
Implementing Test Driven Development in the Big Data Domain:
A Movie Recommendation System as an Exemplary Case

Daniel Staegemann a, Matthias Volk b, Priyanka Byahatti, Nikhilkumar Italiya, Suhas Shantharam,
Apoorva Byaladakere Chandrashekar and Klaus Turowski

Magdeburg Research and Competence Cluster VLBA, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
{daniel.staegemann, matthias.volk, priyanka.byahatti, nikhil.italiya, suhas.shantharam, apoorva.bc,

Keywords: Big Data, Test Driven Development, TDD, Microservice, Software Engineering, Quality Assurance.

Abstract: As a consequence of the ongoing digitalization in today’s society, the amount of data that is being produced
is rapidly increasing. Moreover, not only the volume of the data is growing, but there are also more complex
types of data and, depending on the use case, it is also necessary to integrate heterogenous data into one
analysis. Since traditional ways of dealing with data are oftentimes overstrained by those new challenges,
novel approaches and technologies have been developed. In its entirety, this phenomenon is summarized
under the term big data. However, quality assurance in the big data realm is still not mature and this even
more applies to the actual testing. Therefore, it is necessary to explore new approaches. One rather recent
proposition was the application of the test driven development methodology to the big data domain. To further
evaluate its feasibility and go beyond a purely theoretical point of view, the publication at hand discusses the
test driven implementation of a movie recommendation system as an exemplary case. In doing so, it facilitates
the general understanding of the topic, helps in judging the approach’s feasibility and provides some practical
insights concerning its actual application.

1 INTRODUCTION

As a consequence of the ongoing digitalization in
today’s society (Musik and Bogner, 2019), the
amount of data that is being produced is rapidly
increasing (Herschel and Miori, 2017). Moreover,
those data are not only produced, but oftentimes also
captured, stored and/or analyzed. However, not only
the volume of the data is increasing, but there are also
more complex types of data (e.g. image, audio or
video) and, depending on the use case, it is also
necessary to integrate heterogenous data into one
analysis (Volk et al., 2020b). Since traditional ways
of dealing with data are oftentimes overstrained by
those new challenges (Zhu et al., 2019), novel
approaches and technologies have been developed,
which are subsumed under the terms big data (BD),
respectively big data analytics (BDA).

When implemented and applied correctly, BDA
promises noticeable benefits (Müller et al., 2018). Yet,
its utilization is a highly complex endeavour that is

a https://orcid.org/0000-0001-9957-1003
b https://orcid.org/0000-0002-4835-919X

based on several dimensions (Staegemann et al.,
2019).

On the one hand, the data utilized as input have to
be of high quality to allow for good results (Hazen et
al., 2014), while on the other hand, those who operate
and steer the systems have to be qualified (Lee, 2017).
Further, if BDA is supposed to support human
decision making, those that are in charge also need to
be willing to incorporate the findings instead of
ignoring them or only using them when it is to support
their own pre-determined opinion (Günther et al.,
2017). In addition, even if the aforementioned factors
are sufficiently covered, the actual implementation of
a BDA application is also a highly challenging task
(Volk et al., 2019; Volk et al., 2020a). Subsequently,
a very important part of that process is the testing of
the developed solution. However, quality assurance
in the big data realm is still not mature and this even
more applies to the actual testing (Davoudian and Liu,
2020; Ji et al., 2020). Therefore, it is necessary to
explore new approaches (Staegemann et al., 2021b).

Staegemann, D., Volk, M., Byahatti, P., Italiya, N., Shantharam, S., Chandrashekar, A. and Turowski, K.
Implementing Test Driven Development in the Big Data Domain: A Movie Recommendation System as an Exemplary Case.
DOI: 10.5220/0011085600003194
In Proceedings of the 7th International Conference on Internet of Things, Big Data and Security (IoTBDS 2022), pages 239-248
ISBN: 978-989-758-564-7; ISSN: 2184-4976
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

239

One rather recent proposition was the application of
the test driven development methodology to the big
data domain (Staegemann et al. 2020b). To further
evaluate its feasibility and go beyond a purely
theoretical point of view, the publication at hand is
committed to answering the following research
questions:

RQ1: Is the test driven development methodology a
feasible approach for implementing big data
applications and how can it be applied?

RQ2: What are the implications and findings of
applying the test driven development methodology in
a big data context?

While only one single exemplary case is regarded and,
therefore, a general statement cannot be deducted
solely based on this contribution, it will facilitate the
general understanding of the topic, help in judging the
approach’s feasibility and provide some practical
insights concerning its actual implementation.

For this purpose, the remainder of this work is
structured as follows. After this introduction,
necessary background information concerning the
concepts of big data and test driven development are
given. Afterwards, the exemplary task is introduced
and some of its challenges highlighted. Subsequently,
in the fourth section, the actual implementation is
described. This is followed by a discussion of the
corresponding findings. Finally, a conclusion is
provided and potential directions for future research
are highlighted.

