
Testing React Single Page Web Application using Automated Testing
Tools

Md Mehedee Hasan1, Mohammad Ashikur Rahman1, Md Salman Chowdhury1,
Md Habibur Rahman1, Kaal Harir Abdulle1, Farzana Sadia2 and Mahady Hasan1

1Department of Computer Science and Engineering, Independent University, Bangladesh, Dhaka, Bangladesh
2Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh

Keywords: Software Testing, Testing Tools, GUI Testing, Automated Testing Tools, Single Page Web Application
Testing, React Application Testing.

Abstract: In modern software development practices, single page application development is becoming popular. Among
the available frameworks, React is a popular platform to develop web applications front-end. For most of the
software, almost half of the application code is for the front-end. Therefore testing the front-end or GUI is
also almost equally important. In modern application development, React is by far the most popular front-end
framework/library. In modern development practice, like agile development or CI/CD development, testing
performance and the easiness of implementing testing tools are very crucial factor. In this paper, three different
testing tools, Jest, Enzyme and Cypress specifically designed for React based single page application, were
analysed. The main objective is to check the execution time performance for the same testing functionality
on different tools, and developer friendliness of these tools. While each tool having their own features and
limitations, for modern development practices like Agile or CI/CD, Enzyme is tested as a better tool which is
both easy to integrate while providing efficiency.

1 INTRODUCTION

In modern web development, testing has become a
very important part in software development. Ensur-
ing the quality of the product is also becoming im-
portant. While testing the business logic at the appli-
cation level ensures the reliability of the applications
functionality, it is also important to test the Graphical
User Interface (GUI) to provide users a more seamless
experience. In modern software applications, around
50% of the application code is for GUI implementa-
tion. (Broer Bahaweres et al., 2020). The modern de-
velopment can be divided into two segments, namely,
a) frontend development, b) backend development.
Front-end web development is the development of the
graphical user interface of a website, through the use
of HTML, CSS, and JavaScript, so that users can view
and interact with that website.(b15, 2021). React is
one of the most popular and widely used libraries
on modern websites. This library can be used for
either single page application (SPA) or even mobile
applications (React Native). Testing the applications
based on React can be slightly different during de-
velopment. Generic testing techniques might not be

effective for such library based GUI (Xiao-Fang Qi,
2017)

When testing GUI, we can have two approaches,
a) Manual Testing where one or more person is man-
ually testing the application and b) Automated testing
where the tests are done based on a written test code
automatically. Manual testing has some advantages,
however, it requires a dedicated QA team (Chen et al.,
2020), manual testing is often costly (Broer Bahaw-
eres et al., 2020) (Garousi and Yildirim, 2018), and
manual testing can be error prone due to human in-
teraction (Silistre et al., 2020). In case of automated
testing, it does require programming knowledge, but
it provides a lot of benefits over manual testing. In
industrial level touch based machines automated test-
ing provides several advantages(Klammer and Ram-
ler, 2017a), it is also beneficial for modern develop-
ment practice like Continuous Integration and Con-
tinuous Deployment (CI/CD) (Alégroth et al., 2018).

While recent studies mostly focuses on particular
tools for testing, there is a little study on how differ-
ent tools performs and how easy to work with them
with Single Page applications, like applications built
on React. To find out how different tools can affect

Hasan, M., Rahman, M., Chowdhury, M., Rahman, M., Abdulle, K., Sadia, F. and Hasan, M.
Testing React Single Page Web Application using Automated Testing Tools.
DOI: 10.5220/0011077900003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 469-476
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

469



the single page applications we developed three main
research objects, a) Easiness of integration of differ-
ent tools, b) How different tool performs for similar
tests and C) Developer friendliness to write test codes
using different tools. In this paper, we will try to study
three different testing tools named, Jest, Enzyme and
Cypress and explore their various attributes like per-
formance, user friendliness, memory cost on React
based websites. Along with our study, we will fur-
ther find the benefits and drawbacks of these tools to
propose a suitable tool for different levels of software
development which in return, can provide better soft-
ware quality with interactive GUI.

