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Abstract: One of the greatest challenges in Smart Big Data Processing nowadays revolves around handling multiple 
heterogeneous data sources that produce massive amounts of structured, semi-structured and unstructured 
data through Data Lakes. The latter requires a disciplined approach to collect, store and retrieve/ analyse data 
to enable efficient predictive and prescriptive modelling, as well as the development of other advanced 
analytics applications on top of it. The present paper addresses this highly complex problem and proposes a 
novel standardization framework that combines mainly the 5Vs Big Data characteristics, blueprint ontologies 
and Data Lakes with ponds architecture, to offer a metadata semantic enrichment mechanism that enables fast 
storing to and efficient retrieval from a Data Lake. The proposed mechanism is compared qualitatively against 
existing metadata systems using a set of functional characteristics or properties, with the results indicating 
that it is indeed a promising approach. 

1 INTRODUCTION 

Big Data is an umbrella term referring to the large 
amounts of digital data continually generated by tools 
and machines, and the global population (Chen et al., 
2014). The speed and frequency by which digital data 
is produced and collected by an increasing number of 
different kinds of sources are projected to increase 
exponentially. This increasing volume of data, along 
with its immense social and economic value (Bertino, 
2013; Günther et al., 2017), is driving a global data 
revolution. Big Data has been called “the new oil”, as 
it is recognized as a valuable human asset, which, 
with the proper collation and analysis, can deliver 
information that will give birth to deep insights into 
many aspects of our everyday life and, moreover, to 
let us predict what might happen in the future. 

While Big Data is available and easily accessible, 
it is evident that its great majority comes from 
heterogeneous sources with irregular structures 
(Blazquez & Domenech, 2018). The process of 
transforming Big Data into Smart Data in terms of 
making them valuable and transforming it into 
meaningful information is called Smart Data 
Processing (SDP) and includes a series of diverse 
actions and techniques. These actions and techniques 

support the processing and integration of data into a 
unified view from disparate Big Data sources. 
Furthermore, this field includes adaptive frameworks 
and tool-suites to support smart data processing by 
allowing the best use of streaming or static data, and 
may rely on advanced techniques for efficient 
resource management.  

SDP supports the process and integration of data 
into a unified view from disparate Big Data sources 
including Hadoop and NoSQL, Data Lakes, data 
warehouses, sensors and devices on the Internet of 
Things, social platforms, and databases, whether on-
premises or on the Cloud, structured or unstructured 
and software as a service application to support Big 
Data analytics (Fang, 2015). 

The analytics solutions, which rely on smart data 
processing and integration techniques, are called 
Systems of Deep Insight (SDI). These solutions 
enable optimization of asset performance in SDP 
systems and are geared towards systems of insight. In 
addition, they sift through the data to discover new 
relationships and patterns by analysing historical 
data, assessing the current situation, applying 
business rules, predicting outcomes, and proposing 
the next best action. Despite the great and drastic 
solutions proposed in recent years in the area of Big 
Data Processing and SDP, treating Big Data produced 
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by multiple heterogeneous data sources remains a 
challenging and unsolved problem. 

The main research contributions of this paper 
include the utilization of Data Lakes as a means to 
achieve the desired level of Big Data Processing and 
ultimately lead to developing SDP. Along these lines, 
we propose a standardization framework for storing 
data (and data sources) in a Data Lake and a metadata 
semantic enrichment mechanism that is able to handle 
effectively and efficiently Big Data coming from 
disparate and heterogeneous data sources. These 
sources produce different types of data at various 
frequencies and the mechanism is applied both when 
this data is ingested in a Data Lake and at the 
extraction of knowledge and information from the 
Data Lake. 

The remainder of the paper is structured as 
follows: Section 2 discusses related work and the 
technical background in the areas of SDP and Data 
Lakes. Section 3 presents the Data Lake source 
description framework and discusses its main 
components. This is followed by presenting the 
details of the expected features of a Data Lake’s 
metadata system and compares them with several 
existing works in section 4. Finally, section 5 
concludes the paper and highlights future work 
directions. 

