classes:

• AttributesUtils is the class that contains utilities
for manipulating the attributes defined in the en-
tities, such as creating a parameter dictionary re-
turning a list of attributes from the object’s prop-
erties.

• Column is the column attribute that captures and
relates the column name in the database to the ob-
ject’s properties.

• Key is the attribute that defines a specific property
as a table key.

• Table is the attribute that defines the table’s name
that refers to the object in use in the application.

All attributes listed are mandatory for the library
to function. It is possible to create the database’s
queries and commands from them. They are defined
in the application’s Entity classes. The Lib class li-
brary contains useful classes for implementing data
persistence and library security, as following:

• IntegrityDatabaseUtils has utilities for saving the
database connection string used by the application
to create a connection to the DBMS.

• MysqlConstants has constants defined by the
DBMS to be considered in the data leap accord-
ing to the field limit of the employed field, as is
the Date case.

• AesService is the class that implements the 128-
bit AES algorithm, which provides the key expan-
sion methods used for token generation. We chose
to use AES-128 CBC because the token output is
256bits divided into two parts, one for the initial-
ization vector and one for the encryption key.

The sequence diagram interconnecting all the
messages exchanges by objects in the Integrity frame-
work can be seen in Figure 5.

Integrity: An Object-relational Framework for Data Security

263



Figure 4: Class diagram of the Integrity framework.

Figure 5: Sequence diagram of Integrity.

5 CASE STUDY

A case study is presented based on the scenario
proposed in Section 4, where Bob and Alice reg-
ister their data on a retailer’s platform to show
how Integrity works. The case study will be con-
ducted from the developer’s perspective on how In-
tegrity works on the backend. The case study will
store the customer name (client name varchar(256)),
registration date (clientSince date date), cardholder
name (cardHolder name varchar(256)), card num-
ber (card number varchar(256)), and expiration date
(cardExpiration date date) in a database. The fields
using varchar and date will be encrypted and obfus-
cated.

Figure 6: Integrity’s configuration file.

From the developer’s point of view, an initial pass-
word (EncryptKey=0123456789ABCDEF) and an
initial seed (EntropySeedString=IntegrityExample)
are defined, which will be used in the obfuscation and
encryption of the application data, as shown in the
Figure 6.

Afterward, it is created a class in the business
model layer named ClientEntity with five columns, as
shown in Figure 7.

Each column of the table receives a different to-
ken, generated from the EncryptKey and Entropy-
SeedString defined in the configuration file. Then,
when the data is persisted in the database, the names
and dates will be different. It makes difficult fre-
quency attacks. The token generation process is pre-
sented in Table 1.

When the system is in production, the
client name Bob and Alice will be persisted
as X5rMlOVrdE0BqjXKii3VvA== and bnRP-

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

264



Figure 7: The ClientEntity class.

Table 1: The Token Generator.
EncryptKey: 0123456789ABCDEF

EncryptKey (HEX): 30313233343536373839414243444546

AES Key
Expansion

SubKey1: 2a5f68291e6a5e1e26531f5c65175a1a SubKey2: d8e1ca64c68b947ae0d88b2685cfd13c
SubKey3: 56df21f39054b589708c3eaff543ef93 SubKey4: 4400fd15d454489ca4d87633519b99a0
SubKey5: 40ee1dc494ba55583062236b61f9bacb SubKey6: f91a022b6da057735dc274183c3bced3
SubKey7: 5b9164c0363133b36bf347ab57c88978 SubKey8: 3336d89b0507eb286ef4ac83393c25fb
SubKey9: c309d789c60e3ca1a8fa902291c6b5d9 SubKey10: 41dce20887d2dea92f284e8bbeeefb52

EntropySeedString: IntegrityExample
Seed (base64): SW50ZWdyaXR5RXhhbXBsZQ==

client
name

Seed:
exampleTableclient nameSW50ZWdyaXR5RXhhbXBsZQ==clientSince dateSW50ZWdyaXR5
RXhhbXBsZQ==cardHolder nameSW50ZWdyaXR5RXhhbXBsZQ==card numberSW50ZWdy
aXR5RXhhbXBsZQ==cardExpiration dateSW50ZWdyaXR5RXhhbXBsZQ==client name

