
Towards the Art of Writing Agile Requirements with User Stories,
Acceptance Criteria, and Related Constructs

António M. S. Ferreira1, Alberto Rodrigues da Silva1 and Ana C. R. Paiva2
1INESC-ID - Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

2INESC TEC, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

Keywords: Agile Specification of Requirements, User Stories, Epics, Acceptance Criteria, Writing Guidelines.

Abstract: Nowadays, more organizations adopt agile methodologies to guarantee short and frequent delivery times. A
plethora of novel approaches and concepts regarding requirements engineering in this context are emerging.
User stories are usually informally described as general explanations of software features, written from
end-users perspective, while acceptance criteria are high-level conditions that enable their verification. This
paper focuses on the art of writing user stories and acceptance criteria, but also on their relationships with
other related concepts, such as quality requirements. In the pursuance of deriving guidelines and linguistic
patterns to facilitate the writing of requirements specifications, a systematic literature review was conducted
to provide a cohesive and comprehensive analysis of such concepts. Despite considerable research on the
subject, no formalized model and systematic approach to assist this writing. We provide a coherent analysis
of these concepts and related linguistic patterns supported by a running example of specifications built on top
of ITLingo RSL, a publicly available tool to enforce the rigorous writing of specification artefacts. We
consider that adopting and using the guidelines and patterns from the present discussion contribute to writing
better and more consistent requirements.

1 INTRODUCTION

Agile methodologies have gained an increasing
adoption across multiple organizations to address the
rapidly changing nature of the markets in which they
operate. The time constraints in these competitive
contexts are such that software development teams
often initiate the development before the conclusion
of requirements analysis and design phases, resulting
in requirements that tend to evolve across different
project iteration cycles (Cao and Ramesh, 2008).
Nevertheless, the crucial importance of having
mature requirements to deliver the expected results
successfully is well-identified (Shah and Jinwala,
2015). The achievement of the customer's needs
depends on the common understanding of such
requirements by all parties involved.

In agile contexts, user stories have emerged as an
uncluttered artefact for expressing requirements
while supporting this ever-changing nature, and their
adoption has been widely accepted (Lucassen,
Dalpiaz, Van der Werf and Brinkkemper, 2016).
They are usually informally described as general
textual explanations of software features, enforcing

the end-user perspective (Lucassen, Dalpiaz, Van der
Werf, and Brinkkemper, 2016). User stories are also
usually strengthened through the specification of
complementary artefacts, such as acceptance criteria
and quality requirements, which provide further
detail. While such adoption is widespread, the
practices and patterns to improve and assess their
written quality are limited and not generalized.
Existing approaches resort to generic guidance (Heck
and Zaidman, 2014) and mnemonic heuristics such as
INVEST (Abdou, Kamthan & Pankaj, 2014).

This paper reviews notions and patterns
commonly used in the agile requirements
specification. It also proposes and discusses writing
guidelines based on a running example. This example
is specified with the ITLingo RSL Excel template, an
easy-to-use tool that allows the specification of
various requirements constructs and enforces their
consistency.

This paper is structured in 7 sections. Section 2
introduces the relevant concepts and definitions under
study: user stories, acceptance criteria, and quality
requirements. Section 3 presents the state of the art of
the mentioned concepts and discusses their

Ferreira, A., Rodrigues da Silva, A. and Paiva, A.
Towards the Art of Writing Agile Requirements with User Stories, Acceptance Criteria, and Related Constructs.
DOI: 10.5220/0011082000003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 477-484
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

477

interdependent relationships. Section 4 enlists the
proposed guidelines. Section 5 introduces the
BillingSystem example and the ITlingo RSL-Excel
template, enabling and supporting the discussion of
the proposed guidelines in Section 6. Finally, Section
7 (Conclusion) summarizes the achievements and
identifies the future work on the topic.

2 BACKGROUND

The agile specification of system requirements
involves some key concepts and relationships, as
shown in Figure 1: user stories, epics, themes,
acceptance criteria, themes, and quality requirements.

Figure 1: Conceptual model of agile requirements and
related concepts (as discussed in this paper).

