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Abstract: As a consequence of the ongoing digitalization in today’s society, the amount of data that is being produced 
is rapidly increasing. Moreover, not only the volume of the data is growing, but there are also more complex 
types of data and, depending on the use case, it is also necessary to integrate heterogenous data into one 
analysis. Since traditional ways of dealing with data are oftentimes overstrained by those new challenges, 
novel approaches and technologies have been developed. In its entirety, this phenomenon is summarized 
under the term big data. However, quality assurance in the big data realm is still not mature and this even 
more applies to the actual testing. Therefore, it is necessary to explore new approaches. One rather recent 
proposition was the application of the test driven development methodology to the big data domain. To further 
evaluate its feasibility and go beyond a purely theoretical point of view, the publication at hand discusses the 
test driven implementation of a movie recommendation system as an exemplary case. In doing so, it facilitates 
the general understanding of the topic, helps in judging the approach’s feasibility and provides some practical 
insights concerning its actual application. 

1 INTRODUCTION 

As a consequence of the ongoing digitalization in 
today’s society (Musik and Bogner, 2019), the 
amount of data that is being produced is rapidly 
increasing (Herschel and Miori, 2017). Moreover, 
those data are not only produced, but oftentimes also 
captured, stored and/or analyzed. However, not only 
the volume of the data is increasing, but there are also 
more complex types of data (e.g. image, audio or 
video) and, depending on the use case, it is also 
necessary to integrate heterogenous data into one 
analysis (Volk et al., 2020b). Since traditional ways 
of dealing with data are oftentimes overstrained by 
those new challenges (Zhu et al., 2019), novel 
approaches and technologies have been developed, 
which are subsumed under the terms big data (BD), 
respectively big data analytics (BDA). 

When implemented and applied correctly, BDA 
promises noticeable benefits (Müller et al., 2018). Yet, 
its utilization is a highly complex endeavour that is 
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based on several dimensions (Staegemann et al., 
2019). 

On the one hand, the data utilized as input have to 
be of high quality to allow for good results (Hazen et 
al., 2014), while on the other hand, those who operate 
and steer the systems have to be qualified (Lee, 2017). 
Further, if BDA is supposed to support human 
decision making, those that are in charge also need to 
be willing to incorporate the findings instead of 
ignoring them or only using them when it is to support 
their own pre-determined opinion (Günther et al., 
2017). In addition, even if the aforementioned factors 
are sufficiently covered, the actual implementation of 
a BDA application is also a highly challenging task 
(Volk et al., 2019; Volk et al., 2020a). Subsequently, 
a very important part of that process is the testing of 
the developed solution. However, quality assurance 
in the big data realm is still not mature and this even 
more applies to the actual testing (Davoudian and Liu, 
2020; Ji et al., 2020). Therefore, it is necessary to 
explore new approaches (Staegemann et al., 2021b). 
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One rather recent proposition was the application of 
the test driven development methodology to the big 
data domain (Staegemann et al. 2020b). To further 
evaluate its feasibility and go beyond a purely 
theoretical point of view, the publication at hand is 
committed to answering the following research 
questions: 

 
RQ1: Is the test driven development methodology a 
feasible approach for implementing big data 
applications and how can it be applied? 
 
RQ2: What are the implications and findings of 
applying the test driven development methodology in 
a big data context? 

 
While only one single exemplary case is regarded and, 
therefore, a general statement cannot be deducted 
solely based on this contribution, it will facilitate the 
general understanding of the topic, help in judging the 
approach’s feasibility and provide some practical 
insights concerning its actual implementation. 

For this purpose, the remainder of this work is 
structured as follows. After this introduction, 
necessary background information concerning the 
concepts of big data and test driven development are 
given. Afterwards, the exemplary task is introduced 
and some of its challenges highlighted. Subsequently, 
in the fourth section, the actual implementation is 
described. This is followed by a discussion of the 
corresponding findings. Finally, a conclusion is 
provided and potential directions for future research 
are highlighted. 

2 BACKGROUND 

To provide a foundation that the ensuing parts of the 
publication at hand can build upon, in the following, 
the concepts of big data and test driven development 
are briefly discussed. 

