
Practical Findings from Applying Quality Assurance Activities in the
Development of Three Information Systems for Power Companies

Geraldo Braz Junior1 a, Luis Rivero1 b, João Almeida1 c, Simara Rocha1 d, Aristófanes Silva1 e,
Anselmo Paiva1 f, Carlos Castro1, Darlan Quintanilha1 g, Italo Santos1 h, Erika Alves2

and Samira Barbosa2

1Núcleo de Computação Aplicada, Universidade Federal do Maranhão, São Luis, Brazil
2Equatorial Energia S/A, São Luis, Brazil

Keywords: Software Quality, Experience Report, Lessons Learned, Power Company Information Systems.

Abstract: Quality can be achieved in software development by identifying and fixing defects, improving the develop-
ment process and including configuration management activities. However, for novice development teams,
including the above activities may be difficult when developing large or complex information systems. Thus,
to gain insight on how to improve software quality, novice software engineers may review reports from real
software development projects and apply lessons learned. In this paper, we report how software engineering
activities for quality assurance were adapted within three power company information system projects. We
explain how activities regarding version tracking, software testing and user interface design were carried out
by three novice software development teams within a software organization of about 40 collaborators. Our
results indicate that version control can be costly at first, but is useful to assess the current state of the develop-
ment of features. Furthermore, though low-cost evaluation and design approaches, the end product can meet
users’ needs and reduce rework when launching a version of an information system.

1 INTRODUCTION

Current research indicates the many benefits of apply-
ing quality assurance activities such as (Rothenberger
et al., 2010): successful and cost-effective software
production, better product quality, user satisfaction,
cost reduction, rework reduction and meeting goals in
time. However, software engineers still indicate sev-
eral challenges in the implementation of quality as-
surance activities such as losing focus when dealing
with large teams; and difficulty in adapting methods
or practices into the development life-cycle (Kamei
et al., 2017).

To the best of our knowledge, there are few reports

a https://orcid.org/0000-0003-3731-6431
b https://orcid.org/0000-0001-6008-6537
c https://orcid.org/0000-0001-7013-9700
d https://orcid.org/0000-0003-3318-7281
e https://orcid.org/0000-0003-0423-2514
f https://orcid.org/0000-0003-4921-0626
g https://orcid.org/0000-0001-8134-4873
h https://orcid.org/0000-0002-2041-7538

on how quality assurance activities were performed
and the lessons learned from such experiences. Fur-
thermore, the available reports are not always related
to the development of information systems nor pro-
vide details of the applied process (Wonohardjo et al.,
2019). Considering the above, in this paper we de-
scribe how three quality assurance activities were per-
formed within the context of three different projects
developing information systems. In these projects, at
least one of the following methods/practices were im-
plemented: (a) exploratory testing; (b) version control
strategy with gitflow; and (c) usability evaluation and
redesign. During the execution of the projects, we
took notes on the process, positive outcomes and im-
provement opportunities of the activities we carried
out in an agile-based context.

2 RELATED WORK

Researchers and practitioners have reported their ex-
periences on how quality assurance procedures have

Braz Junior, G., Rivero, L., Almeida, J., Rocha, S., Silva, A., Paiva, A., Castro, C., Quintanilha, D., Santos, I., Alves, E. and Barbosa, S.
Practical Findings from Applying Quality Assurance Activities in the Development of Three Information Systems for Power Companies.
DOI: 10.5220/0011081700003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 2, pages 159-166
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

159



been applied (Oprins et al., 2019). For instance,
Hron and Obwegeser (2018) discuss the results from
a systematic literature review reporting the challenges
and motivations that lead to modifications in an ag-
ile software development process. The authors iden-
tified some strategies for adaptation such as: (a) in-
troduction of additional processes, artifacts or roles;
(b) inclusion of notes or instructions to better guide
the development process; and (c) implementation of
changes in procedures, artifacts or roles. The results
are useful for understanding the motivations for in-
cluding changes, such as considering usability in soft-
ware development, or combining further methods to
improve the results of the development project.