2 BACKGROUND

To provide a foundation that the ensuing parts of the
publication at hand can build upon, in the following,
the concepts of big data and test driven development
are briefly discussed.

2.1 Big Data

With the amount of data being produced, captured
and analysed rapidly increasing as well as its
complexity and the demands for its processing
growing, traditional applications that were previously
used for its harnessing are oftentimes no longer
sufficient (Chang and Grady 2019). Subsequently,
new tools and techniques had to be developed, which
are able to satisfy the challenges posed by this new
trend that is referred to as big data.

While there is no unified definition for the term
(Al-Mekhlal and Ali Khwaja 2019; Volk et al. 2020c),
the understanding in the majority of the pertinent
literature is quite similar. The arguably most popular
description (Chang and Grady 2019) is based on the
4 Vs of big data, namely volume (number of data
entries and size of data sets), velocity (speed of
incoming data and speed requirements for the
processing), variety (diversity of data in structure and
content) and variability (changes in data over time).

Since improved decision making can benefit
organizations across various fields of activity, BDA
is being applied to a plethora of domains, such as
agriculture (Bronson and Knezevic 2016), education
(Häusler et al. 2020), healthcare (Bahri et al. 2019),
manufacturing (Nagorny et al. 2017) and sports (Goes
et al. 2020) to name just a few.

2.2 Microservices

The microservice concept generally bases on
decomposing an envisioned application into a number
of smaller services that interact with each other
(Nadareishvili et al. 2016). Usually, those are based
on business functionality, which allows for a high
degree of specialization. They all run in their own
processes and the communication between those
services is realized only over lightweight mechanisms.
Furthermore, they can be heterogeneous regarding the
programming languages and technology stacks used
for their implementation (Freymann et al. 2020).
Those properties allow for them to be deployed
independently of each other by utilizing continuous
deployment tools and pipelines.

While componentization is generally considered a
good software engineering practice, it is often seen as
challenging to achieve a high degree of modularity
(Faitelson et al. 2018). However, with microservices,
this is achieved by design. This also translates to a
reduced effort for maintenance and modifications,
because for changes it is often sufficient to only
redeploy the affected service. Consequently, an
evolutionary design is promoted, which is driven by
frequent and controlled changes (Krylovskiy et al.
2015).

2.3 Test Driven Development

In the literature (Staegemann et al. 2021a), test driven
development (TDD) is highlighted as a promising
approach to improve an implementation’s quality.
This is mainly achieved by influencing two aspects.
Following this strategy, the test coverage is increased,
which helps to find errors and, further, the system’s

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

240

design is changed, since emphasis is given to
breaking it down into the smallest sensible pieces.
This helps to avoid issues and mistakes that are
caused by high complexity and increases
maintainability (Crispin, 2006; Shull et al., 2010).
Besides software development, applications of TDD
can also be found in other domains such as ontology
development (Davies et al., 2019; Keet and
Ławrynowicz, 2016) and process modelling (Slaats et
al., 2018). Yet, in the context of the publication at
hand, those are not as relevant.

Usually, in software development, after a desired
feature has been determined, it is implemented and
then tested. When applying TDD, instead, the order
of those activities is changed. Therefore, after it is
decided which change is to be realized, it is broken
down into the smallest reasonable parts (Fucci et al.,
2017). Subsequently, one or more tests are written for
those, to assure that they are working as intended.
Then, those tests are run with the expectation of them
failing, since the new functionality still needs to be
implemented (Beck, 2015). Consequently, if the test
succeeds nevertheless, this means that it is not
sufficiently designed and needs to be reworked. After
the test failed, the actual productive code is created to
implement the desired functionality. However, there
is no need for it to already be perfectly and elegantly
designed, since the goal is to provide the simplest
solution that passes the previously written tests
(Crispin, 2006). Only after this is achieved, the code’s
refactoring ensues to improve factors like the
readability or its compliance with best practices and
standards (Beck, 2015). At the same time, the tests are
constantly executed to assure the functionality is not
negatively affected by the refactoring.

As stated previously, due to the emphasis on small
tasks and incremental modifications (Williams et al.,
2003), instead of comprehensive implementations,
following TDD has not only implications on the test
coverage, but also the software’s design. Furthermore,
the short test cycles (Janzen and Saiedian, 2005)
resulting from the frequent succession of testing and
productive coding gives the developer more timely
feedback. Unit tests make up the majority of tests in
TDD, however, also other types of tests, such as
acceptance, integration or system tests can be utilized
(Sangwan and Laplante, 2006).

To facilitate the intended frequent execution of
tests without requiring too much of the developer’s
valuable time and attention, as it would be the case
with manual performance, TDD is often used together
with test automation in a continuous integration (CI)
pipeline (Karlesky et al., 2007; Shahin et al., 2017).
Whenever a new commit happens, a CI server runs all

applicable tests, therefore assuring that the change did
not induce new errors into the already existing code.