2 TECHNICAL BACKGROUND 

Big Data Processing includes the processing of 
multiple and various types of data, structured, semi-
structured, and unstructured. A Data Lake is a storage 
repository that could store a vast amount of raw data 
of these various types in its native format until it is 
needed. In addition, a Data Lake is a centralized 
repository that stores structured, semi-structured, and 
unstructured data at any scale, and data is selected and 
organized when needed. Data can be stored as-is, 
without the need to first structure it before executing 
different types of analytics, from dashboards and 
visualizations to Big Data processing, real-time 
analytics, and machine learning to guide better 
decisions. Furthermore, Data Lakes architecture is 
also used to store large amounts of relational and non-
relational data combining them with traditional data 
warehouses. 

Khine and Wang (2018) state that a Data Lake is 
one of the arguable concepts that appeared in the era 
of Big Data. A Data Lake is a place to store practically 
every type of data in its native format with no fixed 
limits on account size or file, offering at the same time 

high data quantity to increase analytic performance 
and native integration.  

The idea behind Data Lakes is simple: Instead of 
placing data in a purpose-built data store, move it into 
a Data Lake in its original format. This eliminates the 
upfront costs of data ingestion, like transformation 
and indexing. Once data is placed into the lake, it is 
available for analysis by everyone in the organization 
(Miloslavskaya & Tolstoy, 2016). Unlike a 
hierarchical Data Warehouse where data is stored in 
files and folders, a Data Lake has a flat architecture. 
Every data element in a Data Lake is given a unique 
identifier and is tagged with a set of metadata 
information.  Data Lakes can provide the following 
benefits: 
 With the onset of storage engines like Hadoop, 

storing disparate information has become easy.  
 There is no need to model data into an 

enterprise-wide schema with a Data Lake. 
 With the increase in data volume, data quality, 

and metadata, the quality of analyses also 
increases. 

 Data Lake offers business Agility. 
 Machine Learning and Artificial Intelligence 

can be used to make profitable predictions. 
 It offers a competitive advantage to the 

implementing organization. 
 

The 5Vs are the five main and innate 
characteristics of Big Data. As one-dimension 
changes, the likelihood increases that another 
dimension will also change as a result. Knowing the 
5Vs allows data scientists to derive more value from 
their data, while also allowing them to become more 
customer-centric (Bell et al., 2021). As far back as 
2001, Doug Laney articulated the now mainstream 
definition of Big Data as the 3Vs of Big Data 
(Kościelniak & Putto, 2015):  

 
 Volume - the volumes of data produced  
 Velocity - the rate transfer which data produced  
 Variety - heterogeneous and multiple data 

 
In addition to the 3Vs, other dimensions of Big 

Data have also recently been reported (Gandomi & 
Haider, 2015). These include:  
 Veracity: IBM coined Veracity as the 4th V, 

which represents the unreliability inherent in 
some sources of data (Luckow et al., 2015). 

 Variability: SAS introduced Variability and 
Complexity as two additional dimensions of Big 
Data (Herschel & Miori, 2017). Variability 
refers to the variation in the data flow rates. 
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Complexity refers to the fact that Big Data are 
generated through a myriad of sources. 

 Value: Oracle introduced Value as a defining 
attribute of Big Data (Kim et al., 2012). Based 
on Oracle’s definition, Big Data are often 
characterized by relatively “low value density”. 
 