In the field of software testing, Collins and Lu-
cena (2012) shared their experience of applying soft-
ware testing automated tools. After describing two
software development projects and reporting the pro-
cedures for carrying out the test automation using Se-
lenium, the authors present lessons learned regarding:
(a) collaboration within the development team; (b) fit-
ting the testing tools according to the test strategy;
(c) degree of automation according to project stages;
(d) simplification of the automation process; and (e)
types of tests that could be automated.

With regards to usability improvement, de Car-
valho et al. (2016) analyzed how user centered de-
sign is explored within an agile context. To do so,
the authors carried out a systematic literature review
and presented an experience report on how usability
evaluations can be applied in development. The eval-
uations were performed before the development of the
software, yielding less rework, usability improvement
and a change on the mindset of the team.

The above reports suggest an interest in describ-
ing how adaptations within a software development
process can support the quality improvement of infor-
mation systems under development. Yet, there is still
a need for further reports on the use of different qual-
ity assurance approaches in further contexts, since
some reports do not describe in which settings these
approaches were adopted, their strengths and weak-
nesses from the point of view of software engineering
practitioners (Theocharis et al., 2015). For instance,
some papers discussing how adaptations are being
made, do not describe the contexts in which they oc-
cur neither the specifics of the changes implementa-
tion (Hron and Obwegeser, 2018). Furthermore, to
the best of our knowledge, although there are works
describing the inclusion of specific activities in prac-
tice (Hassani-Alaoui et al., 2020) (Ruane et al., 2020),
they mostly provide an overview of the changes;
while others that focus on specific changes related to
quality assurance could provide further examples of

the artifacts that were specifically developed by the
software organization (Collins and de Lucena, 2012)
(de Carvalho et al., 2016). Thus, in this paper we
present further examples of how software engineer-
ing technologies and procedures have been included
for the quality assurance of information systems. Be-
low, we present details of our agile-intended software
development projects and what changes were made.

3 THE SOFTWARE
DEVELOPMENT PROJECTS

Three software development projects were carried out
for the development of information systems to help
solve problems in the context of power companies.
The Equatorial National Power Company hired the
Computing Group at Federal University of Maranhão
for this task. The Computing Group had around 40
collaborators and worked in the development of infor-
mation systems using artificial intelligence and em-
bedding machine learning (ML) systems. Below, we
present each project chronologically (from the oldest
to the most recent), providing details on their purpose,
how they were executed and the implemented changes
for quality assurance.

3.1 Project A - Tracking Clients with
High Degree of Lawsuit Chance

Context: The goal of this project was to develop an
information system for automatically identifying the
predisposition of consumers in filing lawsuits towards
power companies. Based on attributes such as power
outage, improper power cut, improper billing and in-
creased power consumption, a score indicating the
probability of a client to file a lawsuit was embedded
into a database, providing details of the dissatisfaction
of clients. With this information, the information sys-
tem could generate reports so that the customer ser-
vice of the company could provide support to these
clients and improve their satisfaction.

Project Details: This project lasted 18 months
(from 2018 to 2020). In all, the development team
had 24 software engineers. The project followed an
agile development process, following practices from
the Scrum methodology (Kamei et al., 2017), but
focusing on deliverables for each milestone within
the project. The following goals were set within the
project: (a) Scope and architecture definition (Months
1-3); (b) Development of Data Base (Months 4-10);
(c) Development of Module I, which would analyze
the data to export managerial reports (Months 4-10);

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

160



(d) Development of Module II, which would optimize
algorithms for automatically generating and adapt-
ing clients groups (Months 6-14); (e) Development of
User Interface that would integrate the data and pro-
duce reports (Months 12-18); and (f) Testing, Integra-
tion and Release (Months 6-18). Each sprint lasted
for a month and the goals between sprints overlap to
improve productivity. Also, although there were 24
software engineers, they were split into smaller teams
to meet development goals concurrently, such as al-
gorithm, architecture and interface modeling, imple-
mentation and testing of features, implantation of the
system and others.