User Stories. Beck, Lucassen, and Brinkkemper
(2017) introduced in 1999, for the first time, the term
"user stories" as a short-loose description of a
customer's needs. Agile methodologies practitioners
handily adopted user stories as the basis for building
features (Lucassen, Dalpiaz and Van der Wef, 2016)
and for starting conversations between different
stakeholders to mitigate incomplete requirements or
communication flaws. Several proposals to redefine
and further extend the concept of user stories have
been attempted: Mike Cohn (Cohn, 2004) proposed
them as a description of the required functionality for
a system with value to and from the perspective of
end-users or other stakeholders. It attempts to catch
on paper the fundamental elements of a requirement:
who is it for, what functionality is it to be developed,

1 https://martinfowler.com/bliki/GivenWhenThen.html

and why is it essential (Lucassen, Dalpiaz, Van der
Werf and Brinkkemper, 2015). User stories have
since evolved to resemble and follow standardized
linguistic patterns or templates, such as the popular
and widely adopted Connextra template: "As an
<actor>, I want <goal> so that <reason>" (Dalpiaz
and Brinkkemper, 2018). This enforces only the
essential details to be considered. Other
recommendations to assess and enhance the quality of
user stories have been proposed and discussed, e.g.,
the INVEST and QUS (Lucassen, Dalpiaz, Van der
Werf and Brinkkemper, 2015) frameworks.

Epics. User stories should be kept simple and
straightforward to guarantee their deliverance within
a single iteration of an agile sprint. So, an epic
appears, by definition, as a larger user story,
aggregating smaller ones. Epics represent larger or
vague features and commonly follow the same
patterns as user stories but are written in a more
general or abstract way. They assist in guaranteeing
that each user story is independently implementable
and estimable (Pandit and Tahiliani, 2015).

Acceptance Criteria. The specification of user
stories is usually attached to acceptance criteria
constructs. Acceptance criteria are conditions of
satisfaction that complement user stories by defining
boundaries that validate their complete specification
and implementation. They may encompass functional
behaviour, business rules, and quality aspects to be
tested. Martin Fowler proposed the popular Given-
When-Then1 template as: “Given that <aCondition>
when <anAction> then <aDesiredConsequence>”.
The purpose is to understand user stories better while
also enabling acceptance tests generation for the code
to be verified and validated at each sprint iteration.1

Themes. User stories and epics that share a standard
classifier or characteristic can be grouped around a
common theme by associating a label. Themes are
tags that usually represent general categories within a
system (e.g., "User Authentication" for user account
management responsibilities) and help classify user
stories under a given criterion.

Quality Requirements. Quality requirements
represent cross-cutting concerns that a given
component or system should be satisfied. In general,
they establish multiple relationships among
themselves and other requirements. A concrete
quantitative expression ideally defines quality

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

478

requirements. E.g., a quality requirement for ensuring
the complexity of a given password through multiple
rules could be specified in a regex expression to avoid
the potential ambiguity of rules written in a natural
language.

3 RELATED WORK

Specifications of system requirements use different
types of requirements, which have a variety of
dependencies among them and related elements
(Verelst et al., 2013). For instance, the ITLingo RSL
language supports goals, constraints, user stories, use
cases, functional and quality requirements (Silva,
2019).

In the scope of agile approaches, user stories and
related concepts are the most popular constructs used
to write requirements. Product owners commonly
write user stories in natural languages due to their
ease of use. But requirements defined in natural
languages are ambiguous, inconsistent and
incomplete, as extensively discussed in the literature
(Pohl, 2010; Silva, 2014; INCOSE, 2019).

The Connextra template helps writing user stories,
but it does not enforce any reasoning on the semantics
quality of the writing. For that reason, some
frameworks have emerged to assess the quality of
user stories, such as INVEST or QUS.

INVEST framework stands for Independent (self-
contained), Negotiable (not an explicit contract),
Valuable (that creates value for end-users), Estimable
(its size can be predicted), Small (to fit in a time-box
iteration), and Testable (ability to have attached
acceptance criteria). INVEST has been widely
adopted by the industry (Abdou, Kamthan and
Pankaj, 2014). It facilitates the management of the
product backlog by promoting the breakdown of large
user stories and conveniently fits agile mindsets.
However, INVEST does not concern the writing
quality of user stories' attributes, like their consistent
writing.