Big Data originate mostly from one of five primary 
sources: Social media, Cloud, Web, traditional 
business systems (e.g., ERPs), and Internet of Things 
(IoT) (Sethi & Sarangi, 2017). These primary sources 
produce an enormous variety of structured, 
unstructured, and semi-structured data (see figure 1). 
The term structured data refers to data that resides in 
a fixed field within a file or record. Structured data is  
typically stored in a relational database (RDBMS). It 
depends on the creation of a data model that defines 
what types of data are present. Unstructured data is 
more or less all the data that is not structured. Even 
though unstructured data may have a native, internal 
structure, it is not structured in a predefined way. 
There is no data model; the data is stored in its native 
format. Typical examples of unstructured data are 
rich media, text, social media activity, surveillance 
imagery, etc.  It is essentially a type of structured data 
that does not fit into the formal structure of a 
relational database. But while not matching the 
description of structured data entirely, it still employs 
tagging systems or other markers, separating different 

elements and enabling search. Sometimes, this is 
referred to as data with a self-describing structure.  

Media includes social networks and interactive 
platforms, like Google, Facebook, Twitter, YouTube, 
Instagram, as well as generic media, like videos, 
audios, and images that provide qualitative and 
quantitative data on every aspect of user interaction. 
Private or public cloud storages include information 
from real-time or on-demand business data. Web or 
Internet constitutes any type of data that are publicly 
available and can be used for any commercial or 
individual activity. Traditional business systems 
produce and store business data in conventional 
relational databases or modern NoSQL databases. 
Finally, IoT includes data generated from sensors that 
are connected to any electronic devices that can emit 
data. 

Manufacturing blueprints create a basic 
knowledge environment that provides manufacturers 
with more granular, fine-grained and composable 
knowledge structures and approaches to correlate and 
systematize vast amounts of dispersed manufacturing 
data, associate the “normalized” data with operations, 
and orchestrate processes in a more closed-loop 
performance system that delivers continuous 
innovation and insight. Such knowledge is crucial for 
creating manufacturing smartness in a smart 
manufacturing network (Papazoglou & Elgammal, 
2018). 

 
Figure 1: Different types of data produced by Big Data sources. 
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Figure 2: Data sources selection metadata enrichment mechanism using 5Vs. 

Manufacturing blueprints provide a complete 
summary of a product by juxtaposing its features with 
its operational and performance characteristics, as 
well as how it is manufactured, which processes are 
used, and which manufacturing assets (people, plant 
machinery and facilities, production line equipment) 
are used to make it, as well as the suppliers who 
provide/produce parts and materials. Manufacturing 
blueprints also include a summary of suppliers, 
including their capabilities and competencies. 
Finally, manufacturing blueprints detail how 
manufacturers and suppliers coordinate, arrange 
manufacturing processes, expedite hand-offs, and 
create the final product (Papazoglou & Elgammal, 
2018). 

This paper adopts the basic principles of 
manufacturing blueprints and modifies their purpose 
and meaning to reflect the description and 
characterization of data sources and the data they 
produce. Along these lines, a framework is proposed 
that builds upon the utilization of the five 
aforementioned Big Data characteristics (5Vs) to 
describe Big Data sources. These characteristics will 
guide the characterization of data sources by means 
of specific types of blueprints through an ontology-
based description. Big Data sources will thus be 
accompanied by this blueprint description before they 
become part of a Data Lake.  

 
 
 

3 METHODOLOGY 

As mentioned above, a new standardization 
framework will be introduced combining the 5Vs Big 
Data characteristics and blueprint ontologies to assist 
data processing (storing and retrieval) in Data Lakes 
organized with pond architecture. According to the 
pond architecture, a Data Lake consists of a set of data 
ponds and each pond hosts / refers to a specific data 
type. Each pond contains a specialized storage system 
and data processing depending on the data type 
(Sawadogo & Darmont, 2021).  

A Data Lake with pond architecture is assumed to 
use a dedicated pond to store each data source with 
the same type of data, structured, unstructured, and 
semi-structured as shown in figure 2. This innate 
pond architecture is particularly helpful when 
extracting information from the Data Lake as will be 
demonstrated later on.  

Big Data sources are filtered before they become 
part of the Data Lake as shown in figure 2. Every data 
source, which is a candidate to be part of the Data 
Lake, will be characterized according to the blueprint 
values shown in figure 3. Therefore, the selection of 
data sources is performed according to the blueprint 
of each different data source.  