Adaptations for Quality Assurance: Since the
project had several updates regarding the user inter-
face requirements and handling of the data to provide
reports, there was no updated documentation for the
testing of the web application. As a result, the de-
velopment team decided to employ a manually ex-
ploratory testing approach, in which the tester actively
controls the design of the tests as those tests are per-
formed; and uses information gained while testing to
design new and better tests (Quesada-López et al.,
2019). We planned the tests by identifying and orga-
nizing the different functionalities of the web applica-
tion through meetings with the development team and
scrum master, who had validated the requirements
with the product owner.

The testing team derived a test scenario with an
initial path to test how each function would work in an
expected way. Once such path was was covered, al-
ternative paths considering different inputs were con-
sidered in order to identify further paths. Figure 1
shows an example of a test scenario that was derived
through the exploratory testing. The identification of
scenarios and development of test scenarios continued
during the development process in the final sprints.
At the end of each sprint, new test scenarios would
be discussed and the old ones would be reviewed,
updated (if necessary) and re-executed to verify the
proper functioning of the ML web application.

3.2 Project B - Self Power Consumption
Reading

Context: The goal of this project was to develop a
mobile information system that could register power
consumption readings. By using the application,
clients would be able to register their consumption in
three different ways: by image, by voice and by key-
board. The power company wanted users to have dif-
ferent ways of measuring their consumption, as this
solution was originally designed for rural areas that
are difficult to access.

Figure 1: Test scenarios for a functionality from the ML
web application.

Project Details: This project lasted for 24 months
(from 2019 to 2021). The development team had 14
team members and followed a similar development
process as in project A. Along with the functional-
ity tests, we applied usability ad-hoc inspections and
validations, to identify improvement opportunities in
the design of the mobile application.

Adaptations for Quality Assurance: In this
project, there was a need to identify usability prob-
lems and propose redesign suggestions to meet them.
To achieve this goal, we followed a usability evalu-
ation approach similar to the one by Plechawska et
al. (2013). A usability and UX consultant was con-
tacted to retest the entire system and also carry out
an ad-hoc usability inspection. The consultant re-
executed the identified test scenarios and during each
test, he verified usability attributes. Since the consul-
tant had more than 5 years of experience evaluating
the usability of web and mobile applications, he did
not need to check usability heuristics as performed
by Plechawska et al. (2013), thus characterizing the
inspection as ad-hoc (Damian et al., 2020). In this
sense, during the evaluation process, if usability prin-
cipals from mobile applications were not met during
the interaction of the analyzed test scenario from the
point of view of the consultant, a suggestion/doubt

Practical Findings from Applying Quality Assurance Activities in the Development of Three Information Systems for Power Companies

161



was included in the test report and it was discussed
with the development team and the representatives
from the power company. Figure 2 shows an example
of the tests scenarios that were adapted from project
A, which also show comments made by the consultant
indicating usability problems.

Figure 2: Test scenario for a functionality from the mobile
application and reporting of usability problems.

3.3 Project C - Automated Customer
Support of Clients

Context: The goal of this project was to develop
an information system to support the decision mak-
ing process of prioritizing the contact of unsatisfied
clients. In this sense, this application would provide
relevant information on the dissatisfaction degree of
a client based on information obtained from the data
base in project A, and indicate which clients require
immediate assistance.

Project Details: This project was carried out over
a period of 18 months, starting in 2020 until 2022.
In all, the development team consisted of 18 soft-
ware engineers. The development team applied the
same development process as in projects A and B.
To define which deliveries would be produced and
evaluated, goals were defined for each month regard-

ing the development of each of the systems’ modules
implementing the solutions requested by the power
company. The following activities were defined for
the project: (a) Definition of scope and architecture
(Months 1-3); (b) Database Development (Months 4-
10); (c) Development of Report Generation and De-
cision Making Modules (Months 4-14); (d) Devel-
opment of User Interfaces that would integrate data,
make contact with users and produce reports (Months
8-18); and (e) Test, Integration and Release (Months
6-18).

Adaptations for Quality Assurance: In this
project, the main issue was to track the different
changes of all the modules that were being imple-
mented. Also, there was a high degree of turnover
in software developers, which caused trouble when
maintaining current and previous software. As a re-
sult, the project manager decided to implement a
branching model for Git, which is the version control
system in use by our organization.