2 LITERATURE REVIEW

Modern applications are separated into frontend and
backend development. Backend development is re-
sponsible for the functionality of the business cases
and processing data. One of the benefits of sep-
arating two parts is, the frontend or the backend
can be changed without changing or with very little
changes on the other end. This often provides the
developers to change the backend language without
changing the User experience in the frontend. The
frontend is responsible for handling the user inter-
face through Graphical User Interface (GUI) (b15,
2021). The frontend is often developed as a single
page application (SPA) to provide users a more im-
mersive and interactive experience. Unlike the tra-
ditional web application development where each in-
teraction is achieved through different pages using
HTML and CSS, such interactive pages often take
benefits of javascript, taking the benefits of provid-
ing users the similar experience without refreshing the
pages. The concept of (Asynchronous JavaScript and
XML) AJAX is hugely implemented here. There are
various libraries and frameworks used to develop in-
teractive web interfaces. In recent years, React is by
far the most popular front-end framework/library (and
continues to grow faster) (2021, ). One of the fea-
tures that makes React stand out from traditional web
development is its Virtual DOM functionality. The
virtual dom provides benefits where the codebase is
large. In regular DOM (Data Object Model), these are
in simple words the html and stylesheets, however,
if the project is too large, there can be thousands of
lines of codes which makes it inconvenient and hard
to manage. In React, these large codebases are di-
vided into small components, which can be returned
on user request or based on the data from the server
side.

When testing the frontend or GUI both manual

testing and automated testing is used. Manual testing
provides some benefits but it is often costly and time
consuming (Broer Bahaweres et al., 2020). Previ-
ous research by Filippo Cacciotto, Tommaso Fulcini,
Riccardo Coppola, and Luca Ardito finds that man-
ual testing can be boring, costly and repetitive tasks
which are handled manually (Klammer and Ramler,
2017b). The author proposed gamification in manual
testing which might convince the developers in man-
ual testing. Another drawback of manual testing is
that the test team needs to manually update the test
scripts as the project becomes large (Aho et al., 2021).
Automated testing is becoming more popular day by
day due to the nature of modern software develop-
ment practices. One of the most popular development
practices, Agile development often follows Testing
focused processes such as Test Driven Development
(TDD), Behavior Driven Development (BDD). These
practices are considered to play a very important role
in the success of the project (Broer Bahaweres et al.,
2020). Automated testing is also essential in Continu-
ous Integration and Continuous Deployment (CI/CD)
to make it work efficiently.(Alégroth et al., 2018).
Automated testing tools like Selenium usually re-
quires less maintenance but it requires some program-
ming knowledge (Dobslaw et al., 2019). Muneyoshi
Iyama even proposed a method to generate the auto-
mated test scripts, automatically based on static anal-
ysis and dynamic analysis on the application (Iyama
et al., 2018). Automated testing tools also has the ca-
pability of taking benefit of modern technologies like
Computer vision and Machine learning (Macchi et al.,
2021) (White et al., 2019)

Most of the research focused on only improv-
ing the automated testing methodology or techniques
means how efficiently the test cases can be executed
with the different methodologies such as using ma-
chine learning or AI rather than focused on the test-
ing tools and their efficiency. However, automated
testing tools nowadays outweigh manual tools due to
their many bright aspects. There exists a quite large
number of GUI-testing tools all over the software in-
dustry and have been tremendously used as well. The
goal is the same as with any testing technique - to
identify a manageability small set of test cases that is
sufficiently rigorous and diverse to expose any faults.
However, concentrating on chiefly testing tools, espe-
cially automated testing tools in terms of their perfor-
mance, for example, execution time, error detection
rate, user friendly and so on are the key parameters or
attributes in case of selecting testing tools. Many test
engineers have challenges in the proper and success-
ful implementation of test automation, especially in
the case of VGT (Visual GUI Testing). Though some

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

470



existing studies compare VGT tools, however, test-
ing especially React components automatically that
are based on java scripts are not much available in
the industry for the testers. This paper aims to make a
better understanding of the capabilities of these three
tools and to assist the testers to evaluate the pros and
cons associated with them.