2.4 Test Driven Development in Big
Data

As indicated in the introduction, the application of
TDD to the BD domain is a promising approach to
assure the quality when developing BD applications,
with the use of microservices being proposed as the
technical foundation (Staegemann et al., 2020b). This
appears sensible, since TDD is, inter alia, based on
breaking down the desired application into the
smallest reasonable parts. Therefore, a rather
monolithic approach would be against the philosophy.
Microservices, however, facilitate such a modular
design (Shakir et al., 2021). Harnessing microservices
allows to create a separate service for each business
functionality, which, in turn, now only allows for
independent scaling, but also enables the developers
to distribute the implementation across teams and
always use the most effective technology stack for
each situation, instead of using a homogeneous
toolset.

Especially in highly demanding settings, such as
in the BD domain, this can be a substantial advantage.
Further, by applying TDD, it is rather easy to make
changes to the application, e.g., by swapping,
modifying, or adding components. Since there are
pre-existing tests for all the functions, it is possible to
directly check if the change caused any issues to the
system or if it is still working as intended. This
increases flexibility and quality, but also trust, which
is important to avoid incorrect use of the BDA
solution (e.g. only using it to try to justify their own
preferential decisions instead of actually building
them on the data), especially in highly dynamic
business environments that require more frequent
adaptations and are consequently also more prone to
corresponding errors (Günther et al., 2017;
Staegemann et al., 2020a).

All in all, when considering the quality assurance
of BD applications, there should be a synergy
between TDD and the use of microservices, giving
the approach proposed in (Staegemann et al., 2020b)
merit. Yet, right now there appear to be only
theoretical considerations, which are still to be
subjected to a feasibility check. Although this is
beyond the scope of a singular, exemplary project, the
publication at hand aims to provide initial insights
into the topic that can be built upon in the future.

Implementing Test Driven Development in the Big Data Domain: A Movie Recommendation System as an Exemplary Case

241

2.5 Docker

Docker is a platform used to build, deploy, and
manage containerized applications. Docker provides
an isolated environment for applications with the
operating system and dependencies required to run
that application, which makes it easier to deploy the
application in any environment (Cito et al., 2017).
Building separate containers for each microservice
will allow for the independent development and
scaling for any particular microservice. Usually, each
microservice contains predefined API paths, which
enable it to perform actions such as a status check of
other microservices or running unit tests. Most of the
data transfer and connection between microservices is
done using API endpoints. Therefore, any container
can be replaced by modifying the source code in that
particular container while keeping the API endpoints
the same.

3 THE EXEMPLARY TASK

To explore the practical application of TDD in the BD
domain, it is necessary to find a suitable and realistic
task whose findings can be generalized at least to
some extent. Therefore, for the publication at hand,
the development of a movie recommendation system
was chosen. Since the provisioning of
recommendations is a typical big data use case
(Bansal and Baliyan, 2019), this application can be
seen as a rather dynamic scenario (Staegemann et al.,
2020a), and the implementation of such a system can
be easily broken down into small parts, it seems
perfectly suitable for the expressed purpose. However,
it has to be emphasized, that the developed system is
not intended for productive use and the scientific
interest is the primary motivator. Therefore, the
application of the TDD methodology is also more
important than specific choices as for specific
programming languages or certain data sources.

To assure a certain degree of complexity, there are
several functionalities that shall be implemented. The
primary function is the visualization of information
regarding movie data for a time frame chosen by the
user, namely the best and worst movies by rating, the
number of movies produced and the movie
distribution by genre. Further, the user can have a
synopsis of a chosen movie displayed. The synopsis
is also used as input for a generator that provides the
user with a number of tags that characterize the movie.
Moreover, a recommender engine informs the user
which movies might be of interest for them.
Corresponding to the topic of the publication at hand,

the development was to be conducted in a test driven
manner, allowing for a continuous monitoring of the
application’s quality by applying CI. Since for TDD
in a BD setting the use of microservices appears to be
the most sensible choice (Staegemann et al., 2020b),
the design and the opportunities provided by the
system and its architecture are also influenced by the
decision for TDD.

While, through the visualizer, the different
capabilities are combined to provide the user with all
the relevant information, the tag predictor and the
recommendation engine shall also be able to be used
as independent applications. This highlights the
modularity of the microservice approach, allowing to
utilize individual functionalities as building blocks in
different contexts, adding a great degree of flexibility
for the developers.

4 THE IMPLEMENTATION

For building the microservices, Python and Javascript
were used, while the PostgresSQL database was
chosen for data storing. The frontend user interface
was designed with HTML and CSS. However, it was
kept rather simple since a productive use was not the
focus of the project. To containerize the application,
Docker was used. For testing, the Pytest framework
from Python’s libraries was used and the entire
project workflow is set up using Github Actions. As
indicated in the previous section, the application as a
whole is divided in three services that are each built
from several microservices. Those main services are
the Visualizer, the Movie Tags Predictor and the
Recommendation Service. Further, there is a
Dashboard service that allows to monitor the status
of all the other microservices. The overall
architecture is shown in Figure 1.

