
Using Hexagonal Architecture for Mobile Applications

Robin Nunkesser
Hamm-Lippstadt University of Applied Sciences, Marker Allee 76–78, 59063 Hamm, Germany

Keywords: Hexagonal Architecture, Software Architecture, Mobile, iOS, Android.

Abstract: Complex mobile applications require an appropriate global architecture. If used correctly, the high-level design
patterns officially recommended for iOS and Android such as MVC, MVVM, and MVI/MVU may make
an important contribution to the architecture, but they often require supplementary architectural concepts.
General architectures such as Clean Architecture may come to the rescue but leave room for interpretation
as to how they work best on iOS and Android. This paper discusses using Hexagonal Architecture as the
fundamental global architecture for mobile architectures, providing an extendable approach suitable for small
and large projects and helping to achieve more independence from frameworks and external agencies and
better testability.

1 INTRODUCTION

When Apple published the iPhone SDK in 2008, they
recommended adhering to the guidelines of the Co-
coa Fundamentals Guide. A central role is played by
their flavor of the Model View Controller (MVC) pat-
tern originally introduced by Smalltalk (see e.g. Reen-
skaug, 1979), which is described by Apple Computer,
Inc. (2006) as a "high-level pattern in that it concerns
itself with the global architecture of an application".
Technically, it is mainly a combination of GoF pat-
terns from Gamma et al. (1995) and a grouping of ob-
jects into the three categories of models, views, and
controllers (see Figure 1).

� � � � � � � � � �

Mediator
Strategy

� � � �

Command
Composite

� � � � �

Observer
� � � � � �

� � � � � �

� � � � � �

� � � �� � � � � �

Figure 1: Reproduction of Apple MVC from Apple Com-
puter, Inc. (2006).

Google also recommended MVC and varia-
tions such as Model View Presenter (MVP) and
Model/View/ViewModel (MVVM) (e.g. in Android
Jetpack ViewModel) for implementing Android apps.
Since the introduction of SwiftUI and Jetpack Com-
pose, Apple and Google have recommended similar
MVC variations of Model View Controller inspired

by Model-View-Intent (MVI; introduced by Staltz,
2015) and Model View Update (MVU; introduced
by Czaplicki, 2016). SwiftUI and Jetpack Compose
introduce state management concepts that facilitate
these newer variations.

As stated above, MVC, MVP, MVVM, MVI, and
MVU (abbreviated to MVX in the following) are
high-level patterns contributing to the global archi-
tecture, but they are clearly not global architectures
which suffice for complex mobile applications.

There are basically three choices for the global ar-
chitecture: use none in addition to MVX, use an archi-
tecture specifically proposed for mobile applications,
or use a known general software architecture.

In a first step, this paper shows advantages and
disadvantages of these three choices resulting in a rec-
ommendation of using a general software architecture
for mobile applications with nontrivial business logic.
As a second step, possible disadvantages of choos-
ing the currently popular Clean Architecture (Martin,
2017) are shown in combination with arguments in fa-
vor of Hexagonal Architecture (introduced by Cock-
burn, 2005). In a final step, challenges and solutions
when using Hexagonal Architecture for mobile appli-
cations are presented.

2 RELATED WORK

There are many articles on architectural topics for mo-
bile applications in blogs and non-reviewed digital

Nunkesser, R.
Using Hexagonal Architecture for Mobile Applications.
DOI: 10.5220/0011075100003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 113-120
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

113

publications, but the focus here is on scientific pub-
lications.

To the best of our knowledge, there are scant pa-
pers on global architectures for mobile applications.
Sommerville (2020) mostly treats mobile applications
and web applications equally and only seldom ex-
pands on the special requirements of mobile apps.
Salazar and Brambilla (2015) concentrate on a high-
level process to guide application developers in the
task of designing a suitable software architecture.

The high-level MVX design patterns are con-
sidered by more papers. La and Kim (2010) pro-
pose an adaption of MVC for large-scaled mo-
bile applications. Shahbudin and Chua (2013)
also propose an adaption called Extended MVC.
Sokolova and Lemercier (2014) propose another
adaption called Android passive MVC. Aljamea and
Alkandari (2018) focus on MVC and MVVM on
iOS, Plakalovic and Simic (2010) focus on MVC
and PAC (Presentation-Abstraction-Control; another
high-level design pattern). Dobrean and Dios, an
(2019) present a comparative study of MVC, MVP,
MVVM, and VIPER (an architecture proposed for
iOS in Gilbert and Stoll, 2014). This is the only
of the mentioned papers, where a global architecture
(VIPER) is considered. However, VIPER is iOS only.

Apart from the work on MVX, some papers are
considering special cases. Wichmann et al. (2009) fo-
cus on the specific task of reusability for mobile ap-
plications with location-based services.