2.1 Big Data 

With the amount of data being produced, captured 
and analysed rapidly increasing as well as its 
complexity and the demands for its processing 
growing, traditional applications that were previously 
used for its harnessing are oftentimes no longer 
sufficient (Chang and Grady 2019). Subsequently, 
new tools and techniques had to be developed, which 
are able to satisfy the challenges posed by this new 
trend that is referred to as big data. 

While there is no unified definition for the term 
(Al-Mekhlal and Ali Khwaja 2019; Volk et al. 2020c), 
the understanding in the majority of the pertinent 
literature is quite similar. The arguably most popular 
description (Chang and Grady 2019) is based on the 
4 Vs of big data, namely volume (number of data 
entries and size of data sets), velocity (speed of 
incoming data and speed requirements for the 
processing), variety (diversity of data in structure and 
content) and variability (changes in data over time). 

Since improved decision making can benefit 
organizations across various fields of activity, BDA 
is being applied to a plethora of domains, such as 
agriculture (Bronson and Knezevic 2016), education 
(Häusler et al. 2020), healthcare (Bahri et al. 2019), 
manufacturing (Nagorny et al. 2017) and sports (Goes 
et al. 2020) to name just a few. 

2.2 Microservices 

The microservice concept generally bases on 
decomposing an envisioned application into a number 
of smaller services that interact with each other 
(Nadareishvili et al. 2016). Usually, those are based 
on business functionality, which allows for a high 
degree of specialization. They all run in their own 
processes and the communication between those 
services is realized only over lightweight mechanisms. 
Furthermore, they can be heterogeneous regarding the 
programming languages and technology stacks used 
for their implementation (Freymann et al. 2020). 
Those properties allow for them to be deployed 
independently of each other by utilizing continuous 
deployment tools and pipelines. 

While componentization is generally considered a 
good software engineering practice, it is often seen as 
challenging to achieve a high degree of modularity 
(Faitelson et al. 2018). However, with microservices, 
this is achieved by design. This also translates to a 
reduced effort for maintenance and modifications, 
because for changes it is often sufficient to only 
redeploy the affected service. Consequently, an 
evolutionary design is promoted, which is driven by 
frequent and controlled changes (Krylovskiy et al. 
2015). 

2.3 Test Driven Development 

In the literature (Staegemann et al. 2021a), test driven 
development (TDD) is highlighted as a promising 
approach to improve an implementation’s quality. 
This is mainly achieved by influencing two aspects. 
Following this strategy, the test coverage is increased, 
which helps to find errors and, further, the system’s 
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design is changed, since emphasis is given to 
breaking it down into the smallest sensible pieces. 
This helps to avoid issues and mistakes that are 
caused by high complexity and increases 
maintainability (Crispin, 2006; Shull et al., 2010). 
Besides software development, applications of TDD 
can also be found in other domains such as ontology 
development (Davies et al., 2019; Keet and 
Ławrynowicz, 2016) and process modelling (Slaats et 
al., 2018). Yet, in the context of the publication at 
hand, those are not as relevant. 

Usually, in software development, after a desired 
feature has been determined, it is implemented and 
then tested. When applying TDD, instead, the order 
of those activities is changed. Therefore, after it is 
decided which change is to be realized, it is broken 
down into the smallest reasonable parts (Fucci et al., 
2017). Subsequently, one or more tests are written for 
those, to assure that they are working as intended. 
Then, those tests are run with the expectation of them 
failing, since the new functionality still needs to be 
implemented (Beck, 2015). Consequently, if the test 
succeeds nevertheless, this means that it is not 
sufficiently designed and needs to be reworked. After 
the test failed, the actual productive code is created to 
implement the desired functionality. However, there 
is no need for it to already be perfectly and elegantly 
designed, since the goal is to provide the simplest 
solution that passes the previously written tests 
(Crispin, 2006). Only after this is achieved, the code’s 
refactoring ensues to improve factors like the 
readability or its compliance with best practices and 
standards (Beck, 2015). At the same time, the tests are 
constantly executed to assure the functionality is not 
negatively affected by the refactoring. 

As stated previously, due to the emphasis on small 
tasks and incremental modifications (Williams et al., 
2003), instead of comprehensive implementations, 
following TDD has not only implications on the test 
coverage, but also the software’s design. Furthermore, 
the short test cycles (Janzen and Saiedian, 2005) 
resulting from the frequent succession of testing and 
productive coding gives the developer more timely 
feedback. Unit tests make up the majority of tests in 
TDD, however, also other types of tests, such as 
acceptance, integration or system tests can be utilized 
(Sangwan and Laplante, 2006). 