VGT [Visual GUI Testing] tools require a specific
expected output image to assert if what is being ren-
dered is correct according to an expected result. The
main implication of the findings provided is that VGT
can be utilized in industrial practice for a long time
(Alégroth and Feldt, 2017). However, many practic-
ing test engineers have challenges in proper and suc-
cessful implementation of test automation, especially
in the case of VGT. when VGT and GUI test automa-
tion are not planned, designed, or implemented prop-
erly by test engineers, the efforts have led to disap-
pointments and various negative outcomes (Garousi
et al., 2017). Additionally, a new pattern-based GUI
testing (PBGT) technique is introduced that formal-
izes the concept of UI Test Patterns, which are gen-
eral test strategies for evaluating UI patterns across
the many implementations and the findings show that
PBGT is more effective than a manual model-based
test case generation approach (Moreira et al., 2017).

The widespread use of iterative and incremental
processes and continuous integration practices in soft-
ware development has shortened the development cy-
cles, drastically limiting the time for testing and qual-
ity assurance of each release. Instead of months or
weeks, the longest period for testing a release is over
a weekend or a night. The results of an automated
smoke test set are expected almost instantly or in a
few minutes. In practice, a high level of test automa-
tion is a requirement for a successful continuous inte-
gration process (Aho and Vos, 2018). However, eval-
uate the effectiveness of the characteristics on test-
ing cost and fault detection is effectiveness and the
test designer should take a diversity of states in which
an event executes and the event coverage of the suite
to get proper fault detection with effectiveness (Xie
and Memon, 2006). Moreover, On-device test gener-
ation gives faster result for simple application which
needs less computation and On-device test genera-
tion is 3.2 times faster than computer device testing
(Borges et al., 2020).

React framework, unlike regular website, is a sin-
gle page application. In regular websites, there are
usually multiple pages containing different contents.
React on the other hand, is a single page application,
meaning all the contents will render on single page.
React achieves this interactivity by rendering only the
part requested by the user. Such parts are defined as

Component in React. Single page applications are
mostly Ajax based application which is heavily de-
pendent on JavaScript language. It also uses special
templating engine called JSX to render the html con-
tents. Another special feature of single page applica-
tion is Virtual DOM, where the HTML elements are
dynamically updated or rendered. These uniqueness
makes React applications different from regular web-
sites, which also requires the testing tool to be precise
in testing these components or virtually rendered dom
elements or attributes.

In SPAs, all the required components are down-
loaded in the first page load. The twitter’s timeline
and the gmail’s inbox are examples of SPA’s. How-
ever, some contents and components are loaded dy-
namically as the user interacts with it. For example, in
the same web page a user may change tabs open a dia-
log to post new content and execute pagination opera-
tions without changing the URL path in the browser’s
address bar. In a case where a web page generates UI
components dynamically, for example a list of items
appears as a consequence of a page change, or new
items are loaded as the user scrolls, problems in the
user experience (UX) may be perceived. These tools
would not be able to identify it as something to be
carefully analyzed by the developers because the sce-
nario that causes the issue does not happen in the
first page load. It depends on how the user interacts
with the system and when the content is dynamically
loaded (Quental et al., 2019). With the growing vari-
ety of screen sizes and resolutions of mobile devices,
the need to validate GUI layout correctness in differ-
ent screen sizes as well (Hasselknippe and Li, 2017).

React applications needs to be compiled before
using, which can be time consuming based on the
complexity and size of the application. However, in
modern web development, time is one critical met-
ric, on which the success of project highly depends.
Therefore, the objective is to reduce the overall time
taken to implement a feature and publish it with
proper quality. And to ensure the quality, testing must
be done before it is deployed.