QUS (Quality User Story) framework (Lucassen
et al., 2015) includes 14 criteria regarding syntactic,
semantic, and pragmatic qualities as a comprehensive
quality assessment enabler. Syntactically, user stories
should be atomic (one requirement for one feature),
minimal (solely contain a role, a goal, and an optional
reason), and well-formed. Semantically, one should
verify for conflict-free (inconsistency between user
stories), conceptually sound (the feature and its goal
must be both ambiguously expressed), problem-
oriented (represents a problem and not a solution),
and, finally, unambiguous (avoids terms or

abstractions breeding different interpretations).
Pragmatically, user stories should be complete (a
given set of user stories creates a feature-complete
application), independent, scalable, uniform (all
following the same pattern), and unique. While
comprehensive, this framework may appear too
abstract, especially compared with INVEST one.

Acceptance criteria appeared as an extension to
user stories, complementing them with the objectives
within a given story. They concern functional
behaviour, quality characteristics and business logic.
The most popular linguistic pattern written in natural
languages, both by the industry and the academy, is
the "Given-When-Then" (GWT) pattern. This pattern
structures the criteria into a test with three sections:
(i) Given, which describes the pre-conditions, (ii)
When, to specify the behaviour to be implemented,
and (iii) Then, describing the changes/results (post-
conditions) expected to be verified. Respecting this
structure, all the stakeholders are accurately aware of
what conditions must be met to finish the user story.
The complete GWT sentence should be kept simple
and small. If needed, it is recommendable to break
down large acceptance criteria into multiple smaller
ones, resulting in an assembled step sequence.
Writing acceptance criteria is much easier when the
user story is independent. Moreover, acceptance
criteria are the fundamental building blocks for
creating test cases.

Regarding the writing of use cases, Silva (2021)
proposes several guidelines for adopting controlled
natural languages (CNL) that help reduce ambiguity
without compromising their inherent expressiveness.
CNLs promote the shared understanding between all
parts in a rigorous human-readable fashion. They can
be regarded as subsets of natural languages, with
restricted grammars (syntax) and narrowed set of
terms (semantics). Although the original proposals
are based upon multiple constructs – like business-
level elements (Silva, 2017), data entities (Silva and
Savic, 2021), or use cases and scenarios (Silva, 2021)
– the rationale behind the proposed guidelines
maintains its relevance when specifying requirements
in agile contexts. Therefore, they will serve as a basis
for the guidelines presented in this paper, which aim
to enforce further the quality properties referred by
QUS and INVEST frameworks.

4 WRITING GUIDELINES

This section summarizes guidelines for writing user
stories, quality requirements, and acceptance criteria.
These guidelines gather the hints and information that

Towards the Art of Writing Agile Requirements with User Stories, Acceptance Criteria, and Related Constructs

479

we analyzed in the related work and are also inspired
by Silva's guidelines for writing use cases and
scenarios (2021). These guidelines enforce both
writing styles and semantic concerns.

4.1 User Stories

G.US.1. Use popular linguistic patterns to guide the
writing of user stories (e.g., use the Connextra
template). Linguistic patterns are the basis for writing
coherent and rigorous user stories.
G.US.2. Identify user stories by a unique Id to allow
unambiguous referencing.
G.US.3. Define a short but suggestive name to the
user story. Choose simple but effective nouns, e.g., as
Silva (2021) discussed.
G.US.4. If relevant, classify a user story by one or
more themes. This classification makes sense to
provide greater context and facilitate navigation in
system specifications with many requirements. It may
also link the functionalities to organizational aspects
of the company.
G.US.5. Distinguish user stories from epics by
adopting a prefix that recognizes their type, e.g.,
"us_" for user stories and "ep_" or "epic_" for epics.
G.US.6. When defining the user story's actor, avoid
using job titles and adopt user roles instead. Notice
that some functionalities described as user stories
may involve other stakeholders (e.g., System
Administrator, System Architect, Customer), not
necessarily user roles.
G.US.7. Use a consistent and straightforward
syntactical structure for writing user stories. Attempt
to stick to the domain terms; for instance, use the
"verb-noun" structure, with a predefined set of strong
verbs and strong nouns to maintain the phrases
unambiguous and straightforward. Use strong
specific verbs (e.g., Create, Update) and specific
nouns (e.g., Invoice, User, Password) to avoid
ambiguity.
G.US.8. Define the successful path for each user
story. This most common path allows focusing on the
reasoning of the functionality to implement. If
relevant, describe alternatives or exception situations
only then.
G.US.9. Review the writing quality of the user stories
by following a well-defined quality framework, such
as the INVEST or QUS frameworks.
G.US.10. Define libraries of reusable user stories,
e.g., for cross-cutting aspects such as authentication,
authorization, logging, and auditing features. Apply
and reuse these reusable requirements in your system
specification if appropriate. This reuse mechanism