As previously mentioned, a dedicated blueprint is 
developed to describe each data source storing data in 
the Data Lake. Specifically, the blueprint of a source 
consists of two interconnected blueprints as shown in 
figure 3:  
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Figure 3: Data source blueprints description using 5Vs Big Data characteristics. 

The first one is static and records the name and type 
of the source, the type of data it produces, as well as 
the value, velocity, variety, and veracity of the data 
source. The second is dynamic as it changes values in 
the course of time and essentially characterizes the 
volume of data, the last source update, and the 
keywords of the source. The dynamic blueprint is 
updated every time data sources produce new data. 
Figure 5 presents the ontology graph of the data 
source created via Protégé, a free open-source 
ontology editor and framework for building 
knowledge-based solutions (http://protege.stanford. 
edu). This graphical representation tool produces an 
RDF ontology for the data sources.  

RDF stands for Resource Description Framework 
and is a framework for describing resources usually 
on the Web. RDF is designed to be read and 
understood by computers, is not designed for being 
displayed to people, and is written in XML. RDF is a 
part of the W3C’s Semantic Web Activity and is a 
standard for data interchange that is used for 
representing highly interconnected data. Each RDF 
statement is a three-part structure consisting of 
resources where every resource is identified by a URI. 
Representing data in RDF allows information to be 
easily identified, disambiguated and interconnected 
by AI systems. 

We use the Resource Description Framework to 
describe a source’s stable and dynamic blueprint with 
the combination of the theory of triples (subject, 
predicate, object) (see figure 4). For example, let us 
assume that we wish to store values in a Data Lake 

produced by three candidate sources and that these 
sources bear the following characteristics – attributes 
according to the data source blueprints (see figure 3):  

 
 Source 1 

Stable Blueprint Attributes: 
 Name: Source 1 

       Variety-Type: Sensor 
       Variety-Type of data: Unstructured 
       Value: High 
       Velocity: 1sec 
       Veracity: Medium 

Dynamic Blueprint Attributes: 
 Volume: KB 
  Last Update: 24/01/2022; 08:34 
  Keywords: # Products delivery 

 
Figure 4: The basic semantic RDF triple model. 
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Figure 5: Stable and Dynamic data source blueprint ontology graph. 

 Source 2 
Stable Blueprint attributes: 

 Name: Source 2 
       Variety-Type: Business Systems 
       Variety-Type of data: structured 
       Value: High 
       Velocity: 1sec 
       Veracity: Medium 

Dynamic Blueprint attributes: 
 Volume: KB 

       Last Update: 24/01/2022 08:34 
       Keywords: # Products delivery 

 
 Source 3 

Stable Blueprint attributes: 
 Name: Source 3 

       Variety-Type: Web 
       Variety-Type of data: unstructured 
       Value: High 
       Velocity: 12Hours 
       Veracity: High 

Dynamic Blueprint attributes: 
 Volume: KB 

        Last Update: 24/01/2022 06:50 
         

 
By using SPARQL (Protocol and Query Language), 
or other methods, we may query all RDF resources 
before being ingested into the Data Lake or after their 
ingestion. This requires that each data source has its 
description in RDF form as mentioned before, which 

can be retrieved by a public API (RDF API) for the 
sources to be queried. Figure 6 shows the RDF files 
written in XML for Source 1 of the given example 
based on the blueprint ontology description created. 
The XML follows the same structure for every source 
according to its characteristics.  

Let us now assume that all three sources described 
above will become members of our Data Lake. 
Therefore, we must first build a specific part of the 
Data Lake that consists of data sources with Value - 
High, Veracity – Medium OR High, AND Keywords 
- # Products delivery. A source selection middleware 
is fed with these preferred rules (see figure 1) and 
executes the following SPARQL query: 

 
SELECT ? sources 
      WHERE { 

? source <has value>  High  &&  
 <has veracity>  Medium  && 

  <has keyword>  #Products delivery  
               } 
 
Once this selection process is completed, the RDF 
created earlier becomes now part of the Data Lake 
and contributes to the Data Lake’s metadata semantic  
enrichment which is the cornerstone for addressing 
the challenge of easy storing and efficient retrieval of 
data. The result of the query consists of the stable and 
dynamic blueprints of Source 1 and Source 2, which 
satisfy the query parameters and thus will be added to 
the Data Lake’s RDF schema. 
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Figure 6: Stable and Dynamic Blueprint for Source 1. 