To decide which branching model would be em-
ployed, the management team, together with a sub-
set of the more experienced developers, held several
meetings with brainstorming sessions. In these meet-
ings, we defined what risks/difficulties were frequent
in projects A and B that could be avoided using a
branching model to track changes. Among the main
problems, the team highlighted: (a) difficulty in find-
ing the correct files in the team directories; (b) diffi-
culty in identifying who was responsible for modify-
ing the artifacts; (c) difficulty in keeping information
about results obtained in sprints in terms of developed
features; and (d) difficulty in maintaining version con-
trol and quality assurance in terms of test execution.

After analyzing different branching models and
considering the problems listed above, the develop-
ment team decided to employ Gitflow, which is a
heavily branch-based, but project focused deliverable
model that defines the roles of each branch and how
they should interact (Driessen, 2010). Among the
branches used within Gitflow, the following are sug-
gested (Olausson and Ehn, 2015): feature branches,
release branches and maintenance branches. Git-
flow has been adopted in several development projects
with success but few practical information on how it
was applied is provided (Bretal Ageitos, 2020). The
team proposed a process in which the managers, de-
velopers and test team would have designated activ-
ities related to version control of the systems under
development, following Gitflow suggestions adapted
to the needs and reality of the team. To keep track
of the various branches of the system under develop-
ment, accounts were created in Git so that each team
member was assigned the responsibilities of feeding

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

162



the repository. In addition, codes and structures were
designed to keep track of the actions of team mem-
bers. For example, when creating a new branch of
type feature, a developer would have to use the fol-
lowing standard: ”Create Branch - Feature - Fea-
ture Name”. Similar instructions and structures were
adopted throughout the newly defined process.

4 RESULTS

In this section, we present how the processes applied
in Section 3 yielded results for each project, and what
lessons each team learned with these experiences.

4.1 Project A

After identifying a problem, the development team
adopted a report approach using a project manage-
ment system1 and a set of spreadsheets. In the man-
agement system, we indicated information such as:
functionality id, tester name, problem description,
team member that was responsible for the correction,
degree of severity, date to correct the problem and an
image of the problem. To decide which problems
would be corrected first, a scale for the degree of
severity was applied: (a) cosmetic: there is no need
for immediate correction of the problem; (b) minor:
it is a problem with low correction priority (could
be corrected); (c) major: it is a problem with high
correction priority (must be corrected); and (d) catas-
trophic: it is a problem of very high priority (if it is
not corrected immediately, the system will stop work-
ing). This scale was useful for defining which prob-
lems were to be corrected and when. For instance,
layout problems were considered cosmetic or minor
if they not affected the usability of the system or were
almost unnoticeable. On the other hand, miscalcula-
tions were treated as major or catastrophic problems
if they impacted in the reliability of the software and
if they where problems in functions with high degree
of use from the point of view of users.

At the end of the project, 254 functional test
scenarios were identified using exploratory testing.
Through these tests, we verified the functionalities
in terms of proper response of the system, adequate
data presentation, system messages, input error han-
dling and navigation. By the end of the project, all
test scenarios passed and all minor, major and catas-
trophic problems were corrected, guaranteeing the
proper functioning of the information system.

1http://trello.com

4.2 Project B

As in Project A, the functional testing through explo-
ration allowed correcting issues with regards to wrong
outputs of the system and missing information ac-
cording to the requirements. Furthermore, we iden-
tified around 30 usability problems through the ad-
hoc inspection. Figure 3 shows some of the screens
in which usability problems have been identified. For
instance, in part A (Home Screen) there is no infor-
mation on the clients account and when (s)he needs to
measure the power consumption. With regards to Fig-
ure 3 part B, messages were provided in orange, mak-
ing the user think that an error had happened when,
in fact, it was a message with instructions on how to
use the system. Finally, in Figure 3 part C, there is a
lack of information on loading time. If a report has a
lot of registers, the interface will only load the report,
which will freeze the screen.

Figure 3: Screens of the mobile application that contain us-
ability problems.