would reduce writing costs and promote the sharing
of good examples and writing practices.

4.2 Quality Requirements

G.QR.1. Identify quality requirements by a unique Id
with a specific prefix (e.g., "qr_" or "quality_"), to
allow unambiguous referencing.
G.QR.2. Define a name to the quality requirement,
explicitly stating its scope.
G.QR.3. Break down larger quality requirements
into smaller ones. Different user stories may have
associated the same quality requirement. It is
essential to keep them specific to a single concern.
G.QR.4. Express quality requirements through an
expression that can be implemented. This step is
positively helpful for later writing the acceptance
criteria.
G.QR.5. Describe what is expected to facilitate the
recognition. Particularly relevant when the
quantitative expression is not in human-readable
language.

4.3 Acceptance Criteria

G.AC.1. Use popular linguistic patterns when
writing the acceptance criteria (e.g., use the "Given-
When-Then" pattern). Linguistic patterns are the
basis for achieving coherent and rigorous acceptance
criteria.
G.AC.2. Identify the artefact by a unique Id with a
specific prefix (e.g., "ac_", "test_") to allow their
unambiguous referral.
G.AC.3. Explicitly state the associated user story by
its Id and Name to facilitate recognition and
navigability through the specifications.
G.AC.4. Use a consistent and straightforward syntax
to write each fragment of the acceptance criteria.
Attempt to stick to the domain terms. For example, in
the GWT structure, the "GivenThat" fragment can
start with an expression like "I <do something>", "I
am <something>", or "I am in <some state>" (see
Table 4).
G.AC.5. Avoid writing general and vague acceptance
criteria that would be hard to be tested. Acceptance
criteria should be kept small to be singularly testable.
G.AC.7. Identify if the acceptance criteria concern a
success or a failure case. This information is relevant
to distinguish and focus on its goal.
G.AC.8. Enrich the acceptance criteria with failure
cases. These criteria shall provide further robustness
by testing the implementation against bad inputs.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

480

5 RUNNING EXAMPLE

Henceforward, this paper uses a running example to
support the discussion.

5.1 Informal Description

This example is based on a simple version of the
"BillingSystem", a fictitious "invoice management
system" used for research and academic purposes.
The original example discussed in (Silva and Savic,
2021; Silva, 2021) was extended to include usability
concerns, as follows (see Spec.1):

BillingSystem is a software system that shall
allow end-users to manage data entities like
customers, products, and invoices. […]
Any end-user shall log in, log out, recover
password, and update his personal
information. […]
The system shall allow the user-operator to
create new invoices (with respective invoice
details). Still, before sending an invoice to
the customer, the invoice shall be formally
approved by the user-manager. After such
approval, the user-operator can issue and
send that invoice electronically by email[…].
Concerning users' data, their stored
passwords must be hashed and salted. Critical
information should be secured. […]
The system's user experience shall be
intuitive to learn and easy to use it. […]

Spec. 1: Description of the BillingSystem case study.

Figure 2: An epic with user stories classified with themes.

5.2 Dataset of Specifications

To evaluate and enable the discussion upon the usage
of the proposed guidelines, a set of agile constructs
based upon the requirements of the BillingSystem
was populated in the ITLingo RSL Excel template.

The ITLingo RSL Excel2 template proposes to
assist the systematization of producing rigorous
requirements artefacts, mitigating the ambiguity of
natural languages by instating a restricted syntax. It is
assembled with constructs and predefined templates
and attributes to enforce domain analysis. Its current
implementation supports already the specification of
user stories and quality requirements. It was extended
to allow the specification of acceptance criteria and
themes.