The selected data sources are then distributed to 
the specific Data Lake Pond for further processing 
according to the corresponding attribute values. 
Essentially, this process and the associated 
characterization help to handle and manage multiple 
and diverse types of data sources and to contribute to 
the Data Lake’s metadata enrichment before and after 
these sources become members.  

When a data source becomes part of the Data 
Lake, from that point forward the metadata schema is 
utilized for filtering and retrieving data based on the  
blueprints and their metadata. The latter involves 
attributes such as the type of data produced by the 
sources, the size of the data they produce, the speed 
of production, the accuracy of the data, and the 
importance of the source data, etc. Therefore, each 
action for retrieving data from the Data Lake is 
effectively guided by the information provided in the 
metadata mechanism, that is, in the blueprints.  

Especially in the case of the dynamic blueprint, 
this portion of the metadata will dynamically be 
updated each time new data is produced by the 
sources, or when deemed necessary (e.g., when 
changing the location of the associated pond). 

To further demonstrate the applicability and the 
value that the proposed metadata mechanism brings 
to supporting the data actions in a Data Lake, and in 
particular the retrieval of data, let us use once again 
the example of the sources given earlier. As 
previously mentioned, the selected data sources are 

distributed to the specific Data Lake pond for further 
processing according to the corresponding attribute 
values. After the completion of the selection process, 
the retrieval process is based on the metadata 
semantic enrichment – RDF schema of the Data Lake 
encoded in the blueprints. Let us now assume Source 
1 is a member of the pond with structured data and 
that Source 2 is also a member of the pond with 
unstructured data. If we wish to retrieve all the 
product delivery data from our Data Lake by a 
middleware residing between the Data Lake and the 
application layer of a system that uses the Data Lake, 
then in the simplest case all that needs to be done is 
to execute the following SPARQL query: 

 
SELECT ? Dlsources 

 WHERE { 
        ? source  <has keyword>   #Products 

delivery 
  } 

 
Essentially, this performs a classic retrieval action 

from the Data Lake and the result is to push all the 
data sources with the Product Delivery keyword to 
the application layer. Therefore, the data retrieved are 
larger in volume and the complexity to filter them 
after retrieval is higher. If we utilize the metadata 
information offered by the semantic enrichment 
mechanism, then we can refine the type of 
information sought in the Data Lake and get the 
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results we need focusing on specific values or 
attributes. For example, using the attributes shown in 
figure 5 it is feasible to execute more guided queries 
such as: 

 
SELECT ? DLsources 
  WHERE { 
      ? source <has value> High &&  
      <has Variety-Type of data> Unstructured && 
       <has keyword> #Product delivery   

} 
 
These guided queries can range from simple to 

more sophisticated by utilizing the full spectrum of 
the 5Vs data characteristics mentioned in figure 3. 
Thus, they allow data scientists to derive more value 
from their data and to define custom levels of 
granularity and refined information in the data sought 
as required. Essentially, this SPARQL query process 
and the associated characterization support the  
handling and management of multiple and diverse 
types of data sources residing in a Data Lake in a 
simple yet efficient way. 