To obtain the data and assure data heterogeneity,
several sources were used, namely the Internet Movie
Database (IMDb - https://www.imdb.com/), Kaggle
(https://www.kaggle.com/) and MovieLens
(https://movielens.org/).

4.1 Visualizer

The visualizer is built from three microservices, Data
Collector, Database and Webpage. The Data
Collector gathers the data from the IMDb homepage
and then sends it to the database after cleaning the
data. Apart from the IMDb movie dataset, this service
also uses the MovieLens dataset containing ratings
given by users to the movie. In order to avoid
downloading data every time a user opens a webpage,

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

242

the Database service is used to store the cleaned
movie data that can be accessed by the Webpage
service when needed. The latter contains a web page
that users can interact with. Its landing page shows
four different charts. Data shown in the charts can be
modified based on different parameters given to the
charts. For example, in the "Highest rated movies
chart”, users can change year and number of movies
using a slider to display the top-rated movies
according to their settings. Apart from this, users can
also get more details about any particular movie
shown in the chart by clicking on the bar related to
that particular movie. Upon clicking, a new webpage
opens with additional details of that movie such as
synopsis, tags (from the tags predictor service), and
recommendations (from the movie recommender
service). In order to get the synopsis, the IMDb
website is scraped.

Upon starting the Visualizer service, it runs
integration tests. First of all, it checks whether all the
required microservices are online. If this test passes,
it checks the Database for a copy of older data. If old
data is found, the Webpage microservice opens the
port for users showing visualizations from old data
and sends an API request in the background to the
Data Collector microservice to download new data

and updates the visualizations as soon as the new data
is stored in the Database. If old data is not found in
the Database, it sends an API request to the Data
Collector and waits until the data is stored to the
Database before opening a port for users.

4.2 Movie Tags Predictor

Since the actual movie tag prediction is not the main
content of the project, but only a means for exploring
the application of TDD, the implementation is not a
new development and instead aligned with an already
preexisting endeavor (Panda 2020). The data used in
the Movie Tags Predictor service is obtained from the
Kaggle website. Kaggle is an online community with
a focus on data science and machine learning, where,
inter alia, relevant datasets can be downloaded. The
used dataset comprises approximately 14.000 movies
and different attributes explaining the movies. An
attribute containing the plot synopsis
(plot_synopsis) is the primary independent
attribute, and Tags is the dependent target variable.
The plot synopsis data is used for training a Naive
Bayes Classifier (Ting et al. 2011).

Figure 1: The implemented application's architecture.

Implementing Test Driven Development in the Big Data Domain: A Movie Recommendation System as an Exemplary Case

243

The idea behind this service is to collect the plot
synopsis of any movie and return hash tags that
summarize the overall theme of the movie. When
using the service not in the context of the
comprehensive application but as a standalone
solution, the user can input any text (in this case the
plot of any movie) into a text field and hit the submit
button to receive hash tags representing the movie,
which are subsequently displayed below the text field.

The movie tags predictor service is divided into
several other microservices such as Processor,
Predictor and Webpage. Those microservices
communicate with each other using REST APIs.
When the movie tags predictor service is started, all
three containers (processor, predictor, and web page)
go live. During this process, the Processor downloads
the labelled data (containing several movie variables
with ‘tags’ as a target variable) from Kaggle and then
performs some data preprocessing. Subsequently, the
Predictor gets the processed data from the Processor
using the API and builds a Machine Learning model
on this data.

The Webpage service contains UI files such as
HTML and CSS files but also the core Flask app logic.
The Preprocessor service is programmed to source the
labelled data from Kaggle and then perform text
processing techniques on this main input variable that
is plot_synopsis such as lemmatization, stop
word removal and stemming. Once the synopsis is
clean and ready, it is loaded into Postgres tables for
storage purposes. At the first instance when an
application is live, the Predictor service builds a
machine learning model (Naive Bayes) on top of the
processed data received from the Preprocessor and
saves the model. When it receives test data i.e., every
time a user inputs a new synopsis, it gets this data
from the Preprocessor and gives it as an input to the
model and outputs the generated prediction.

4.3 Recommendation Service

The movie recommender application suggests the
user the next movie to watch after being provided the
name of a movie they enjoyed as an input. While this
is a huge simplification when regarding a productive
use context, for the purpose of the conducted project
it is sufficient, since the quality of the algorithms isn’t
the focus. The movie Recommendation Service
consists of four microservices: Data Collector,
Database, Recommender, and Webpage. The Data
Collector downloads the data from MovieLens and
sends it to the database after performing basic data
cleaning tasks. The Database microservice uses
PostgresSQL and stores the data from the Data

Collector. For the Recommender microservice, the
purpose is to give recommendations based on the
input title of any movie the user liked. The
recommendations are provided using collaborative
filtering methods. The MovieLens dataset contains
information about movies and ratings given by each
user. With help of this information, a matrix is created,
and the recommendations are provided using the k
nearest neighbor method. Finally, the Webpage
microservice provides an interface for users to get the
recommendations for any movie. This microservice
takes all the movies stored in the Database into
account. Those are then used for auto-completion.
When the user presses the recommend button, it sends
an API request to the Recommender microservice and
returns all the received recommendations. The results
can be removed using the reset button.