None of the mentioned papers focuses on the use
of general global software architectures for mobile
applications.

3 ARCHITECTURAL CHOICES
FOR MOBILE APPLICATIONS

Before we delve into architectural choices for mobile
applications, it is necessary to look at the special re-
quirements of mobile app engineering.

3.1 Requirements of Mobile App
Engineering

Mobile app engineering has some specific aspects that
differ from traditional software engineering. Most of
these aspects are based on the mobile hardware the
software runs on. Only some aspects derive from the
common operating systems for mobile devices.

• A gap between development and runtime hard-
ware

• A large amount and variety of sensors and actors

• Need for efficient code (memory, power, ...)

• Short release cycles of hardware and software

• Customization for individual device types

• Data storage, synchronization, and offline avail-
ability

• A high amount of UI code

• Event and lifecycle-based programming

• Concurrency with a special role for the UI thread

This list is not meant to be exhaustive. It fo-
cusses on aspects that are relevant for architectural
choices. The works of Wasserman (2010), König-
Ries (2009), Vollmer (2017), Knott (2015), and Som-
merville (2016, 2020) may be of interest for details
and further aspects.

3.2 Architectural Goals for Mobile
Applications

Two architectural goals are especially helpful in cop-
ing with the mobile specific aspects of software de-
velopment: independence of frameworks and external
agencies and testability.

3.2.1 Independence

Independence from frameworks and external agencies
is essential for mobile applications. It can be helpful
in coping with the gap between development and run-
time hardware by enabling code components to run
on both hardwares, helping with unit tests and reuse
beyond iOS and Android. By offering better flexibil-
ity, it also helps with the short release cycles, large
variety of hardware and software, and customization
needs.

3.2.2 Automatic Testing

Many of the stated aspects of mobile applications con-
tribute to the complexity of testing for mobile appli-
cations. While the benefits of automatic testing are
well known (see e.g. Rafi et al., 2012), we also know
(e.g. from Beller et al., 2015) that many developers
do not test. This is especially true for the mobile
world, where we should divide automatic tests into
at least three classes: local unit tests (on the develop-
ment hardware), unit tests (on the runtime hardware),
and UI tests. One of the main benefits of unit tests
given by Beck (2002) is rapid feedback, which is only
achieved by local unit tests. Therefore, good global
architectures support a high ratio of local unit tests.

ICSOFT 2022 - 17th International Conference on Software Technologies

114

3.2.3 Modularity

Modularity is another architectural goal that is helpful
for software in general. The ability to divide a soft-
ware project into separate modules helps with reuse
and may also be useful for the before mentioned goals
independence and testability.

Table 1 shows an overview of these goals.

Table 1: Overview of important architectural goals.

Independence Independence of external agencies
Testability Amenability to automatic tests,

and especially local unit tests
Modularity Capability to be divided into mod-

ules

3.3 Assessment of the Architectural
Choices

Currently, developers and architects typically either
use the endemic (see e.g. Nunkesser, 2018) high-level
MVX patterns, mobile specific architectures, or a mo-
bile adaption of a global architecture.

3.3.1 Only MVX

Modern smartphones have a lot of computing power
and developers have the freedom to execute complex
tasks on the device or in the cloud. For apps with a
lot of business logic, view-focused MVX patterns are
not enough. Even apps that make heavy use of cloud
services may be in need of an architecture that allows
flexibility in changing these services and testability
for the external dependencies.

3.3.2 Mobile Specific Architectures

Mobile specific architectures typically use a tight in-
tegration of third party code. Functional Reactive
Programming is a popular example that tightly inte-
grates external dependencies, which in itself prohibits
achievement of the desired independence from frame-
works and external agencies.

In summary, using mobile adaptions of global
software architectures is the most promising approach
for achievement of the stated architectural goals.

3.3.3 Mobile Adaptions of a Global Architecture

VIPER (Gilbert and Stoll, 2014), VIP (Law, 2019),
and CleanArchitectureRxSwift1 attracted a lot of
attention on iOS. Android-CleanArchitecture2 (see

1https://github.com/sergdort/CleanArchitectureRxSwift
2https://github.com/android10/Android-

CleanArchitecture-Kotlin

also Cejas, 2019), Wojda’s Android Showcase3, and
Kušt’s Clean Architecture Tutorial (Kušt, 2019) are
popular examples on Android. All of them apply Mar-
tin’s Clean Architecture to mobile apps.

Clean Architecture itself integrates ideas from
preceding architectural concepts such as EIC/EBI by
Jacobson et al. (1992), Hexagonal Architecture (a.k.a.
Ports and Adapters) by Cockburn (2005), Onion Ar-
chitecture by Palermo (2008), and DCI from Coplien
and Bjørnvig (2011) and adds principles and con-
cepts. Clean Architecture and derived architectures
are typically well-suited to the architectural require-
ments of more complex mobile applications.