4 PRELIMINARY VALIDATION 

Sawadogo et al. (2019) identified six main functional 
characteristics that should ideally be provided by a 
Data Lake metadata system: 

 
 Semantic Enrichment (SE) 
 Data Indexing (DI) 
 Link generation and conservation (LG) 
 Data Polymorphism (DP) 
 Data Versioning (DV) 
 Usage Tracking (UT) 

 
Semantic Enrichment consists in generating a 

description of the context of data (e.g., tags) using 
knowledge bases such as ontologies. Semantic 
Enrichment summarizes the datasets contained in the 
lake to make it understandable and to identify data 
links. For instance, data associated with the same tags 
can be considered linked. Our mechanism meets this 
characteristic since it utilizes both the dynamic and 
the stable blueprint based on the basic RDF triple 
model presented in figures 4 and 5. The second main 
functionality identified by Sawadogo et al. (2019) is 
Data Indexing which includes setting up a data 
structure to retrieve datasets based on specific 
keywords or patterns. This functionality provides 
optimization of data querying in the Data Lake 
through keywords filtering. This characteristic is 

offered in our metadata semantic enrichment 
mechanism via the attribute Variety - type of data, 
which is used to distribute data sources and data 
ponds according to their structure and the keyword 
attribute in the stable blueprint as presented in figure 
3. Link generation and conservation is the process of 
detecting similarity relationships or integrating pre-
existing links between datasets to identify data 
clusters, data groups where data are strongly linked to 
each other and significantly different from other data. 
Our mechanism provides this functionality via the 
keyword attributes in the dynamic blueprint which is 
updated every time a new data source or new data that 
is produced by a registered source are pushed to the 
Data Lake. Data Polymorphism is defined as storing 
multiple representations of the same data and Data 
Versioning refers to the ability of the metadata system 
to support data changes during the processing in the 
Data Lake. These functional characteristics are 
provided by our metadata semantic enrichment 
mechanism via the process of storing the metadata 
description - blueprint every time sources in the Data 
Lake change or produce new data. When new data is 
pushed into the Data Lake a new timestamped 
representation of this data is created and stored in the 
Data Lake along with the existing representations-
blueprints. During the data processing in the Data 
Lake, the proposed mechanism updates the Dynamic 
Blueprint, especially the keywords if deemed 
necessary. Finally, the mechanism provides also the 
last referred functionality Usage Tracking which is 
the process of recording the interactions between 
users and the Data Lake. Essentially, when data is 
queried a timestamp accompanied by the user details 
that executed the last query are recorded in the 
Dynamic Blueprint. 

Additionally, Sawadogo et al. (2019) provide a 
synthetic comparison of 15 metadata systems. We 
selected the two most completed systems examined in 
that paper in terms of functionality, that is, CoreKG 
(Beheshti et al., 2018) and MEDAL (Sawadogo et al., 
2019), with the aim to compare them with our 
metadata data mechanism using a set of new 
functional characteristics introduced in this paper. 
These characteristics can add value to the synthetic 
examination of the quality and efficiency of metadata 
enrichment mechanisms for Data Lakes. The new 
characteristics are: 

 
 Granularity 
 Ease of storing/retrieval 
 Size and type of metadata 
 Expandability 
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We define Granularity as the ability to refine the 
type of information that needs to be retrieved using 
for example keywords. This ability is expressed by 
the number of fine-grained levels the metadata 
mechanism supports for defining the information 
sought. Ease of storing/retrieval refers to the ability 
of the metadata mechanism to store or retrieve data in 
the Data Lake in a simple and easy way. It is assumed 
here that the retrieval action is efficient enough to 
return the desired parts of the information sought. 
This characteristic is reflected on the number of steps 
that need to be executed for the process of storing and 
retrieving data items to be completed. The Size and 
type of metadata refers to the volume and the kind of 
metadata that are produced by the mechanism and 
which are necessary for the efficient and accurate 
retrieval of data. The larger the size and/or the higher  
the complexity of the type of data needed the lower 
the performance and suitability of the metadata 
mechanism. Finally, we define Expandability as the 
ability to expand the metadata mechanism with 
further functional characteristics or other supporting 
techniques and approaches, such as visual querying. 
Obviously, the more open the mechanism for 
expansion the better. These characteristics are 
evaluated using a Likert Linguistic scale, including 
the values Low, Medium, and High. Table 1 provides 
a definition of Low, Medium and High for each 
characteristic introduced.  