4.4 Dashboard

The Dashboard is independent of all the other
services. Its webpage shows all the microservices
along with their status, whether they are online or
offline. Each microservices can also be manually
checked, using the check button. The dashboard is
also designed to automatically re-check the status of
every microservices after a specific time interval.
Currently it is set to 5 Minutes. Apart from this, every
24 hours, the microservice will also update the data in
the database by sending a request to the respective
microservice. All the Webpage microservices that can
be accessed by the user are hyperlinked and can be
accessed from the dashboard.

4.5 The Testing

In the given project, unit testing and integration
testing are applied, which corresponds to the basic
testing techniques in TDD (Kum and Law 2006).

4.5.1 Unit Testing

Each of the developed microservices contains testing
scripts to validate each container’s results before it is
executed. To illustrate, Figure 2 shows a simple test
function that tests the functionality of the function
decontracted(phrase). It converts each contraction of
an input phrase to its expanded, original form, thereby

Figure 2: Example of a unit test for text processing.

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

244

helping with text standardization. Accordingly,
test_decontracted() is a test function that validates
decontracted(phrase).

A non-exhaustive list of further tests used in the
course of the project comprises:

 checking whether the correct data is
downloaded from a provided link

 checking whether the link is up and running and
has no issues from the server on which it is
hosted

 checking whether the connection to the database
is established

 checking whether all the tables are created in the
database to store the downloaded data

 checking whether the correct data is present in
the tables created

4.5.2 Integration Testing

Integration tests are implemented in in all the
Webpage microservices. In each of the three main
services, the Webpage service will start after all the
other microservices related to that main service have
started. Therefore, it is important to have integration
tests for the Webpage microservice. They will check
if all the microservice required for the Webpage
microservice to work properly are running. Then,
using dummy data, the functionality is tested. If the
results from these tests match the expectations, then
the port for that main service is opened for the users.
For example, the Webpage microservice in the
Recommender service requires the Database,
Collector, and Recommender microservices to be up
and running. So first the Webpage microservice will
check the status for these microservices. If all of them
are running, then it will send a dummy movie name
and try to get movie recommendations as a response.
If such recommendations are received, the service is
ready for users and the port for users will be opened.

5 DISCUSSION

While the application itself was scaled down in terms
of aspects like usability and design, it is still adequate
for the publication at hand’s purpose since the
underlying architecture is of sufficient complexity.
Consequently, it can be considered to constitute a
representative use case and, therefore, allows to
answer the research questions.

As the preceding illustrations have shown, the
first part of RQ1 can be positively answered, since the
test driven methodology has proven to be feasible.
The second part of RQ1 as well as RQ2 are discussed

in the following. However, the corresponding
answers are not sharply separated from each other
since they oftentimes build upon each other.

The whole application has been developed in a
highly modularized form, using microservices, with
the corresponding tests being created before the
actual implementation. Through this modularity it is
also possible to scale and deploy the services
independently of each other, which allows to react on
volatile and imbalanced demands with a great degree
of flexibility.

In the given example, there were two types of
tests applied. Unit tests are used to assure that the
separate functions are properly working, which is the
pillar of a high-quality system. One of the findings
was that for this purpose multiple assert statements
should be avoided as they could lead to confusion
where the test failed. The unit tests are complemented
by integration tests to verify that the interplay
between related services is playing out as it is
expected. During the project, especially the latter
have proven to be extremely helpful, since they led to
the discovery of many errors that pertained to the
interplay between the distinct services. Therefore,
based on the project’s findings, integration testing
should not be neglected, and sufficient resources need
to be devoted to it. The actual implementations were
kept as simple as possible, making it easier to keep an
overview. Further, adhering to naming conventions,
using a consistent terminology for items with the
same functionality, and choosing informative names
have proven to be crucial for clarity. Additionally,
during the project, no function dependencies were
introduced between the tests, keeping each of them
standalone. One issue that arose was that sometimes,
small test cases may contain the actual code of the
functionality that needs to be implemented and it is
therefore somewhat being checked against itself. This,
however, defeats the purpose of the TDD approach.
For prospective researchers, exploring this topic
further might therefore be a promising avenue.

According to the TDD methodology, whenever
there were modifications in the development, all
relevant tests were re-run (regression testing) to
assure that no new errors were introduced. However,
those tests only pertained to the pure operability. This
means that it was only assured that everything
generally works, e.g., the recommendation service is
actually giving recommendations when being fed
with a movie title. Yet, it was not regarded how good
the quality of those movie recommendations actually
was. For the future, putting emphasis on the quality
assurance beyond the pure operability might be
another promising research area.