To facilitate the intended frequent execution of 
tests without requiring too much of the developer’s 
valuable time and attention, as it would be the case 
with manual performance, TDD is often used together 
with test automation in a continuous integration (CI) 
pipeline (Karlesky et al., 2007; Shahin et al., 2017). 
Whenever a new commit happens, a CI server runs all 

applicable tests, therefore assuring that the change did 
not induce new errors into the already existing code. 

2.4 Test Driven Development in Big 
Data 

As indicated in the introduction, the application of 
TDD to the BD domain is a promising approach to 
assure the quality when developing BD applications, 
with the use of microservices being proposed as the 
technical foundation (Staegemann et al., 2020b). This 
appears sensible, since TDD is, inter alia, based on 
breaking down the desired application into the 
smallest reasonable parts. Therefore, a rather 
monolithic approach would be against the philosophy. 
Microservices, however, facilitate such a modular 
design (Shakir et al., 2021). Harnessing microservices 
allows to create a separate service for each business 
functionality, which, in turn, now only allows for 
independent scaling, but also enables the developers 
to distribute the implementation across teams and 
always use the most effective technology stack for 
each situation, instead of using a homogeneous 
toolset.  

Especially in highly demanding settings, such as 
in the BD domain, this can be a substantial advantage. 
Further, by applying TDD, it is rather easy to make 
changes to the application, e.g., by swapping, 
modifying, or adding components. Since there are 
pre-existing tests for all the functions, it is possible to 
directly check if the change caused any issues to the 
system or if it is still working as intended. This 
increases flexibility and quality, but also trust, which 
is important to avoid incorrect use of the BDA 
solution (e.g. only using it to try to justify their own 
preferential decisions instead of actually building 
them on the data), especially in highly dynamic 
business environments that require more frequent 
adaptations and are consequently also more prone to 
corresponding errors (Günther et al., 2017; 
Staegemann et al., 2020a).  

All in all, when considering the quality assurance 
of BD applications, there should be a synergy 
between TDD and the use of microservices, giving 
the approach proposed in (Staegemann et al., 2020b) 
merit. Yet, right now there appear to be only 
theoretical considerations, which are still to be 
subjected to a feasibility check. Although this is 
beyond the scope of a singular, exemplary project, the 
publication at hand aims to provide initial insights 
into the topic that can be built upon in the future. 
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2.5 Docker 

Docker is a platform used to build, deploy, and 
manage containerized applications. Docker provides 
an isolated environment for applications with the 
operating system and dependencies required to run 
that application, which makes it easier to deploy the 
application in any environment (Cito et al., 2017). 
Building separate containers for each microservice 
will allow for the independent development and 
scaling for any particular microservice. Usually, each 
microservice contains predefined API paths, which 
enable it to perform actions such as a status check of 
other microservices or running unit tests. Most of the 
data transfer and connection between microservices is 
done using API endpoints. Therefore, any container 
can be replaced by modifying the source code in that 
particular container while keeping the API endpoints 
the same. 

3 THE EXEMPLARY TASK 

To explore the practical application of TDD in the BD 
domain, it is necessary to find a suitable and realistic 
task whose findings can be generalized at least to 
some extent. Therefore, for the publication at hand, 
the development of a movie recommendation system 
was chosen. Since the provisioning of 
recommendations is a typical big data use case 
(Bansal and Baliyan, 2019), this application can be 
seen as a rather dynamic scenario (Staegemann et al., 
2020a), and the implementation of such a system can 
be easily broken down into small parts, it seems 
perfectly suitable for the expressed purpose. However, 
it has to be emphasized, that the developed system is 
not intended for productive use and the scientific 
interest is the primary motivator. Therefore, the 
application of the TDD methodology is also more 
important than specific choices as for specific 
programming languages or certain data sources. 