The complete evaluation of the mobile applica-
tion allowed us to identify improvement opportunities
from both functional and usability perspectives. Fig-
ure 4 shows an example of the new version of the mo-
bile application, after correcting the identified usabil-
ity problems. In these screens, a new circle appears
to indicate that the record has started so that users are
aware of state changes within the application (see part
A). Additionally, message colors were changed and
in-between processing messages were added (see Part
B). Finally, we standardized the reading screens and
improved the layouts, so that users do not have dif-
ficulty when understanding different screens during
readings (see Part C). These changes were made by
considering the feedback of the inspector and also the
feedback of the managers from the power company
who received the evaluation report and prototypes of
the corrected issues.

Practical Findings from Applying Quality Assurance Activities in the Development of Three Information Systems for Power Companies

163



Figure 4: Redesigned version of the application - interaction
of the meter reading through voice.

4.3 Project C

The proposed data registration templates allowed us
to register the developed features within the given
time stamp, the current version of the system, regis-
tration of the necessary configurations to use a mod-
ule, instructions for Building and Deployment, as
well as links with access to important external infor-
mation.

With regards to the use of Gitflow, Figure 5 shows
an example of how the team registered team mem-
bers’ activities in the Git version control tool. In this
example, two developers are registering their activ-
ities when working alone in a branch or collabora-
tively. Initially, master and develop create their cor-
responding branches, initializing the project. From
this point on, developers can work on separate feature
branches to be added to the develop branch. When
a merge with the develop branch occurs, developers
talk to each other to resolve conflicts. In addition,
when two developers work together on a branch of
a specific functionality, a specific nomenclature was
adopted indicating who is working on which part of
the functionality, allowing a better control of the ac-
tivities of the team members. At the end of the pro-
cess, merges occur in the branches feature, develop
and master, respectively.

5 LESSONS LEARNED

We were able to obtain lessons learned regarding the
application of functional and usability evaluation ac-
tivities as well as the version control activities. These
lessons are mainly based on focus group meetings and
discussions held with the development team of each
project at the end of the reaching of a project mile-
stone. We highlight that the discussion was held by
team members who participated in all projects, while
also considering the opinion of software engineers

Figure 5: History of implemented collaboration using Git-
flow within Project C.

who provided feedback during their participation in
any of the projects.

The tests were affected by the ”communication
within the project environment”. A lot of information
regarding business rules and function specifications
was tacit (e.g. not documented, not thoroughly de-
scribed or not stored in the same place), which made
it difficult to identify test scenarios after the model-
ing of the system was completed. Exploratory testing
allowed us to both understand the business rules and
revisit decisions that had been taken.

The view from the product owners also affected
the way in which the data would be presented. Sev-
eral changes were made to the design of the applica-
tion, including: new steps for performing tasks, new
data analysis and filtering, changes in report presen-
tation, layout and interaction. The Variability of the
Functional Requirements affected the initially defined
test scenarios. Thus, the changes must be monitored
in order to guarantee that the correct expected result
is being provided by the system. Each decision was
reported to both the development team and the testing
team during daily meetings. Also, the changes and
their impact were discussed with the clients so that
changes in the final product would reflect the power
supply company’s expectations.

Exploratory testing can benefit from considering
different types of test approaches. To select alterna-
tive scenarios for designing test scenarios in the ex-
ploratory testing, the development team applied the
use of functional testing strategies such as (Jovanović,
2006): equivalence partitioning, boundary value anal-
ysis and cause-effect analysis. Furthermore, although
we initially tried to automate the test scenarios to fa-
cilitate their replication in later sprints of the project,

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

164



since the discussions with the clients included dra-
matic changes in the interface, the development team
had to change the testing strategy, using a manual
exploratory testing. This made the functional test-
ing process take longer than expected, but saved time
with: (a) rework in terms of programming new test
scenarios for the interface, and (b) not spending time
on automating test scenarios that would be removed.

We also gained insight on the use of usability ad-
hoc inspection for identifying problems and improve-
ment opportunities. When combining exploratory
testing and ad-hoc usability inspection, an experi-
enced inspector can reduce the time necessary to
check for different types of defects. Also, by sim-
ulating different usage scenarios, the test team can
verify to what extent these scenarios meet usability
principals, mainly when making mistakes during the
interaction, or changing between tasks and navigating
through the application.