One major problem posed by Clean Architecture,
however, is the lack of official reference implementa-
tions for different platforms (in Martin’s books, his
blog, training videos, and GitHub account, for ex-
ample). The official examples are FitNesse4 (a real-
world project not tailored to learning Clean Archi-
tecture), Payroll (e.g. in Martin and Martin, 2006),
made with similar principles but not the same nam-
ing conventions as Clean Architecture), Video Sales
(in Martin, 2017, which is surprisingly brief), and the
CleanCodeCaseStudy5, which is well suited to learn-
ing Clean Architecture but not promoted as a Clean
Architecture example. There is even an example for
iOS6, which is very different from VIP and VIPER,
but also lacks some useful ideas presented in Martin
(2017).

The suboptimal situation with regard to official
reference implementations leads to problems: a large
variety of unofficial examples (as of January 2022,
a search for "Clean Architecture" on GitHub returns
826 repositories with Swift examples and even 3.303
repositories with Kotlin examples) with little quality
assurance and often conflicting concepts. To elicitate
this problems, we consider the six popular approaches
mentioned. Table 2 provides an evaluation of these
approaches with regard to the criteria shown in Table
1. In addition the faithfulness to Clean Architecture
is evaluated.

The assessment of these criteria uses the following
scheme:

High The approach fulfils the criterion or
shows only a minor deviation.

Medium The approach fulfils the criterion in
some but not all aspects.

Low The approach does not fulfil the crite-
rion.

3https://github.com/igorwojda/android-showcase
4https://github.com/unclebob/fitnesse
5https://github.com/cleancoders/CleanCodeCaseStudy
6https://github.com/unclebob/MACS_GOMOKU

Using Hexagonal Architecture for Mobile Applications

115

Table 2: Comparison of existing Clean Architecture implementations.

Independence Testability Modularity Faithfulness
VIPER High Medium Low Medium
VIP High High Low High
CA-RxSwift Low Medium High Medium
Android-CA Medium Medium Medium High
Wojda Medium High High High
Kušt High High High Medium

Of the examples considered, none matches all ex-
pectations fully. As a representational example let
us delve into the assessment of CleanArchitecture-
RxSwift’s independence as low. The dependance on
RxSwift clearly justifies this assessment.

A problem in the application of Clean Architec-
ture is that a suboptimal starting point has led to a va-
riety of embodiments with sometimes conflicting and
sometimes even incorrect interpretations. As a conse-
quence, Clean Architecture examples for iOS and An-
droid tend to give a lot of platform-specific guidance,
often sacrificing independence and sustainability.

It is useful to reiterate that there are predecessors
to Clean Architecture like Hexagonal Architecture,
that were also designed with independence, testabil-
ity, and modularity in mind, but may be easier to un-
derstand, implement, and extend.

4 HEXAGONAL ARCHITECTURE

Hexagonal Architecture was among the first architec-
tures to break up traditional layering in favor of what
would later become "onion" layering.

Cockburn (2005) introduces Hexagonal Architec-
ture (also known as Ports and Adapters) and explicitly
states the aim to:

"Allow an application to equally be driven
by users, programs, automated test or batch
scripts, and to be developed and tested in iso-
lation from its eventual run-time devices and
databases."

The idea incorporates an application core with
ports (protocols or interfaces) that define how the ap-
plication may be used (by "driving adapters"; port
implementations are in the core) and what data the
application needs (provided by "driven adapters" im-
plemented externally) (see Figure 2 for an illustra-
tion). The application core is technology-agnostic and
contains the business logic of the application. Typi-
cal driving adapters are the UI, a testing framework,
and external applications. Typical driven adapters are
repositories which allow read operations and often
also create, retrieve, and update operations and recip-

ients in receipt of data. Driving adapters and driven
adapters are configurable dependencies. Two details
are missing from the description: where is the start-
ing point of the application and where are the depen-
dencies configured? These decisions are problem and
platform dependent and are therefore not part of the
architecture description.

Hexagonal Architecture has a very easy concept
for achieving the main architectural goals discussed
here. The biggest advantage, however, is that it may
be easily combined with known concepts. Vernon
(2013) states: "Because the Hexagonal Architecture
is versatile, it could well be the foundation that sup-
ports other architectures required by the system. [...]
The Hexagonal style forms the strong foundation for
supporting any and all of those additional architec-
tural options."

Hexagonal Architecture with MVVM for the GUI
and EBI for the application core, for example, is
a valid implementation of Clean Architecture. Us-
ing DDD (Evans, 2003) for the application core pro-
vides the basis for Palermo’s Onion Architecture
(Palermo, 2008) and Graça’s Explicit Architecture
(Graça, 2017). Building your architecture upon this
idea also facilitates using MVI/MVU.