Software development practices like Agile devel-
opment or deployment scenarios like CI/CD are a
continuous process where the features and functional-
ities are implemented over time in phases. In each it-
eration, the application also needs to pass through the
testing phase as well. Study shows that, in automated
testing, each attempt at a test case execution can take
a long time, eliminating the possibility of rapidly at-
tempting large numbers of alternatives (Walkinshaw,
2020). Our goal in this paper is to find a suitable tool
which can be easily used to test the application GUI
properly while it takes less time which improves over-

Testing React Single Page Web Application using Automated Testing Tools

471



all application delivery time.
While the papers related to our field of study

mostly focus on choosing manual or automated test-
ing on GUI testing, there is little exploration on how
different testing tools interact with such SPAs. Our
goal in this project is to explore some of the modern
automated testing tools for testing React based single
page applications and observe different metrics which
can provide insightful information.

2.1 Cypress

Cypress is a javascript library used for end-to-end
testing. It can be used to test anything that runs on
a browser. It is often compared with Selenium, but it
has a totally different architecture. It facilitates dif-
ferent testings like End-to-end tests, Integration tests,
Unit tests etc. Cypress is an open source software. It
has a dashboard service which can record our test runs
and produce logs. Setting up cypress is very easy. No
servers, drivers or dependencies to install or config-
ure. As an application is developed, the tests can be
seen running in real time.

2.2 Enzyme

Enzyme is a JavaScript Testing utility for React that
makes it easier to test your React Components’ out-
put. In this framework testers can manipulate and
traverse the component. Learning curve is slightly
Tough.

2.3 Jest

Jest is another popular testing tool for javascript. Jest
is developed and maintained by Facebook Inc and
widely popular among javascript developers. Jest can
be used to test different types of projects both in back-
end and frontend. It focuses on simplicity to pro-
vide developers with faster testing. Jest is well doc-
umented and often recommended for React projects,
however, it is not suitable for a beginner level devel-
oper.

3 METHODOLOGY

A lot of testing tools exist that are based on different
architectural designs and implementations. As a con-
sequence, it is not possible for researchers, and practi-
tioners alike, to make an informed decision on which
tool to use and on the strengths and weaknesses of the
tools. Because of the nature of modern software de-
velopment techniques, automated testing is becoming

increasingly prevalent. In our research, we addressed
this issue by comparing three automated testing tools
that work for React projects. React has become a very
popular and extensively used tool among front-end
developers. The tools are Jest, Cypress and Enzyme.
They are open source testing tools which are archi-
tecturally very different from each other. This pa-
per compares the execution time, error detection rate,
CPU usage and the ease of effort to set up or develop
the tools.

To select our test projects, we performed a search
on Github to choose an interactive React application
on which we would implement the test scripts. We
selected a popular React based app named TakeNote
which has over 5100 stars and forked over 740 times.
This is a simple note taking application which has the
ability to create, edit, delete and update notes and can
create categories. TakeNote, an interactive app, will
be ideal for putting the three tools to the test. The
data from the tools will be stored and compared for a
full review of the tools. The testers are divided into
three groups and each group assigned to each of the
three tools. A list of test cases are prepared and the
groups implement all the test cases with their respec-
tive tools. After running the test cases, the data is
collected and compared. The running time, time to
set up, ease of integration, error detection rates would
give us enough data to analyse and provide insights
for software business ranging from startups to enter-
prises.

Figure 1: GUI of TakeNote Application.

Writing test cases can be error-prone and a tester’s
ability or skill level to write a test script may produce
a bias for different tools. And also, the very different
way cypress behaves from the other two testing tools
may provide a challenge in reaching a solid conclu-
sion. In order to minimize these issues, the test scripts
are shared between the testers to prevent the scripts
from being too different in terms of code complexity.
Another limitation of our experiment that the number
of tests are relatively small and the project is compar-
atively simpler. The real world application may have

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

472



other dependencies which might force the developer
team to go with specific tool regardless the benefit or
limitation of any tool.