When analyzing the disadvantages in the applica-
tion of the methods, we were only able to carry out the
evaluation due to the experience of the usability con-
sultant. Not all development teams may have such
experienced team members. However, by investing
some time and applying an appropriate checklist with
usability principals, an inexperienced inspector may
be able to identify similar problems. Furthermore, the
team had to deal with the delay of the identification
and correction of the problems, as we carried them
out after the exploratory testing. Although the identi-
fication of usability problems and improvement sug-
gestions were welcome, these changes implicated in
further development time for correction, and another
round of testing and validation. In future projects, the
execution of evaluation approaches for different soft-
ware quality attributes should be executed together if
possible, to avoid such degree of rework. Another
alternative, given the appropriate human resources,
would be to carry out the usability evaluation during
the development of low fidelity or functional proto-
types. This, however, was not our case, as the valida-
tion with the client was performed later in the project
due to the clients’ schedule, which also delayed the
execution of the usability evaluation.

Finally, although Gitflow is still under testing in
the development project, there was positive feedback.
Regarding the perceived usefulness of the approach,
there were comments related to the implemented or-
ganization, while obtaining the necessary information
for project management. Furthermore, there were
criticisms about learning the necessary steps to apply
Gitflow. The project manager indicated that this dif-
ficulty can be negative in the short term, but that, as
part of the organizational culture, it can bring bene-

fits in the long term for the maintenance of projects.
His main concern was regarding the required training
and time spent for specific developers to play the roles
of master and develop, as these branches have high
credentials and errors could be dangerous to the con-
sistency of the project’s data and code. Furthermore,
regarding possible difficulties and suggestions for im-
proving the adopted approach, the team members ini-
tially indicated the adaptation to the process, due to
the work required to learn the technologies and rules,
as its use may be difficult or discourage developers
with little experience. Additionally, the automation
of some activities of the process was suggested (e.g.
automated creation of tags to report changes) to im-
prove productivity.

6 CONCLUSIONS AND FUTURE
WORK

The applied software engineering approaches focused
on two quality aspects within the software organiza-
tion: product quality and project management. With
regards to the testing approaches focusing on prod-
uct quality, we: (a) adopted management tools and
artifacts to report the identified defects; (b) used col-
laboration tools that allowed us to set tasks, orga-
nize the different states of a bug (e.g. pass/failed, re-
ported, corrected, validated), made notes and use re-
minders; and (c) developed specific spreadsheets and
documents as a way to keep track of the different
decisions made, and which functional test scenarios
were removed, updated or created. As a result, ex-
ploratory testing allowed us to create updated docu-
mentation that could be used for further stages in the
development project, such as creating user manuals
and project reports. Additionally, the ad-hoc inspec-
tion process allowed us to identify further problems
from the point of view of users, which were not the
focus of the previous performed tests.

With regards to Gitflow adoption for project man-
agement, we noticed the acceptance of the proposed
process for quality assurance due to the positive feed-
back of the team members and that they are currently
using it in the project to better control its versions.
However, there was a unanimous concern in the short
term regarding the ease of use and learning of the var-
ious rules necessary for adopting the approach. Con-
sidering these issues, the organization is studying new
alternatives to automate or at least facilitate the use of
standard messages and steps.

One of the main limitations from our experience
reports is regarding the observations presented within
this paper. We gathered information from the records

Practical Findings from Applying Quality Assurance Activities in the Development of Three Information Systems for Power Companies

165



of our daily meetings, discussions held during devel-
opment, developed artifacts (documentation and re-
ports) and the obtained results measuring the success
of activities (e.g. number of identified problems).
However, there is still room for improvement, apply-
ing questionnaires and interviews with the team mem-
bers and carrying out focus groups with the develop-
ment teams of the three projects aiming at gathering
specific data on the applicability of the quality as-
surance activities and their acceptance in the future.
We intend to carry out further investigations so our
lessons learned can be useful for novice software de-
velopment teams willing to adapt their development
processes to achieve better results in terms of process
and product quality.