Table 1: Definition of Low, Medium, and High of each 
characteristic. 

Characteristic Low Medium High 

Granularity 1 level 2 levels  3 or more 
levels 

Ease of 
storing/retrieval 

5 or more 
actions 

3-4 
actions 

2 actions 
maximum 

Size of metadata KB MB GB 

Expandability No or 
limited Normal Unlimited 

As previously mentioned, we used the suggested 
characteristics to provide a short comparison between 
our metadata enrichment mechanism and the two top 
existing metadata mechanisms suggested by 
Sawadogo et al. (2019), that is, MEDAL and 
CoreKG.  

MEDAL adopts a graph-based organization 
based on the notion of object and a typology of 
metadata in three categories: intra-object, inter-
object, and global metadata. A hypernode represents 

an object containing nodes that correspond to the 
versions and representations of an object. MEDAL is 
modeled also by oriented edges which link the nodes 
providing transformation and update operations. 
Hypernodes of the mechanism can be linked in 
several ways, such as edges to model similarity links 
and hyperarcs to translate parenthood relationships 
and object groupings. Finally, global resources are 
present in the form of knowledge bases, indexes, or 
event logs. This concept and operation of the 
framework provide SE, DI, LG, DP, DV, and UT. As  
a result, MEDAL can be characterized with High 
Granularity, Medium Ease of storing/retrieval using 
indexes and event logs, Medium Size and type of 
metadata, and an undefined Expandability since no 
reference is made on how it can be evolved in the 
future. 

CoreKG is an open-source complete Data and 
Knowledge Lake Service which offers researchers 
and developers a single REST API to organize, 
curate, index and query their data and metadata over 
time. At the Data Lake layer, CoreKG powers 
multiple relational and NoSQL database-as-a-service 
for developing data-driven Web applications. This 
enables the creation of relational and/or NoSQL 
datasets within the Data Lake, create, read, update, 
and delete entities in those datasets, and apply 
federated search on top of various islands of data. It 
also provides a built-in design to enable top database 
security threats (Authentication, Access Control and  
Data Encryption), along with Tracing and Provenance 
support. On top of the Data Lake layer, CoreKG 
curates the raw data in the Data Lake and prepares  
them for analytics. This layer includes functions such 
as extraction, summarization, enrichment, linking and 
classification. Another part of the mechanism is the 
Notion of Knowledge Lake, a centralized repository 
containing virtually inexhaustible amounts of both 
raw data and contextualized data as a result to 
providing the foundation for Big Data analytics by 
automatically curating the raw data in data islands so 
as to provide insights from the vastly growing 
amounts of local, external and open data. This open-
source service provides SE, DI, LG, DP, and UT. 
Based on the proposed properties scheme, CoreKG 
can be evaluated to have High Granularity, Medium 
Ease of storing/retrieval using the single API, with 
Medium Size and type of metadata, and High 
Expandability due to the use of the Hadoop 
ecosystem. 