4 RESULT ANALYSIS

We targeted to respond to the following main research
questions (RQs) in our study: How do these three
tools compare when they are used to test React com-
ponents from a single web page running the same test
scripts? To evaluate the RQs methodically and for
various features, we separated them into three sub-
research questions:

• RQ1: How do the three tools compare in terms of
integration?

• RQ2: How do the three tools compare in terms of
“execution time” for the same test case?

• RQ3: How do the three tools compare in terms of
user friendliness?

Before the tests were actually ran, we needed to inte-
grate these tools with the project. We forked the main
application from GitHub and created three different
branch for each tools. And then we implemented our
tools with configuration and packages. During our
implementations, we came across some of the differ-
ences among these tools. In modern React applica-
tions, the Jest is provided as default testing tools with
the default project skeleton. Both Enzyme and Cy-
press needs to be added separately. Jest while itself
can not interact with the GUI directly, it depends on
JEST-DOM and testing-packages to interact with the
GUI elements. Enzyme operates similarly. However
the main benefit of Jest is that it can be used to test the
internal functionalities of React Components. Docu-
mentation from Jest shows that it can be used to test
in business logic & functionalities as well. Enzyme
performs similarly, however, it has the benefit to test
a component without the need to render other compo-
nents within that component. Cypress, on the other
hand focuses on GUI. It has a native GUI where the
tests can be simulated and monitored. However, if
a developer is working on Linux system, cypress re-
quires few operating system dependencies to be re-
solved before it can be operated. Once we have con-
figured each tool with the project, we found the Jest to
be easiest solution to start since it’s already integrated,
being Cypress the hardest one to configure since it has
operating system library dependencies.

To observe how easy or hard to use each of these
tool we explored different functionalities and facili-
ties provided by each tools. Different GUI actions
like Clicking, Typing, double click or navigating is

Table 1: Test Cases.

S/L Test Scenario
1 User can click on the + button on Category

menu and new category input field should
appear, upon typing the name, when clicked
outside, a new category should be created

2 Category list should be hidden when user
clicks Category menu, if there are categories

3 When user clicks Sync button, a current time
should be displayed as synced time.

5 When user visits the website, the application
should be properly rendered

6 User can change to dark mode by clicking the
‘Theme‘ button at bottom right

7 User can start a new note by pressing
‘CTRL+ALT+N‘

8 When a user clicks on a New note, it should
take the user with a empty note

9 Settings modal should open when a user
clicks on the settings icon

10 When user clicks the Scratchpad menu, it
should take to the Scratchpad view

11 When user clicks on New note menu, it
should open a new note

12 On the menu list a search box should be ren-
dered which can be used to search notes

13 When the main view is loaded, Add new cat-
egory menu should be rendered and ready for
action

14 When user clicks on Preference tab in Set-
tings modal, it should render the preference
options

15 When user clicks on Data management tab
in Settings modal, it should render the data
management options

16 When user is on the data management tab,
user should see an Export Button to export
the notes

17 When user is on the data management tab,
user should see an Import Button to import
notes from other sources

18 When user is on the data management tab,
user should see an Download all button to
download

19 When user is on the About tab, user should
see an View source Button to see the details
about the app

20 User should see logout button when they are
in Settings modal

not directly possible with Jest and Enzyme, rather re-
lies on fireEvent, render or screen functionalities pro-
vided by testing-library/React package. These tools
provides jest to trigger different events on GUI. En-

Testing React Single Page Web Application using Automated Testing Tools

473



zyme, in our observation performs similarly, since it
depends on Jest by default, however this can be con-
figured with other tool as well. Cypress on their other
hand, provides a handful of features to interact with
the different GUI elements. We found cypress very
easy for writing the test codes, while both Jest and
Enzyme has some learning curve.