Digest: 5f6bc40b98ece33944b50a8475660b2334642867c59b03755456e9e47c095d4f

F
e
i
s
t
e
l

L1: 5f6bc40b98ece33944b50a8475660b23 R1: 34642867c59b03755456e9e47c095d4f
L2: 1e3b404edbf15d6b7205f6b8191e0755 R2: 41508445431dbe5236b0fc3c6c780c76
L3: 99b14e2185962a28d668771ae9b7dd4a R3: 878a0e6f5e677743a46d81a2f0a9da1f
L4: d1552f9cce33c2cad4e1bf0d05ea358c R4: 48e461bd4ba5e8e20289c817ec5de8c6
L5: 0ce49ca89ff1a07ea651be24bdc67166 R5: ddb1b33451c262b472b00129b82c44ea
L6: 9d5faef0c57837ec42d22242d9d5fe21 R6: 91bb32585a899792e4839c6664138f47
L7: 68a130733729c0e1b941e87e58284194 R7: f5fe9e83f251f70dfb93ca3c81fdbfb5
L8: ae6ffa43c460c4be90608d97d63536cd R8: c6ceca30f349045f292165e98e1d7759
L9: f5f812abf64eef7747d5c96ab72152a2 R9: 5b97e8e8322e2bc9d7b544fd6114646f

L10: 989e3f61f42017687f4fd4dff0d2d1b6 R10: 6d662dca026ef81f389a1db547f38314
MSB: 2cbacfc285bc26b617b2533ef91d7846 LSB: b424f0a3719c31de68fd87e109cfa9f0

Token: 2cbacfc285bc26b617b2533ef91d7846b424f0a3719c31de68fd87e109cfa9f0

clientSince
date

Seed:
exampleTableclient nameSW50ZWdyaXR5RXhhbXBsZQ==clientSince dateSW50ZWdyaXR5
RXhhbXBsZQ==cardHolder nameSW50ZWdyaXR5RXhhbXBsZQ==card numberSW50ZWdy
aXR5RXhhbXBsZQ==cardExpiration dateSW50ZWdyaXR5RXhhbXBsZQ==clientSince date

Token: eaeb82825559672c919a1933cb515c2767bfe68d1b050867f2f552bdea9ca170

cardHolder
name

Seed:
exampleTableclient nameSW50ZWdyaXR5RXhhbXBsZQ==clientSince dateSW50ZWdyaXR5
RXhhbXBsZQ==cardHolder nameSW50ZWdyaXR5RXhhbXBsZQ==card numberSW50ZWdy
aXR5RXhhbXBsZQ==cardExpiration dateSW50ZWdyaXR5RXhhbXBsZQ==cardHolder name

Token: df0518fe3f471230a27d3de9b4c2dbf3978a451fa9c92b1f812366521a4b18da

card
number

Seed:
exampleTableclient nameSW50ZWdyaXR5RXhhbXBsZQ==clientSince dateSW50ZWdyaXR5
RXhhbXBsZQ==cardHolder nameSW50ZWdyaXR5RXhhbXBsZQ==card numberSW50ZWdy
aXR5RXhhbXBsZQ==cardExpiration dateSW50ZWdyaXR5RXhhbXBsZQ==card number

Token: a5ff1f0a01551de922e44bd90673441a9455673307976c00cf8d4adbd12602c1

card
Expiration

date

Seed:
exampleTableclient nameSW50ZWdyaXR5RXhhbXBsZQ==clientSince dateSW50ZWdyaXR5
RXhhbXBsZQ==cardHolder nameSW50ZWdyaXR5RXhhbXBsZQ==card numberSW50ZWdy
aXR5RXhhbXBsZQ==cardExpiration dateSW50ZWdyaXR5RXhhbXBsZQ==cardExpiration date

Token: e281e063a1a79bb936566e85fb7e0d4553c7bd4ae1d3541873f5009997148c53

TRko8QMh2hfy4PoDKw==, the cardExpira-
tion date will be persisted as 12/14/8806 and
01/02/8807, as shown in Figure 10. Identical dates
will be stored to exemplify the behavior of Integrity
since the jump of each column of the table is dif-
ferent. Thus frequency attack in the masked data is
harder to perform. Figure 8 shows the submitted data
in clear.

Figure 8: Sending data to storage.

To calculate the leap used in the
obfuscation of Date fields, the token
(eaeb82825559672c919a1933cb515c2767bfe68d1b0
50867f2f552bdea9ca170) generated for the field
clientSince date was used. The Token is divided
into 64bit words. A jumptoken is obtained through
the exclusive-or operation between each word of
the token. The jumptoken is converted to a 64-bit
unsigned Integer. The mod is calculated with N, in
this case, 3652060, which is the day limit of the date
field in MySQL. The result (304138) is the number
of days to be added to the date. The process is shown
in Figure 9.

Figure 9: Date leap calculation.