Tables 1-4 present "slices" of examples taken
from the Excel dataset prepared throughout this
research are presented in Tables 1 to 4. They were
carefully specified from Spec.1 by applying the
proposed guidelines in Section 5, and the given
extracts were chosen as they refer to general features
common across distinct projects.

For instance, Table 1 presents a set of themes
specified with an identifier, name and brief
description. Table 2 displays user stories and epics,
written according the Connextra template and
associated with the respective themes and quality
requirements. The column partOf establishes the
relationship between user stories and epics.

Figure 3: A user story with acceptance criteria and quality
requirements relationships.

Towards the Art of Writing Agile Requirements with User Stories, Acceptance Criteria, and Related Constructs

481

Table 1: Selected examples of themes defined in the dataset.

Id Name Description
th_1 User Authentication Users should log in, log out and recover their passwords.
th_4 Invoices Issuing Operators and managers should be able to coordinate the issuance of invoices.

th_5 Invoices Status Monitoring Operators and managers should be able to overview invoices and their status.

Table 2: Selected examples of user stories defined in the dataset.

As a I want So that

Id Name Type Actor Goal Reason
The
me

Part
Of

QRs

us_1 Login User
Story

a_User to login the system can authenticate,
and trust me

th_1 qr_1,
qr_2

ep_2 Invoice
Management

Epic a_User to create, update,
accept and issue
invoices

th_4,
th_5

us_10 Invoice
Creation

User
Story

a_Operator to create new
invoices

the manager will be able to
accept or reject it

th_4 ep_2 qr_2

us_11 Invoice
Update

User
Story

a_Operator to update created
invoices

th_4 ep_2 qr_2

us_12 Invoice
Acceptance

User
Story

a_Manager To accept or reject
invoices

they can be issued or
discarded

th_4 ep_2 qr_1

Table 3: Selected examples of quality requirements defined in the dataset.

Id Name Type Op Value Metric PartOf Description

qr_2
User
perception

Usability Forms filling shall be intuitive,
simple, and quick.

qr_2_1
Forms auto-
validator

Usability < 2
Error
PerTask

qr_2

When filling in a form, a user
shall not err in filling the form
with auto-validator due to wrong
fields (e.g., error in entering data
type or required field to fill) not
more than 2 times.

qr_2_1_1
Password
Validator

Usability = ^(?=.*?[a-zA-Z]).{8,}$
Regular
Expression

qr_2_1
Passwords shall contain 8
characters.

qr_4_1
Database
Encryption

Security qr_4
Critical data shall be encrypted
with the Data Encryption
Standard (DES).

Table 4: Selected examples of acceptance criteria defined in the dataset.

US Id User story AC Id Given That When Then Scenario Type

us_1

Login ac_1 I inserted an existing
username and password
combination

submitting the login
request

I should be redirected
to the main page Success

ac_2 I inserted an inexistent
username and password
combination

submitting the login
request

a message signalling an
error should appear

Failure

us_3 Logout ac_15 I'm authenticated tapping the log out
button

I should be redirected
to the login page Success

us_10 Invoice
creation

ac_20 I'm a user-operator submitting a valid
invoice creation
request

the invoice should be
created with pending
status

Success

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

482

Table 3 exhibits examples of quality
requirements, specified through a quantitative
expression. Table 4 presents acceptance criteria
specified through both an identifier, a name, and the
enforcement of the GTW pattern. The property
Scenario Type was introduced to expand the
acceptance criteria further to include the specification
of bad input scenarios. Figures 2 and 3 show the
relationships between these different artefacts. Fig.2
shows that larger features (e.g., invoice
management), represented through epics, can be
partitioned into other user stories. The association
with multiple cross-cutting themes links the
specification artefact to one or more organizational
aspects of the project, which frames the goal of the
user story. Fig.3 further schematizes the relationship
of user stories with acceptance criteria and quality
requirements. A single user story can be
complemented with several acceptance criteria,
which enforce the application of the quality
requirements attached to a given story as conditions
of success.

6 DISCUSSION

The guidelines proposed above exploit both the
relationships between the different artefacts and the
expressiveness of the RSL language.