To assure a certain degree of complexity, there are 
several functionalities that shall be implemented. The 
primary function is the visualization of information 
regarding movie data for a time frame chosen by the 
user, namely the best and worst movies by rating, the 
number of movies produced and the movie 
distribution by genre. Further, the user can have a 
synopsis of a chosen movie displayed. The synopsis 
is also used as input for a generator that provides the 
user with a number of tags that characterize the movie. 
Moreover, a recommender engine informs the user 
which movies might be of interest for them. 
Corresponding to the topic of the publication at hand, 

the development was to be conducted in a test driven 
manner, allowing for a continuous monitoring of the 
application’s quality by applying CI. Since for TDD 
in a BD setting the use of microservices appears to be 
the most sensible choice (Staegemann et al., 2020b), 
the design and the opportunities provided by the 
system and its architecture are also influenced by the 
decision for TDD. 

While, through the visualizer, the different 
capabilities are combined to provide the user with all 
the relevant information, the tag predictor and the 
recommendation engine shall also be able to be used 
as independent applications. This highlights the 
modularity of the microservice approach, allowing to 
utilize individual functionalities as building blocks in 
different contexts, adding a great degree of flexibility 
for the developers. 

4 THE IMPLEMENTATION 

For building the microservices, Python and Javascript 
were used, while the PostgresSQL database was 
chosen for data storing. The frontend user interface 
was designed with HTML and CSS. However, it was 
kept rather simple since a productive use was not the 
focus of the project. To containerize the application, 
Docker was used. For testing, the Pytest framework 
from Python’s libraries was used and the entire 
project workflow is set up using Github Actions. As 
indicated in the previous section, the application as a 
whole is divided in three services that are each built 
from several microservices. Those main services are 
the Visualizer, the Movie Tags Predictor and the 
Recommendation Service. Further, there is a 
Dashboard service that allows to monitor the status 
of all the other microservices. The overall 
architecture is shown in Figure 1. 

To obtain the data and assure data heterogeneity, 
several sources were used, namely the Internet Movie 
Database (IMDb - https://www.imdb.com/), Kaggle 
(https://www.kaggle.com/) and MovieLens 
(https://movielens.org/).  

4.1 Visualizer 

The visualizer is built from three microservices, Data 
Collector, Database and Webpage. The Data 
Collector gathers the data from the IMDb homepage 
and then sends it to the database after cleaning the 
data. Apart from the IMDb movie dataset, this service 
also uses the MovieLens dataset containing ratings 
given by users to the movie. In order to avoid 
downloading data every time a user opens a webpage, 
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the Database service is used to store the cleaned 
movie data that can be accessed by the Webpage 
service when needed. The latter contains a web page 
that users can interact with. Its landing page shows 
four different charts. Data shown in the charts can be 
modified based on different parameters given to the 
charts. For example, in the "Highest rated movies 
chart”, users can change year and number of movies 
using a slider to display the top-rated movies 
according to their settings. Apart from this, users can 
also get more details about any particular movie 
shown in the chart by clicking on the bar related to 
that particular movie. Upon clicking, a new webpage 
opens with additional details of that movie such as 
synopsis, tags (from the tags predictor service), and 
recommendations (from the movie recommender 
service). In order to get the synopsis, the IMDb 
website is scraped. 

Upon starting the Visualizer service, it runs 
integration tests. First of all, it checks whether all the 
required microservices are online. If this test passes, 
it checks the Database for a copy of older data. If old 
data is found, the Webpage microservice opens the 
port for users showing visualizations from old data 
and sends an API request in the background to the 
Data Collector microservice to download new data 

and updates the visualizations as soon as the new data 
is stored in the Database. If old data is not found in 
the Database, it sends an API request to the Data 
Collector and waits until the data is stored to the 
Database before opening a port for users. 

4.2 Movie Tags Predictor 

Since the actual movie tag prediction is not the main 
content of the project, but only a means for exploring 
the application of TDD, the implementation is not a 
new development and instead aligned with an already 
preexisting endeavor (Panda 2020). The data used in 
the Movie Tags Predictor service is obtained from the 
Kaggle website. Kaggle is an online community with 
a focus on data science and machine learning, where, 
inter alia, relevant datasets can be downloaded. The 
used dataset comprises approximately 14.000 movies 
and different attributes explaining the movies. An 
attribute containing the plot synopsis 
(plot_synopsis) is the primary independent 
attribute, and Tags is the dependent target variable. 
The plot synopsis data is used for training a Naive 
Bayes Classifier (Ting et al. 2011). 