As new projects are developed within our software
organization, we expect that further software engi-
neering approaches and artifacts are incorporated and
that the lessons learned from such experiences are re-
ported considering both quantitative and qualitative
analysis methods. Through the lessons learned within
this paper and by providing details for its replication,
we intend to encourage software companies to adapt
software engineering approaches, cost-effectively im-
proving the quality of information systems.

ACKNOWLEDGMENTS

This work was supported by SijurI project funded
by Equatorial Energy under the Brazilian Electricity
Regulatory Agency (ANEEL) P&D Program Grant
number APLPED00044 PROJETOPED 0036 S01.
Additionally, this work was supported by the Foun-
dation for the Support of Research and Scientific
Development of Maranhão (FAPEMA), the Coor-
dination for the Improvement of Higher Education
Personnel (CAPES) and the National Council for
Scientific and Technological Development (CNPq).

REFERENCES

Bretal Ageitos, F. (2020). Project management platform for
the identification of phytoplankton samples.

Collins, E. F. and de Lucena, V. F. (2012). Software test
automation practices in agile development environ-
ment: An industry experience report. In 2012 7th In-
ternational Workshop on Automation of Software Test
(AST), pages 57–63. IEEE.

Damian, A. L., Marques, A. B., Silva, W., Barbosa, S. D. J.,
and Conte, T. (2020). Checklist-based techniques with
gamification and traditional approaches for inspection
of interaction models. volume 14, pages 358–368.
IET.

de Carvalho, J. M. I., da Silva, T. S., and Silveira,
M. S. (2016). Agile and ucd integration based on
pre-development usability evaluations: An experi-
ence report. In International Conference on Human-
Computer Interaction, pages 586–597. Springer.

Driessen, V. (2010). A successful git branching model.
Hassani-Alaoui, S., Cameron, A.-F., and Giannelia, T.

(2020). “we use scrum, but. . . ”: Agile modifica-
tions and project success. In Proceedings of the 53rd
Hawaii International Conference on System Sciences.

Hron, M. and Obwegeser, N. (2018). Scrum in practice:
an overview of scrum adaptations. In Proceedings of
the 51st Hawaii International Conference on System
Sciences.

Jovanović, I. (2006). Software testing methods and tech-
niques. volume 30.

Kamei, F., Pinto, G., Cartaxo, B., and Vasconcelos, A.
(2017). On the benefits/limitations of agile software
development: an interview study with brazilian com-
panies. In Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software En-
gineering, pages 154–159.

Olausson, M. and Ehn, J. (2015). Source control manage-
ment. In Continuous Delivery with Visual Studio ALM
2015, pages 65–85. Springer.

Oprins, R. J., Frijns, H. A., and Stettina, C. J. (2019). Evo-
lution of scrum transcending business domains and
the future of agile project management. In Inter-
national Conference on Agile Software Development,
pages 244–259. Springer.

Plechawska-Wójcik, M., Mora, S., and Wójcik, Ł. (2013).
Assessment of user experience with responsive web
applications using expert method and cognitive walk-
through. ICEIS.

Quesada-López, C., Hernandez-Agüero, E., and Jenkins,
M. (2019). Characterization of software testing prac-
tices: A replicated survey in costa rica. volume 7,
pages 6–1.

Rothenberger, M. A., Kao, Y.-C., and Van Wassenhove,
L. N. (2010). Total quality in software development:
An empirical study of quality drivers and benefits in
indian software projects. volume 47, pages 372–379.
Elsevier.

Ruane, E., Smith, R., Bean, D., Tjalve, M., and Ventresque,
A. (2020). Developing a conversational agent with a
globally distributed team: an experience report. In
Proceedings of the 15th International Conference on
Global Software Engineering, pages 122–126.

Theocharis, G., Kuhrmann, M., Münch, J., and Diebold, P.
(2015). Is water-scrum-fall reality? on the use of ag-
ile and traditional development practices. In Interna-
tional Conference on Product-Focused Software Pro-
cess Improvement, pages 149–166. Springer.

Wonohardjo, E. P., Sunaryo, R. F., and Sudiyono, Y. (2019).
A systematic review of scrum in software develop-
ment. volume 3, pages 108–112.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

166