To study the behavior of our selected tools, a num-
ber of tests were generated to test different elements.
Then these tests were written using three tools, The
dependencies, limitations and benefits of integrating
and writing the test codes were closely logged during
developing the test codes. Table 1 contains the test
cases defined for our study

After test codes were written and prepared using
three different tools, the execution time is observed
on two different computers with different configura-
tion for 20 times. The first for each tool is recorded
separately as the first run of each tools take longer
time. The first run of the test codes usually indicates
a fresh set of test codes. If there are no changes in
the test codes, the later test runs take less time to run
the codes. If there is any change that is implemented
later the test run time increases as the tests run run
from scratches. We have ran 20 more tests with each
tool and find the average time needed for each tool to
complete the test. To avoid any other impacts we ran
all the test in single test file.

For hardware we chose one desktop configuration
running Linux operating system and one laptop con-
figuration running MacOS system. It would help us
to identify if the operating system can cause differ-
ent performance result. Also, during the development
phase, software developers either uses desktop or lap-
top, so it was also our objective if different hardware
configuration can bias the testing performance. Ta-
ble 2 contains the detail of our two test machines.

Table 2: Hardware Configuration.

Item Configuration 1 Configuration 2
CPU 4 Core 8 Thread 2 Core 4 Thread
Frequency 4Ghz 2.7Ghz
RAM 16 GB 16 GB
OS Linux Mac OS

First we ran the test on our desktop configuration.
Tests were run for 21 times for each tool. From the
records of Table 3 we can see on the first run Jest
took the least time of 3.85 seconds and followed by
Enzyme and Cypress with score of 5.62 seconds and
6.36 seconds. Then we ran the tests for another 20
times to find the average time for each tool.

In first configuration the Enzyme took least time to
complete each 9 tests with an average of 3.73 seconds

Table 3: Test Scores on Configuration 1.

Test Jest Enzyme Cypress
Initial 7.723 10.896 9.61

Average 5.25 3.73 8.12

followed by Jest with 5.25 seconds. Cypress achieved
3rd position with comparatively longer time of 8.12
seconds.

Figure 2: Test Run Time on Configuration 1.

Figure 2 shows that throughout the tests, the per-
formance of Jest remains almost consistent including
the initial test run. Enzyme behaves similarly, how-
ever the initial run time for Enzyme is almost 3 sec-
onds longer than Jest. Cypress on the other hand is not
as consistent as other two tools and provides different
time in each tests.

Then we ran the same tests on our 2nd configura-
tion and observed the performance of each tool. Since
this configuration is comparatively weak, tools took
comparatively longer time than 1st configuration. In
such configuration, for the first run, Enzyme scored
the lowest with 19.55 seconds, followed by Cypress
and Jest with 18.81 and 16.016 seconds respectively.
In consecutive tests, Enzyme scored first with average
of 7.24 seconds, followed by Jest with 10.21 seconds
and Cypress scored last with 14.70 seconds.

Table 4: Test Scores on Configuration 2.

Test Jest Enzyme Cypress
Initial 16.016 19.55 18.81

Average of 20 10.21 7.24 14.70

In our configuration 2, Enzyme again scored the
lowest score with 7.24 seconds, Jest finished the tests
with an average of 10.21 seconds and Cypress scored
last with 14.70 seconds.

Figure 3 indicates that both Jest and Enzyme per-
forms similarly across the whole test runs. The output
from 1st configuration and configuration 2 are iden-
tical, In 2nd configuration the time for each time is
increased proportionally due to lower CPU configu-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

474



Figure 3: Test Run Time on Configuration 2.

ration. However comparing the Figure 2 & Figure 3
we can see the performance of each tool remains sim-
ilar.

4.1 Observations

While implementing and analyzing each tool for test-
ing, we observed and studied different scenarios for
each tools. Functionalities like, tool scope, inte-
gration with project, developer friendliness etc were
monitored.