Implementing Test Driven Development in the Big Data Domain: A Movie Recommendation System as an Exemplary Case

245

6 CONCLUSION

Even though BD is applied in many areas of today’s
society, the testing of the corresponding systems is
still rather immature. Since their quality is, however,
one of the determining factors for the success of BDA,
this is a huge issue, which is consequently addressed
by numerous researchers, who explore new methods,
tools and techniques to facilitate the quality assurance
of BD systems. One rather recent proposition was the
application of the TDD methodology to the big data
domain. To assess its feasibility and gain practical
insights concerning its actual application, as an
exemplary case, a movie recommendation system
was implemented in a test driven manner. The
obtained insights and findings of this endeavour were
discussed and, besides showing the approach’s
feasibility, recommendations for its actual application
have been given. However, since this study is only
based on a single case, its validity still needs to be
strengthened by ancillary experiments. Additional
avenues for future research have been identified in the
investigation of the overlapping of test cases and
productive code as well as in the facilitation of a
stronger focus on the utilized algorithms’ contentual
quality instead of a pure operability perspective.

REFERENCES

Al-Mekhlal, M., and Ali Khwaja, A. (2019). “A Synthesis
of Big Data Definition and Characteristics,” in 2019
IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing
(EUC), New York, NY, USA. 01.08.2019 - 03.08.2019,
IEEE, pp. 314-322 (doi: 10.1109/CSE/EUC.2019.00
067).

Bahri, S., Zoghlami, N., Abed, M., and Tavares, J. M. R. S.
(2019). “BIG DATA for Healthcare: A Survey,” IEEE
Access (7), pp. 7397-7408 (doi:
10.1109/ACCESS.2018.2889180).

Bansal, S., and Baliyan, N. (2019). “A Study of Recent
Recommender System Techniques,” International
Journal of Knowledge and Systems Science (10:2), pp.
13-41 (doi: 10.4018/IJKSS.2019040102).

Beck, K. (2015). Test-Driven Development: By Example,
Boston: Addison-Wesley.

Bronson, K., and Knezevic, I. (2016). “Big Data in food and
agriculture,” Big Data & Society (3:1) (doi:
10.1177/2053951716648174).

Chang, W. L., and Grady, N. (2019). “NIST Big Data
Interoperability Framework: Volume 1, Definitions,”
Special Publication (NIST SP), Gaithersburg, MD:
National Institute of Standards and Technology.

Cito, J., Schermann, G., Wittern, J. E., Leitner, P., Zumberi,
S., and Gall, H. C. (2017). “An Empirical Analysis of
the Docker Container Ecosystem on GitHub,” in
Proceedings of the 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR),
Buenos Aires, Argentina. 20.05.2017 - 21.05.2017,
IEEE, pp. 323-333 (doi: 10.1109/MSR.2017.67).

Crispin, L. (2006). “Driving Software Quality: How Test-
Driven Development Impacts Software Quality,” IEEE
Software (23:6), pp. 70-71 (doi: 10.1109/MS.2006.157).

Davies, K., Keet, C. M., and Lawrynowicz, A. (2019).
“More Effective Ontology Authoring with Test-Driven
Development and the TDDonto2 Tool,” International
Journal on Artificial Intelligence Tools (28:7) (doi:
10.1142/S0218213019500234).

Davoudian, A., and Liu, M. (2020). “Big Data Systems: A
Software Engineering Perspective,” ACM Computing
Surveys (53:5), pp. 1-39 (doi: 10.1145/3408314).

Faitelson, D., Heinrich, R., and Tyszberowicz, S. (2018).
“Functional Decomposition for Software Architecture
Evolution,” in Model-Driven Engineering and Software
Development, L. F. Pires, S. Hammoudi and B. Selic
(eds.), Cham: Springer International Publishing, pp.
377-400 (doi: 10.1007/978-3-319-94764-8_16).

Freymann, A., Maier, F., Schaefer, K., and Böhnel, T.
(2020). “Tackling the Six Fundamental Challenges of
Big Data in Research Projects by Utilizing a Scalable
and Modular Architecture,” in Proceedings of the 5th
International Conference on Internet of Things, Big
Data and Security, Prague, Czech Republic. 07.05.2020
- 09.05.2020, SCITEPRESS - Science and Technology
Publications, pp. 249-256 (doi: 10.5220/0009388602
490256).

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juristo,
N. (2017). “A Dissection of the Test-Driven
Development Process: Does It Really Matter to Test-
First or to Test-Last?” IEEE Transactions on Software
Engineering (43:7), pp. 597-614 (doi:
10.1109/tse.2016.2616877).

Goes, F. R., Meerhoff, L. A., Bueno, M. J. O., Rodrigues,
D. M., Moura, F. A., Brink, M. S., Elferink-Gemser, M.
T., Knobbe, A. J., Cunha, S. A., Torres, R. S., and
Lemmink, K. A. P. M. (2020). “Unlocking the potential
of big data to support tactical performance analysis in
professional soccer: A systematic review,” European
journal of sport science, pp. 1-16 (doi:
10.1080/17461391.2020.1747552).

Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M.,
and Feldberg, F. (2017). “Debating big data: A
literature review on realizing value from big data,” The
Journal of Strategic Information Systems (26:3), pp.
191-209 (doi: 10.1016/j.jsis.2017.07.003).

Häusler, R., Staegemann, D., Volk, M., Bosse, S., Bekel, C.,
and Turowski, K. (2020). “Generating Content-
Compliant Training Data in Big Data Education,” in
Proceedings of the 12th CSEdu, Prague, Czech
Republic. 02.05.2020 - 04.05.2020, SCITEPRESS -
Science and Technology Publications, pp. 104-110
(doi: 10.5220/0009513801040110).

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

246

Hazen, B. T., Boone, C. A., Ezell, J. D., and Jones-Farmer,
L. A. (2014). “Data quality for data science, predictive
analytics, and big data in supply chain management: An
introduction to the problem and suggestions for
research and applications,” International Journal of
Production Economics (154), pp. 72-80 (doi:
10.1016/j.ijpe.2014.04.018).

Herschel, R., and Miori, V. M. (2017). “Ethics & Big Data,”
Technology in Society (49), pp. 31-36 (doi:
10.1016/j.techsoc.2017.03.003).

Janzen, D., and Saiedian, H. (2005). “Test-driven
development concepts, taxonomy, and future direction,”
Computer (38:9), pp. 43-50 (doi: 10.1109/MC.20
05.314).

Ji, S., Li, Q., Cao, W., Zhang, P., and Muccini, H. (2020).
“Quality Assurance Technologies of Big Data
Applications: A Systematic Literature Review,”
Applied Sciences (10:22), p. 8052 (doi:
10.3390/app10228052).

Karlesky, M., Williams, G., Bereza, W., and Fletcher, M.
(2007). “Mocking the Embedded World: Test-Driven
Development, Continuous Integration, and Design
Patterns,” in Embedded Systems Conference, San Jose,
California, USA. 01.04.2007 - 05.04.2007, UBM
Electronics.

Keet, C. M., and Ławrynowicz, A. (2016). “Test-Driven
Development of Ontologies,” in The Semantic Web.
Latest Advances and New Domains, H. Sack, E.
Blomqvist, M. d'Aquin, C. Ghidini, S. P. Ponzetto and
C. Lange (eds.), Cham: Springer International
Publishing, pp. 642-657 (doi: 10.1007/978-3-319-
34129-3_39).

Krylovskiy, A., Jahn, M., and Patti, E. (2015). “Designing
a Smart City Internet of Things Platform with
Microservice Architecture,” in 2015 3rd International
Conference on Future Internet of Things and Cloud
(FiCloud 2015), I. Awan (ed.), Rome, Italy. 24.08.2015
- 26.08.2015, Piscataway, NJ: IEEE, pp. 25-30 (doi:
10.1109/FiCloud.2015.55).

Kum, W., and Law, A. (2006). “Learning Effective Test
Driven Development - Software Development Projects
in an Energy Company,” in Proceedings of the First
International Conference on Software and Data
Technologies, Setúbal, Portugal. 11.09.2006 -
14.09.2006, SciTePress - Science and and Technology
Publications, pp. 159-164 (doi: 10.5220/000131610159
0164).

Lee, I. (2017). “Big data: Dimensions, evolution, impacts,
and challenges,” Business Horizons (60:3), pp. 293-303
(doi: 10.1016/j.bushor.2017.01.004).

Müller, O., Fay, M., and Vom Brocke, J. (2018). “The
Effect of Big Data and Analytics on Firm Performance:
An Econometric Analysis Considering Industry
Characteristics,” Journal of Management Information
Systems (35:2), pp. 488-509 (doi: 10.1080/074212
22.2018.1451955).

Musik, C., and Bogner, A. (2019). “Book title:
Digitalization & society: A sociology of technology
perspective on current trends in data, digital security
and the internet,” Österreichische Zeitschrift für

Soziologie (44:S1), pp. 1-14 (doi: 10.1007/s11614-019-
00344-5).

Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen,
M. (2016). Microservice architecture: Aligning
principles, practices, and culture, Beijing, Boston,
Farnham, Sebastopol, Tokyo: O´Reilly.

Nagorny, K., Lima-Monteiro, P., Barata, J., and Colombo,
A. W. (2017). “Big Data Analysis in Smart
Manufacturing: A Review,” International Journal of
Communications, Network and System Sciences (10:03),
pp. 31-58 (doi: 10.4236/ijcns.2017.103003).

Panda, S. K. (2020). “Movie Tags Prediction Using
Machine Learning Models.,” available at
https://medium.com/analytics-vidhya/movie-tag-s-pre
diction-using-machine-learningmodels-d5fde119db6d,
accessed on Jan 24 2022.

Sangwan, R. S., and Laplante, P. A. (2006). “Test-Driven
Development in Large Projects,” IT Professional (8:5),
pp. 25-29 (doi: 10.1109/MITP.2006.122).

Shahin, M., Ali Babar, M., and Zhu, L. (2017). “Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices,” IEEE Access (5), pp. 3909-3943 (doi:
10.1109/ACCESS.2017.2685629).