The first step to achieve cohesive specifications
(both intra- and inter-projects) concerns adopting
linguistic patterns, as they enforce the same writing
mindset and conscientiousness. Fig.2 schematizes the
intrinsic relationships of user stories, epics, and
themes in the BillingSystem project. The presented
epic (ep_2 Invoice Management from Table 2)
institutes the manipulation of invoices, which are the
prime model in the BillingSystem and which
encompasses creation (us_10), update (us_11), and
issuance (us_12) capabilities. This large feature is
broken into three individual user stories,
independently implementable and testable.
Nevertheless, the functionality is framed within its
context by containing the stories explicitly within an
epic. This empowers and facilitates agile activities
such as story priority inference or accurate story
points estimation for larger features.

Moreover, by relating user stories to themes, the
organizational context within the requirement
becomes explicit, too, driving a shared understanding
among IT and non-IT team members. For
consideration, the themes Invoices Issuing (th_4) and
Invoices Status Monitoring (th_5) smooth the shared
knowledge as developers are then aware of the need

to program the domain objects in a prone to
monitorization manner. At the same time, product
owners can immediately recognize which parts of the
system correspond to the different organization
needs.

Tables 2, 3, and 4 show how the quality
requirements specification drives the writing of
acceptance criteria. Considering the user story us_1
Login, with associated quality requirements qr_1
Message Quality and qr_2 User Perception. It is
immediately perceivable that the successful
implementation of the story should encompass more
than the feature itself. Given that the implementation
of these additional concerns is to be verified in the
acceptance testing phase, the acceptance criteria ac_1
and ac_2 (See Fig.3) both set up how the quality
requirements are to be enforced, which forces their
addressing and further mitigates story ambiguity.
Table 4 shows how the proper specification of user
stories and quality requirements allows the simplicity
of the written acceptance criteria.

Given that the desired behaviour to be
implemented is already specified in the quality
requirement, the needed tests cases to concretize in
the future can be unambiguously inferred by crossing
these specifications artefacts instead of having
multiple-step rules on acceptance criteria. For
example, instead of writing multiple acceptance
criteria to verify all the rules concerning the definition
of a secure password, the regex rule expression in the
quality requirement qr_2_1_1 (See Table 3) is enough
to infer the complete test cases later. This contribution
is crucial, as the importance of acceptance testing for
achieving successful deliveries is well-attested in the
community. Another promising factor in maintaining
the acceptance criteria coherent and testable is the
specification of small user stories and the breakdown
of acceptance criteria in multiple scenarios (e.g.,
Success and Failure). This approach favours the
quality of the written artefacts instead of the quantity
to guarantee the complete specification.

The unique identifier assignment and referral of
artefacts with prefixes are systematic practices to
guarantee the completeness of the item's
specifications without sacrificing its readability.

Finally, resorting only to project domain terms
mitigates natural languages ambiguities. For
example, the informal description of the
BillingSystem (See Section 5.1) refers to the
Creation, Update, and Approval terms within Invoice
manipulation. Consequently, by following the
guidelines, the user stories specifications (see Table
2) resort only to these project-specific terms, such as
acceptance instead of approval.

Towards the Art of Writing Agile Requirements with User Stories, Acceptance Criteria, and Related Constructs

483

7 CONCLUSION

This paper goes beyond reviewing the concepts used
in agile specification by discussing linguistic patterns
and practical guidelines to write them better. The
analysis explores both the synergy between user
stories and acceptance criteria and the relevance of
following quality guidelines for writing user stories
that can be of use. The consensus achieved enables
taking a step forward by introducing new mechanisms
in the requirements specification process, ensuring
better specifications while respecting agile practices.

We plan to gather guidelines for writing
specifications in agile contexts while also extending
the ITLingo RSL-Excel template. We also plan to
research transformation mechanisms to generate test
cases by exploiting the written acceptance criteria and
quality requirements. Indeed, prior experiences were
already conducted with the ITLingo RSL language,
namely on tests specification based on data entities,
use cases and state machines (Silva et al., 2018),
based use cases and scenarios (Gomes et al., 2021),
or the broader approach from requirements to
automated acceptance tests (Maciel et al., 2019; Paiva
et al., 2019). We intend to explore a similar approach
based on user stories and acceptance criteria.

ACKNOWLEDGMENTS

This research was partially funded by FCT
02/SAICT/2017/29360 and UIDB/50021/2020.

