financial and academic support and all the Laboratory 
for Research and Development in Informatics (LIDI) 
staff  and  the  Department  of  Computer  Science, 
Universidad de Cuenca. Specifically to the research 
project “Fog Computing applied to monitor devices 
used in assisted living environments.”, DIUC for its 
academic and financial support. 
REFERENCES 
Burstein,  J.  (2009).  Opportunities  for  natural  language 
processing  research  in  education.  Lecture  Notes  in 
Computer  Science,  5449  LNCS,  6–27. 
https://doi.org/10.1007/978-3-642-00382-0_2 
Campos,  R.,  Mangaravite,  V.,  Pasquali,  A.,  Jorge,  A., 
Nunes,  C.,  &  Jatowt,  A.  (2020).  YAKE!  Keyword 
extraction from single documents using multiple local 
features.  Information  Sciences,  509,  257–289. 
https://doi.org/10.1016/j.ins.2019.09.013 
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). 
Bert: Pre-training of deep bidirectional transformers for 
language understanding. Conf. of the North American 
Association  for  Computational  Linguistics,  2019: 
Human Language Technologies, 4171–4186. 
Ennals,  R.,  &  Gay,  D.  (2007).  User-friendly  functional 
programming  for  web  mashups.  ACM  SIGPLAN 
Notices,  42(9),  223–233.  https://doi.org/10.1145/ 
1291220.1291187 
Ferreira-Mello, R.,  André, M.,  Pinheiro,  A., Costa, E.,  & 
Romero,  C.  (2019).  Text  mining  in  education.  Wiley 
Int. Reviews: Data Mining and Knowledge Discovery, 
9(6). https://doi.org/10.1002/widm.1332 
Ghiani, G., Paternò, F., Spano, L. D., & Pintori, G. (2016). 
An environment for  End-User Dev. of Web mashups. 
Int.  Journal  of  Human  Comp.  Studies,  87,  38–64. 
https://doi.org/10.1016/j.ijhcs.2015.10.008 
Grammel, L., & Storey, M. A. (2010). A survey of mashup 
development environments. Lecture Notes in Computer 
Science  (Including  Subseries  Lecture  Notes  in 
Artificial  Intelligence  and  Lecture  Notes  in 
Bioinformatics),  6400,  137–151.  https://doi.org/10.10 
07/978-3-642-16599-3_10 
Tuchinda,  R.,  Knoblock,  C.  A.,  &  Szekely,  P.  (2011). 
Building  mashups  by  demonstration.  ACM 
Transactions  on  the  Web,  5(3). 
https://doi.org/10.1145/1993053.19 93058 
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). 
Attention  is  all  you  need.  Advances  in  Neural 
Information  Processing  Systems,  2017-December 
(Nips), 5999–6009. 
Wong,  J.,  &  Hong,  J.  I.  (2007).  Making  mashups  with 
marmite. https://doi.org/10.1145/1240624.1240842 
Belleau,  F.,  Nolin,  M.  A.,  Tourigny,  N.,  Rigault,  P.,  & 
Morissette, J. (2008). Bio2RDF: Towards a mashup to 
build  bioinformatics  knowledge  systems.  Journal  of 
Biomedical  Informatics,  41(5),  706–716. 
https://doi.org/10.1016/j.jbi.2008.03.004 
Chary, M., Parikh, S., Manini, A. F., Boyer, E. W., & 
Radeos,  M.  (2019).  A  review  of  natural  language 
processing  in  medical  education.  Western  Journal  of 
Emergency  Medicine,  20(1),  78–86. 
https://doi.org/10.5811/westjem.2018.11.39725 
Google LLC. (2022). YouTube. www.youtube.com 
Grobelnik,  M.,  Mladenic,  D.,  &  Jermol,  M.  (2002). 
Exploiting  text  mining  in  publishing  and  education. 
ICML-2002  Workshop  on  Data  Mining  Lessons 
Learned, 34–39, 2002.  
Insfran,  E.,  Cedillo,  P.,  Fernández,  A.,  Abrahão,  S.,  & 
Matera, M. (2012). Evaluating the usability of mashups 
applications. Proceedings - 2012 8th Int. Conference on 
the Quality of Information and Communications 
Technology, QUATIC,  323–326. 
https://doi.org/10.1109/QUATIC.2012.28 
Karami, A., White, C. N., Ford, K., Swan, S., & Yildiz 
Spinel,  M.  (2020).  Unwanted  advances  in  higher 
education:Uncovering  sexual  harassment  experiences 
in academia with text mining. Information Processing 
and  Management,  57(2),  102167. 
https://doi.org/10.1016/j.ipm.2019.102167 
Litman,  D.  (2016).  Natural  language  processing  for 
enhancing  teaching and  learning. 30th  Conference on 
Artificial Intelligence, AAAI 2016, 4170–4176. 
Odden,  T.  O.  B.,  Marin,  A.,  &  Caballero,  M.  D.  (2020). 
Thematic  analysis  of  18  years  of  physics  education 
research conference proceedings using natural language 
processing  Thematic  Analysis  of  18  Years  ... Odden, 
Marin,  And  Caballero.  Physical  Review  Physics 
Education Research, 16(1). 
Petersen, S. (2007). Natural Language Processing Tools for 
Reading Level Assessment and Text Simplification for 
Bilingual Education. 145. 
Romero,  C.,  &  Ventura,  S.  (2013).  Data  mining  in 
education.  Data  Mining  and  Knowledge  Discovery, 
3(1), 12–27. https://doi.org/10.1002/widm.1075 
Wikipedia  Foundation.  (2022).  Wikipedia. 
https://es.wikipedia.org/wiki/Wikipedia:Portada 
Yunanto,  A.  A.,  Herumurti, D., Rochimah, S., & 
Kuswardayan, I. (2019). English education game using 
non-player  characters  based  on  natural  language 
processing. Procedia Computer Science, 161, 502–508. 
https://doi.org/10.1016/j.procs. 2019.11.158 
Ngu, A. H. H., Carlson, M. P., Sheng, Q. Z., & Paik, H. Y. 
(2010).  Semantic-Based  Mashup  of  Composite 
Applications.  IEEE  Transactions  on  Services 
Computing,  3(1),  2–15.  https://doi.org/10.1109/TSC. 
2010.8