As described in section 4, the proposed metadata 
enrichment mechanism provides DI, LG, DP, DV and 
UT. Furthermore, our mechanism presents High 
Granularity, High Ease of storing/retrieval using the 
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stable and dynamic data source blueprint 
descriptions, with a Medium Size and type of 
metadata, and High Expandability. These values are 
attributed as follows: 
High Granularity is achieved by the use of keywords 
that describe the sources and the blueprint values. 
This enables the user to define details at the level of 
the properties offered by these keywords and the type 
of blueprint characteristics for which values are kept. 
This list of features may be considered quite rich to 
enable the retrieval of data based on fine-grained 
query-like information. The High Ease of 
storing/retrieval is achieved by the blueprint 
description of the Data Lake as each time data sources 
are pushed to the Data Lake a variety of types of data 
attributes is produced, which helps the mechanism 
place the sources to a specific pond according to the 
structure of the data involved (structured, semi-
structured and unstructured). This source distribution 
in the Data Lake facilitates simple and easy storing 
and retrieval of the information stored. Our  
framework is characterized by a low number of 
actions to: (1) Select and query data sources 
according to their stable and dynamic blueprint; (2) 
Push data in specific Data Lake Ponds. The Size and 
type of metadata produced by the mechanism has the 
maximum value of High due to the creation of the 
metadata description of the Data Lake every time new 
sources or data are pushed to the Data Lake and the 
DV characteristic that our blueprint provides by using 
the 5Vs Big Data characteristics. This may be 
considered a small overhead as it introduces a 
considerable number of metadata features, but their 
complexity is very low and their interpretation 
according to the 5Vs quite straightforward. Finally, 
our Data Lake implementation is based on the 
Hadoop ecosystem and hence this provides High 
Expandability. It should be noted here that 
expandability of the proposed mechanism can be 
traced in two aspects: (i) By using this simple 
semantic enrichment and blueprint ontologies we can 
easily apply visual querying during the source 
selection or data extraction; (ii) We may improve 
Data Lakes’ privacy, security, and data governance, 
and, therefore, address some of the main challenges 
met with Data Lakes, by storing the descriptive 
metadata information to the blockchain. This enables 
storing of encrypted metadata information and may 
guarantee immutability of the metadata. Both aspects 
are currently under development as proof of concept, 
with very encouraging preliminary results thus far. 

Table 2 sums up all the information of the short 
comparison between the three mechanisms made in 
this section. It is clear that the proposed mechanism 

seems to perform at least equally well, while in some 
characteristics it seems to prevail, such as Ease of 
storing/retrieval and Expandability.  

Table 2: Evaluation and comparison of the mechanisms. 

Characteristic MEDAL CoreKG Proposed 
approach 

Granularity High High High 

Ease of 
storing/retrieval Medium Medium High 

Size of metadata Medium Medium Medium 

Expandability Undefined High High 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper proposed a novel framework for 
standardizing the processes of storing/retrieving data 
generated by heterogeneous sources to/from a Data 
Lake organized with ponds architecture. The 
framework is based on a metadata semantic 
enrichment mechanism which uses the notion of 
blueprints to produce and organize meta-information 
related to each source that produces data to be hosted 
in a Data Lake. In this context, each data source is 
described via two types of blueprints which 
essentially utilize the 5Vs Big Data characteristics 
Volume, Velocity, Variety, Veracity and Value: The 
first includes information that is stable over time, 
such as, the name of the source and its velocity of data 
production. The second involves descriptors that vary 
as data is produced by the source in the course of time, 
such as the volume and date/time of production.  

Every time data sources or data are pushed in 
and out of the Data Lake, the stable and dynamic 
blueprints are updated thus keeping a sort of history 
of these transactions. Essentially the description of 
the sources helps to treat and manage many, multiple, 
and different types of data sources and to contribute 
to Data Lakes’ metadata enrichment before and after 
these sources become members of a Data Lake. When 
a data source becomes part of the Data Lake the 
metadata schema is utilized, describing the whole 
Data Lake ontology. The filtering and retrieval of data 
is based on this metadata mechanism which involves 
attributes from the 5Vs, attributes such as last source 
updates and keywords.  
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A short comparison to other existing metadata 
systems revealed the high potential of our approach 
as it offers a more complete characterization of the 
data sources and covers a set of key features reported 
in literature and expanded in this work. Furthermore, 
it provides the means to perform efficient and fast 
retrieval of the required information.  

Future research steps will include the full 
implementation of the proposed mechanism using our 
metadata model in the context of structured, semi-
structured and unstructured data. This will allow us to 
evaluate our framework in more detail, and in 
particular to compare it further against other existing 
systems via the use of certain performance metrics. 
This, in turn, will allow us to focus on and improve 
privacy, security, and data governance in Data Lakes 
by using the blockchain technology and smart 
contracts. 
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