 

Figure 1: The implemented application's architecture. 
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The idea behind this service is to collect the plot 
synopsis of any movie and return hash tags that 
summarize the overall theme of the movie. When 
using the service not in the context of the 
comprehensive application but as a standalone 
solution, the user can input any text (in this case the 
plot of any movie) into a text field and hit the submit 
button to receive hash tags representing the movie, 
which are subsequently displayed below the text field. 

The movie tags predictor service is divided into 
several other microservices such as Processor, 
Predictor and Webpage. Those microservices 
communicate with each other using REST APIs. 
When the movie tags predictor service is started, all 
three containers (processor, predictor, and web page) 
go live. During this process, the Processor downloads 
the labelled data (containing several movie variables 
with ‘tags’ as a target variable) from Kaggle and then 
performs some data preprocessing. Subsequently, the 
Predictor gets the processed data from the Processor 
using the API and builds a Machine Learning model 
on this data. 

The Webpage service contains UI files such as 
HTML and CSS files but also the core Flask app logic. 
The Preprocessor service is programmed to source the 
labelled data from Kaggle and then perform text 
processing techniques on this main input variable that 
is plot_synopsis such as lemmatization, stop 
word removal and stemming. Once the synopsis is 
clean and ready, it is loaded into Postgres tables for 
storage purposes. At the first instance when an 
application is live, the Predictor service builds a 
machine learning model (Naive Bayes) on top of the 
processed data received from the Preprocessor and 
saves the model. When it receives test data i.e., every 
time a user inputs a new synopsis, it gets this data 
from the Preprocessor and gives it as an input to the 
model and outputs the generated prediction. 

4.3 Recommendation Service 

The movie recommender application suggests the 
user the next movie to watch after being provided the 
name of a movie they enjoyed as an input. While this 
is a huge simplification when regarding a productive 
use context, for the purpose of the conducted project 
it is sufficient, since the quality of the algorithms isn’t 
the focus. The movie Recommendation Service 
consists of four microservices: Data Collector, 
Database, Recommender, and Webpage. The Data 
Collector downloads the data from MovieLens and 
sends it to the database after performing basic data 
cleaning tasks. The Database microservice uses 
PostgresSQL and stores the data from the Data 

Collector. For the Recommender microservice, the 
purpose is to give recommendations based on the 
input title of any movie the user liked. The 
recommendations are provided using collaborative 
filtering methods. The MovieLens dataset contains 
information about movies and ratings given by each 
user. With help of this information, a matrix is created, 
and the recommendations are provided using the k 
nearest neighbor method. Finally, the Webpage 
microservice provides an interface for users to get the 
recommendations for any movie. This microservice 
takes all the movies stored in the Database into 
account. Those are then used for auto-completion. 
When the user presses the recommend button, it sends 
an API request to the Recommender microservice and 
returns all the received recommendations. The results 
can be removed using the reset button. 

4.4 Dashboard 

The Dashboard is independent of all the other 
services. Its webpage shows all the microservices 
along with their status, whether they are online or 
offline. Each microservices can also be manually 
checked, using the check button. The dashboard is 
also designed to automatically re-check the status of 
every microservices after a specific time interval. 
Currently it is set to 5 Minutes. Apart from this, every 
24 hours, the microservice will also update the data in 
the database by sending a request to the respective 
microservice. All the Webpage microservices that can 
be accessed by the user are hyperlinked and can be 
accessed from the dashboard. 

4.5 The Testing 

In the given project, unit testing and integration 
testing are applied, which corresponds to the basic 
testing techniques in TDD (Kum and Law 2006). 

4.5.1 Unit Testing 

Each of the developed microservices contains testing 
scripts to validate each container’s results before it is 
executed. To illustrate, Figure 2 shows a simple test 
function that tests the functionality of the function 
decontracted(phrase). It converts each contraction of 
an input phrase to its expanded, original form, thereby 
 

 

Figure 2: Example of a unit test for text processing. 
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helping with text standardization. Accordingly, 
test_decontracted() is a test function that validates 
decontracted(phrase).  