REFERENCES

Abdou, T., Kamthan, P., Pankaj, S. (2014). User Stories for
Agile Business: INVEST, Carefully!. In AMECSE
2014.

Bick, N., Lucassen, G., Brinkkemper, S. (2017). A
Reference Method for User Story Requirements in
Agile Systems Development. In Proc. Workshops of
REW'2017.

Cao, L., Ramesh, B. (2008). Agile Requirements
Engineering Practices: An Empirical Study. In IEEE
Software, vol. 25, no. 1, pp. 60-67.

Cohn, M. (2004). User Stories Applied for Agile Software
Development. Addison Wesley, 1st edition.

Computer Applications.
Dalpiaz, F., Brinkkemper, S. (2018). Agile Requirements

Engineering with User Stories. In Proc. RE'2018.
Gomes, A., Paiva, A.C.R., Silva, A.R. (2021). Generating

Test Cases from Use Cases and Structured Scenarios:
Experiences with the RSL Language. In Proc. ISD2021,
AIS.

Heck, P., Zaidman, A. (2014). A Quality Framework for
Agile Requirements: A Practioner's Perspective. In
CoRR, vol. abs/1406.4692.

INCOSE (2019). Guide for Writing Requirements, v.3.
Lucassen, G., Dalpiaz, F., Van Der Werf, J., Brinkkemper,

S. (2015). Forging High-Quality User Stories: Towards
a Discipline for Agile Requirements. In Proc. RE'2015.

Lucassen, G., Dalpiaz, F., Van der Werf, J., Brinkkemper,
S. (2016). Improving Agile Requirements: the Quality
User Story Framework and Tool. In Requirements
Engineering, volume 21, issue 3.

Lucassen, G., Dalpiaz, F., Van der Werf, J., Brinkkemper,
S. (2016). The Use and Effectiveness of User Stories in
Practice. In Proc. RE’2016.

Maciel, D., Paiva, A.C.R., Silva, A.R. (2019). From
Requirements to Automated Acceptance Tests of
Interactive Apps: An Integrated Model-based Testing
Approach. In Proc. ENASE'2019, INSTICC.

Paiva, A.C.R., Maciel, D., Silva, A.R. (2019). From
Requirements to Automated Acceptance Tests with the
RSL Language, Communications in Computer and
Information Science 1172, Springer.

Pandit, P., Tahiliani, S. (2015). A Framework for User
Acceptance Testing based on User Stories and
Acceptance Criteria. In International Journal of

Pohl, K. (2010). Requirements Engineering: Fundamentals,
Principles, and Techniques, Springer.

Shah, U., Jinwala, D. (2015). Resolving Ambiguities in
Natural Language Software Requirements: A
comprehensive Survey. In ACM SIGSOFT Software
Engineering Notes, vol.40, no.5, pp. 1-7.

Silva, A.R. (2014). Quality of Requirements Specifications:
A Framework for Automatic Validation of
Requirements. In Proc. ICEIS’2014, INSTICC.

Silva, A.R. (2017). Linguistic Patterns and Linguistic
Styles for Requirements Specification (I): An
Application Case with the Rigorous RSL/Business-
level Language. In Proc. EuroPLOP’2017, ACM.

Silva, A.R. (2019). Rigorous Specification of Use Cases
with the RSL Language. In Proceedings of the
ISD'2019, AIS.

Silva, A.R. (2021). Linguistic Patterns, Styles and
Guidelines for Writing Requirements Specifications:
Focus on Use Cases and Scenarios. In IEEE Access,
vol. 9, pp. 143506-143530.

Silva, A.R., Paiva, A.C.R., Silva. V. (2018). A Test
Specification Language for Information Systems Based
on Data Entities, Use Cases and State Machines. In
Proc. MODELSWARD (Revised Selected Papers).

Silva, A.R., Savić, D. (2021). Linguistic Patterns and
Linguistic Styles for Requirements Specification:
Focus on Data Entities. Applied Sciences 11, no. 9.

Verelst, J., Silva, A.R., Mannaert, H., Ferreira, D.A.,
Huysmans, P. (2013). Identifying Combinatorial
Effects in Requirements Engineering. In Proc. EEWC'
2013, Springer.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

484