For varchar fields, the AES-128 algorithm is
used in CBC operating mode. The most sig-
nificant bits of the generated token are used as
the key and the least significant bits are used
as the initialization vector. In the case of
the field client name, which received the token
(2cbacfc285bc26b617b2533ef91d7846b424f0a3719c
31de68fd87e109cfa9f0), it uses:

• key = [2cbacfc285bc26b617b2533ef91d7846]

• iv = [b424f0a3719c31de68fd87e109cfa9f0]

Figure 10: Bob’s and Alice’s stored data.

When the system retrieves information from the
database, the Integrity framework does the inverse

Integrity: An Object-relational Framework for Data Security

265



process, considering the columns’ annotations and
seeds defined in the source code. Then, the data is
retrieved unencrypted or unobfuscated. Integrity was
designed to make all the encryption and data obfus-
cation processing transparent to the system developer
and user. Figure 11 shows the recovered data.

Figure 11: Return data.

When a query with date comparison is performed,
the informed date also goes through the leap process
before the query is performed, so there is no need to
deobfuscate all dates in the column to perform the
comparison.

6 CONCLUSIONS

This work presented a framework for object-relational
mapping that aims to obfuscate the information in
the database, leaving the responsibility of the cryp-
tographic process to the application layer instead of
delegating this process to the database management
system. Likewise, the framework aims to make the
entire process transparent for the developer, who only
needs to interfere in the solution’s source code to de-
fine passwords and which columns will suffer data ob-
fuscation. In this way, developing software consider-
ing the new data protection laws is facilitated.

The data will be stored in the database in an obfus-
cated way. The data that Integrity has persisted will
be meaningless to those who illicitly obtain it if there
is an information leak. Not even the Database Admin-
istrator will have access to such information since the
system development team defines the password and
the name of the attributes used in the cyphering pro-
cess.

As future works, Integrity will be part of the
Spring framework in Java to take advantage of all the

infrastructure already available and for its wide use
in the market. Other types of fields will also be used
in Integrity, such as the Integer since only String and
Date data are currently being used in this version. We
opted for working firstly in two data types to reduce
the scope of this work. Though, as future works, we
intend to integrate data types with a finite body well-
defined, as the IEEE 754 standard data types.

The framework provides the search for exact data
in the database or by date range. However, searching
for data using a String snippet in an obfuscated field
is an open challenge. Thus, solutions to these limita-
tions will be studied and proposed.

REFERENCES

Dang, Q. (2015). Secure Hash Standard. Federal Inf. Pro-
cess. Stds. (NIST FIPS), National Institute of Stan-
dards and Technology, Gaithersburg, MD.

Deshpande, A., Patil, A., Joshi, S., and Bothara, S. (2012).
Article: Dbcrypto: A database encryption system us-
ing query level approach. International Journal of
Computer Applications, 45(8):27–32.

Dworkin, M., Barker, E., Nechvatal, J., Foti, J., Bassham,
L., Roback, E., and Dray, J. (2001). Advanced
Encryption Standard (AES). Federal Inf. Process.
Stds. (NIST FIPS), National Institute of Standards and
Technology, Gaithersburg, MD.

Hintzbergen, J., Hintzbergen, K., Smulders, A., and
Baars, H. (2018). Fundamentos de Segurança da
Informação: com base na ISO 27001 e na ISO 27002.
Brasport.

Kim, D. and Solomon, M. G. (2014). Fundamentos de
segurança de sistemas de informação. LTC, Rio de
Janeiro, 1a edition.

Lorey, K., Buchmann, E., and Böhm, K. (2016). TEAL:
Transparent Encryption for the Database Abstraction
Layer. In Proceedings of the CAiSE’16 Forum at
the 28th International Conference on Advanced Infor-
mation Systems Engineering, pages 13–17, Ljubljana,
Slovenia.

Pitta, P. E. B., Costa, E., de Siqueira, J. P. L., and Lazarin,
N. M. (2020). LGPD Compliance: A security persis-
tence data layer. In Anais da XVIII Escola Regional de
Redes de Computadores, pages 123–127, Porto Ale-
gre, RS, Brasil. SBC.

Stallings, W. (2015). Criptografia e segurança de redes:
princı́pios e práticas. Pearson Education do Brasil,
São Paulo, 6 edition.

Tanenbaum, A. (2003). Redes de computadores. Elsevier.
Zhang, M., Xie, G., Wei, S., Song, P., Guo, Z., Liu, Z.,

and Cheng, Z. (2018). Dmsd-fpe: Data masking sys-
tem for database based on format-preserving encryp-
tion. In Wan, J., Lin, K., Zeng, D., Li, J., Xiang, Y.,
Liao, X., Huang, J., and Liu, Z., editors, Cloud Com-
puting, Security, Privacy in New Computing Environ-
ments, pages 216–226, Cham. Springer International
Publishing.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

266