Shakir, A., Staegemann, D., Volk, M., Jamous, N., and
Turowski, K. (2021). “Towards a Concept for Building
a Big Data Architecture with Microservices,” in
Proceedings of the 24th International Conference on
Business Information Systems, Hannover,
Germany/virtual. 14.06.2021 - 17.06.2021, pp. 83-94
(doi: 10.52825/bis.v1i.67).

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M.,
and Erdogmus, H. (2010). “What Do We Know about
Test-Driven Development?” IEEE Software (27:6), pp.
16-19 (doi: 10.1109/MS.2010.152).

Slaats, T., Debois, S., and Hildebrandt, T. (2018). “Open to
Change: A Theory for Iterative Test-Driven Modelling,”
in Business Process Management, M. Weske, M.
Montali, I. Weber and J. Vom Brocke (eds.), Cham:
Springer International Publishing, pp. 31-47 (doi:
10.1007/978-3-319-98648-7_3).

Staegemann, D., Volk, M., Daase, C., and Turowski, K.
(2020a). “Discussing Relations Between Dynamic
Business Environments and Big Data Analytics,”
Complex Systems Informatics and Modeling Quarterly
(23), pp. 58-82 (doi: 10.7250/csimq.2020-23.05).

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2019). “Understanding Issues in Big Data Applications
- A Multidimensional Endeavor,” in Proceedings of the
Twenty-fifth Americas Conference on Information
Systems, Cancun, Mexico. 15.08.2019 - 17.08.2019.

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2020b). “Exploring the Applicability of Test Driven
Development in the Big Data Domain,” in Proceedings
of the ACIS 2020, Wellington, New Zealand.
01.12.2020 - 04.12.2020.

Staegemann, D., Volk, M., Lautenschlager, E., Pohl, M.,
Abdallah, M., and Turowski, K. (2021a). “Applying
Test Driven Development in the Big Data Domain –
Lessons From the Literature,” in 2021 International

Implementing Test Driven Development in the Big Data Domain: A Movie Recommendation System as an Exemplary Case

247

Conference on Information Technology (ICIT), Amman,
Jordan. 14.07.2021 - 15.07.2021, IEEE, pp. 511-516
(doi: 10.1109/ICIT52682.2021.9491728).

Staegemann, D., Volk, M., and Turowski, K. (2021b).
“Quality Assurance in Big Data Engineering - A
Metareview,” Complex Systems Informatics and
Modeling Quarterly (28), pp. 1-14 (doi:
10.7250/csimq.2021-28.01).

Ting, S. L., Ip, W. H., and Tsang, A. H. C. (2011). “Is Naïve
Bayes a Good Classifier for Document Classification?”
International Journal of Software Engineering and Its
Applications (5:3).

Volk, M., Staegemann, D., Bosse, S., Häusler, R., and
Turowski, K. (2020a). “Approaching the (Big) Data
Science Engineering Process,” in Proceedings of the
5th International Conference on Internet of Things, Big
Data and Security, Prague, Czech Republic. 07.05.2020
- 09.05.2020, SCITEPRESS - Science and Technology
Publications, pp. 428-435 (doi: 10.5220/000956980
4280435).

Volk, M., Staegemann, D., Pohl, M., and Turowski, K.
(2019). “Challenging Big Data Engineering:
Positioning of Current and Future Development,” in
Proceedings of the 4th International Conference on
Internet of Things, Big Data and Security, Heraklion,
Crete, Greece. 02.05.2019 - 04.05.2019, SCITEPRESS
- Science and Technology Publications, pp. 351-358
(doi: 10.5220/0007748803510358).

Volk, M., Staegemann, D., Trifonova, I., Bosse, S., and
Turowski, K. (2020b). “Identifying Similarities of Big
Data Projects–A Use Case Driven Approach,” IEEE
Access (8), pp. 186599-186619 (doi:
10.1109/ACCESS.2020.3028127).

Volk, M., Staegemann, D., and Turowski, K. (2020c). “Big
Data,” in Handbuch Digitale Wirtschaft, T. Kollmann
(ed.), Wiesbaden: Springer Fachmedien Wiesbaden, pp.
1-18 (doi: 10.1007/978-3-658-17345-6_71-1).

Williams, L., Maximilien, E. M., and Vouk, M. (2003).
“Test-driven development as a defect-reduction
practice,” in Proceedings of the 14th ISSRE, Denver,
Colorado, USA. 17.11.2003 - 20.11.2003, IEEE, pp.
34-45 (doi: 10.1109/ISSRE.2003.1251029).

Zhu, L., Yu, F. R., Wang, Y., Ning, B., and Tang, T. (2019).
“Big Data Analytics in Intelligent Transportation
Systems: A Survey,” IEEE Transactions on Intelligent
Transportation Systems (20:1), pp. 383-398 (doi:
10.1109/TITS.2018.2815678).

IoTBDS 2022 - 7th International Conference on Internet of Things, Big Data and Security

248