• Enzyme is faster than other two tools in executing
tests. Which is very helpful for performing testing
with lots of tests, where testing takes less time al-
lowing developers to deploy the application faster.

• Cypress is very easy to write and test. It also has
native GUI to simulate the test activities. It is very
easy for developers to begin with GUI testing.
However, integrating Cypress is little bit complex,
it also has OS library dependency in certain OS
which increases the project setup complexity.

• Jest while is not as fast as Enzyme, in React ap-
plications, it comes built in, therefore there is no
need for extra setup. Another big benefit of Jest is
that it can be used for both back-end and front-end
testing, making it very convenient for Full Stack
developers.

From the analysis we found from our experiment, we
generated a score for each tool, based on likert chart,
where 1 is the lowest score and 5 being the highest.
For Navtive GUI option we either gave 0 or 1 based
on its availability.

From the Table 5 we can see Jest scores high-
est with 17 points, while Enzyme is very close with
16 points but Cypress is lagging behind with only 12
points.

Table 5: Findings based on analysis.

Research Topic Jest Enzyme Cypress
Time 4 5 2
Integration 5 3 2
Ease of Use 3 3 5
Consistency 5 5 2
Native GUI 0 0 1
Total Score 17 16 12

5 CONCLUSIONS

As modern development is becoming advanced and
more complex, more focus should be given to test-
ing. For Front-End, as single page application devel-
opment is getting popular day be day, Modern devel-
opment practices such CI/CI is highly dependent on
automatic processes, therefore an automated testing
tool can contribute in reducing development and de-
ployment time. We evaluated three different but pop-
ular testing tools and provided an empirical review.

This study was not empirically evaluated due to
some unavoidable circumstances, such as covid situ-
ation was major. Besides, research questions (RQs)
and analysis are solely based on literature reviews as
well as work experience. However, analysis after do-
ing survey or getting gap amongst the tools could have
enriched the result more perfectly wherein some sug-
gestions or guideline could be recommended for the
testers to do automated testing more effectively and
efficiently. This study compared the tools focusing
on primarily execution time to perform the test cases.
However, adding other factors to our study like re-
source usage could also improve our research with
cost optimization. In future we plan to do a survey
among different companies about their GUI testing
tool usage for React based applications to find more
industry relevant benefits and limitations and explore
other parameters which might have contribution to
testing performance.

REFERENCES

(2021). Front-end web development. Page Version ID:
1053051857.

2021. Front-end frameworks popularity (React, Vue, Angu-
lar and Svelte).

Aho, P., Buijs, G., Akin, A., Senturk, S., Ricos, F. P.,
de Gouw, S., and Vos, T. (2021). Applying Script-
less Test Automation on Web Applications from the
Financial Sector. In JISBD2021. SISTEDES.

Aho, P. and Vos, T. (2018). Challenges in automated testing
through graphical user interface. In 2018 IEEE Inter-

Testing React Single Page Web Application using Automated Testing Tools

475



national Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 118–121.

Alégroth, E. and Feldt, R. (2017). On the long-term use of
visual gui testing in industrial practice: a case study.
Empirical Software Engineering, 22(6):2937–2971.

Alégroth, E., Karlsson, A., and Radway, A. (2018). Contin-
uous integration and visual gui testing: Benefits and
drawbacks in industrial practice. In 2018 IEEE 11th
International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 172–181.

Borges, N. P., Rau, J., and Zeller, A. (2020). Speeding up
gui testing by on-device test generation. In 2020 35th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1340–1343.

Broer Bahaweres, R., Oktaviani, E., Kesuma Wardhani,
L., Hermadi, I., Suroso, A., Permana Solihin, I., and
Arkeman, Y. (2020). Behavior-driven development
(bdd) cucumber katalon for automation gui testing
case cura and swag labs. In 2020 International Con-
ference on Informatics, Multimedia, Cyber and Infor-
mation System (ICIMCIS), pages 87–92.