A non-exhaustive list of further tests used in the 
course of the project comprises:  

 checking whether the correct data is 
downloaded from a provided link 

 checking whether the link is up and running and 
has no issues from the server on which it is 
hosted 

 checking whether the connection to the database 
is established 

 checking whether all the tables are created in the 
database to store the downloaded data 

 checking whether the correct data is present in 
the tables created 

4.5.2 Integration Testing 

Integration tests are implemented in in all the 
Webpage microservices. In each of the three main 
services, the Webpage service will start after all the 
other microservices related to that main service have 
started. Therefore, it is important to have integration 
tests for the Webpage microservice. They will check 
if all the microservice required for the Webpage 
microservice to work properly are running. Then, 
using dummy data, the functionality is tested. If the 
results from these tests match the expectations, then 
the port for that main service is opened for the users. 
For example, the Webpage microservice in the 
Recommender service requires the Database, 
Collector, and Recommender microservices to be up 
and running. So first the Webpage microservice will 
check the status for these microservices. If all of them 
are running, then it will send a dummy movie name 
and try to get movie recommendations as a response. 
If such recommendations are received, the service is 
ready for users and the port for users will be opened. 

5 DISCUSSION 

While the application itself was scaled down in terms 
of aspects like usability and design, it is still adequate 
for the publication at hand’s purpose since the 
underlying architecture is of sufficient complexity. 
Consequently, it can be considered to constitute a 
representative use case and, therefore, allows to 
answer the research questions. 

As the preceding illustrations have shown, the 
first part of RQ1 can be positively answered, since the 
test driven methodology has proven to be feasible. 
The second part of RQ1 as well as RQ2 are discussed 

in the following. However, the corresponding 
answers are not sharply separated from each other 
since they oftentimes build upon each other.  

The whole application has been developed in a 
highly modularized form, using microservices, with 
the corresponding tests being created before the 
actual implementation. Through this modularity it is 
also possible to scale and deploy the services 
independently of each other, which allows to react on 
volatile and imbalanced demands with a great degree 
of flexibility.  

In the given example, there were two types of 
tests applied. Unit tests are used to assure that the 
separate functions are properly working, which is the 
pillar of a high-quality system. One of the findings 
was that for this purpose multiple assert statements 
should be avoided as they could lead to confusion 
where the test failed. The unit tests are complemented 
by integration tests to verify that the interplay 
between related services is playing out as it is 
expected. During the project, especially the latter 
have proven to be extremely helpful, since they led to 
the discovery of many errors that pertained to the 
interplay between the distinct services. Therefore, 
based on the project’s findings, integration testing 
should not be neglected, and sufficient resources need 
to be devoted to it. The actual implementations were 
kept as simple as possible, making it easier to keep an 
overview. Further, adhering to naming conventions, 
using a consistent terminology for items with the 
same functionality, and choosing informative names 
have proven to be crucial for clarity. Additionally, 
during the project, no function dependencies were 
introduced between the tests, keeping each of them 
standalone. One issue that arose was that sometimes, 
small test cases may contain the actual code of the 
functionality that needs to be implemented and it is 
therefore somewhat being checked against itself. This, 
however, defeats the purpose of the TDD approach. 
For prospective researchers, exploring this topic 
further might therefore be a promising avenue. 

According to the TDD methodology, whenever 
there were modifications in the development, all 
relevant tests were re-run (regression testing) to 
assure that no new errors were introduced. However, 
those tests only pertained to the pure operability. This 
means that it was only assured that everything 
generally works, e.g., the recommendation service is 
actually giving recommendations when being fed 
with a movie title. Yet, it was not regarded how good 
the quality of those movie recommendations actually 
was. For the future, putting emphasis on the quality 
assurance beyond the pure operability might be 
another promising research area. 
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6 CONCLUSION 

Even though BD is applied in many areas of today’s 
society, the testing of the corresponding systems is 
still rather immature. Since their quality is, however, 
one of the determining factors for the success of BDA, 
this is a huge issue, which is consequently addressed 
by numerous researchers, who explore new methods, 
tools and techniques to facilitate the quality assurance 
of BD systems.  One rather recent proposition was the 
application of the TDD methodology to the big data 
domain. To assess its feasibility and gain practical 
insights concerning its actual application, as an 
exemplary case, a movie recommendation system 
was implemented in a test driven manner. The 
obtained insights and findings of this endeavour were 
discussed and, besides showing the approach’s 
feasibility, recommendations for its actual application 
have been given. However, since this study is only 
based on a single case, its validity still needs to be 
strengthened by ancillary experiments. Additional 
avenues for future research have been identified in the 
investigation of the overlapping of test cases and 
productive code as well as in the facilitation of a 
stronger focus on the utilized algorithms’ contentual 
quality instead of a pure operability perspective. 
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