Chen, Y., Pandey, M., Song, J. Y., Lasecki, W. S., and Oney,
S. (2020). Improving crowd-supported gui testing
with structural guidance. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Sys-
tems, CHI ’20, page 1–13, New York, NY, USA. As-
sociation for Computing Machinery.

Dobslaw, F., Feldt, R., Michaelsson, D., Haar, P.,
de Oliveira Neto, F., and Torkar, R. (2019). Estimating
return on investment for gui test automation frame-
works. pages 271–282.

Garousi, V., Afzal, W., Çağlar, A., Işık, u. B., Baydan, B.,
Çaylak, S., Boyraz, A. Z., Yolaçan, B., and Herk-
iloğlu, K. (2017). Comparing automated visual gui
testing tools: An industrial case study. In Proceed-
ings of the 8th ACM SIGSOFT International Work-
shop on Automated Software Testing, A-TEST 2017,
page 21–28, New York, NY, USA. Association for
Computing Machinery.

Garousi, V. and Yildirim, E. (2018). Introducing automated
gui testing and observing its benefits: An industrial
case study in the context of law-practice management
software. In 2018 IEEE International Conference on
Software Testing, Verification and Validation Work-
shops (ICSTW), pages 138–145.

Hasselknippe, K. F. and Li, J. (2017). A novel tool for
automatic gui layout testing. In 2017 24th Asia-
Pacific Software Engineering Conference (APSEC),
pages 695–700.

Iyama, M., Kirinuki, H., Tanno, H., and Kurabayashi, T.
(2018). Automatically generating test scripts for gui
testing. In 2018 IEEE International Conference on
Software Testing, Verification and Validation Work-
shops (ICSTW), pages 146–150.

Klammer, C. and Ramler, R. (2017a). A journey from man-
ual testing to automated test generation in an industry
project. In 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion
(QRS-C), pages 591–592.

Klammer, C. and Ramler, R. (2017b). A journey from man-
ual testing to automated test generation in an industry

project. In 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion
(QRS-C), pages 591–592.

Macchi, F., Rosin, P., Mervi, J. M., and Turchet, L. (2021).
Image-based approaches for automating gui testing of
interactive web-based applications. In 2021 28th Con-
ference of Open Innovations Association (FRUCT),
pages 278–285.

Moreira, R., Paiva, A., Nabuco, M., and Memon, A. (2017).
Pattern-based GUI testing: Bridging the gap between
design and quality assurance. Software Testing, Veri-
fication and Reliability, 27.

Quental, N. C., de Albuquerque Siebra, C., Quintino, J. P.,
Florentin, F., da Silva, F. Q. B., and de Medeiros San-
tos, A. L. (2019). Automating gui response time
measurements in mobile and web applications. In
Proceedings of the 14th International Workshop on
Automation of Software Test, AST ’19, page 35–41.
IEEE Press.

Silistre, A., Kilincceker, O., Belli, F., Challenger, M., and
Kardas, G. (2020). Models in graphical user interface
testing: Study design. In 2020 Turkish National Soft-
ware Engineering Symposium (UYMS), pages 1–6.

Walkinshaw, N. (2020). Improving automated gui testing by
learning to avoid infeasible tests. In 2020 IEEE Inter-
national Conference On Artificial Intelligence Testing
(AITest), pages 107–114.

White, T. D., Fraser, G., and Brown, G. J. (2019). Im-
proving random gui testing with image-based wid-
get detection. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, ISSTA 2019, page 307–317, New York,
NY, USA. Association for Computing Machinery.

Xiao-Fang Qi, Zi-Yuan Wang, J.-Q. M. P. W. (2017). Auto-
mated testing of web applications using combinatorial
strategies. Journal of Computer Science and Technol-
ogy, 32(1):199.

Xie, Q. and Memon, A. (2006). Studying the characteristics
of a good gui test suite. pages 159 – 168.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

476