4.1 Reference Example

Several reference examples for Hexagonal Architec-
ture exist. This paper focusses on hexagonalThis7

because it is relatively new (2017) and approved by
Alistair Cockburn. hexagonalThis is a .NET Console
application written in C#. The example gives the ar-
chitectural frame and a basic implementation of an
application that provides poetry.

Figure 3 shows the class diagram of the applica-
tion without the modules used for automatic testing.

The application core consisting of PoetryReader
has access to a poem repository through the
port IObtainPoems. The poem repository port
is defined technology-agnostic, in the example a
PoemFileAdapter that reads from an embedded
JSON file is used.

7https://github.com/tpierrain/hexagonalThis

ICSOFT 2022 - 17th International Conference on Software Technologies

116

Drivers Repositories Recipients

user-side API

Application (#)

test
adapter

GUI
adapter

app-to-app
adapter

DB access
service

mock in-memory
database email adapter

data-side API 1 data-side API 2

Figure 2: Hexagonal Architecture (Reproduction from Cockburn, 2005).

Start / Dependency Configuration

Application

Ports (driving)

Ports (driven)

Infrastructure

Repository Drivers

Program

Main()

PoetryReader

IObtainPoems poetryLibrary

IRequestVerses

string GiveMeSomePoetry()

IObtainPoems

string GetAPoem()

PoemFileAdapter ConsoleAdapter

IRequestVerses poetryReader

Figure 3: Minimal Example.

The application core offers the method
GiveMeSomePoetry through the IRequestVerses
port to driving adapters. In this example, the
ConsoleAdapter is used to provide a console-based
UI.

The concrete dependencies are configured in the
separate Program class, which is also the applica-
tion’s entry point.

4.1.1 Independence and Testability

The PoemFileAdapter and the ConsoleAdapter are
configurable dependencies. The application itself
is independent of them through the use of ports.
Keeping dependencies configurable does not neces-
sarily mean that a dependency injection framework is
needed, however. It may be enough to consider which
dependencies have to be flexible and organize them
in a transparent way that is easy to change. In hexag-
onalThis, the dependencies are configured directly in
the application’s startup code.

The PoemFileAdapter and the ConsoleAdapter
are also amenable to testing. They are separated ac-

cording to concern and independent of each other and
the application core. However, the application itself
is also amenable to testing, as a test adapter may use
the IRequestVerses port and a mock implementa-
tion may implement the IObtainPoems port.

A typical development sequence with automated
tests is shown in Table 3.

4.1.2 Modularity

The criteria from Table 1 used in Section 3.3 to com-
pare Clean Architecture implementations also encom-
pass modularity. Hexagonal Architecture clearly sup-
ports modularity, as every adapter that implements a
port may be extracted to a separate module.

4.1.3 Comparison

There are two major beneficial differences in compar-
ison with the considered implementations in Section
3.3. The reference example is basic and therefore easy
to understand but also expandable and so enough to
deliver the idea of Hexagonal Architecture. In addi-
tion, no external and no platform-dependent technolo-
gies are used and additional high-level MVX patterns
or concepts like EBI and DDD may be integrated.

4.2 Considerations for Mobile
Applications

Section 3.1 contains specific aspects of mobile appli-
cation development. Some of these aspects have to
be addressed so that Hexagonal Architecture can be
implemented in mobile applications. Among the spe-
cific aspects, the gap between development and run-
time hardware when developing mobile applications
has the highest impact for the application of Hexag-
onal Architecture. The aspects considered in the fol-
lowing are:

Using Hexagonal Architecture for Mobile Applications

117

Table 3: Exemplary Development Stages for Hexagonal Architecture.

Stage User-side Application Data-side
1 Test cases Hardcoded -
2 Test cases Real Test doubles
3 Real Real Test doubles
4 Test cases Real Real
5 Real Real Real

Modularity How is modularity achieved?
Dependencies How are dependencies config-

ured?
Concurrency How are asynchronous calls han-

dled?
Platform
dependency

How do we handle code that de-
pends on a mobile device?

4.2.1 Modularity

At the same time, modularization is the technique that
provides the greatest benefits and poses the greatest
challenges when implementing Hexagonal Architec-
ture. By definition, Hexagonal Architecture uses a
modular approach and therefore the high-level pack-
aging of code is straightforward. A lot of different
choices nevertheless exist with regard to the concrete
packaging.

Brown (2017) discusses different methods of code
packaging and the question of enforcement and cre-
ating separate assemblies for the components. While
iOS and Android do not include modularization in the
default templates, it is fairly easy to modularize the
code. This also holds true for many cross-platform
frameworks. Separating the code into real modules
in mobile applications has a lot of advantages: testa-
bility, possible division of platform-dependent and
platform-independent code, flexibility and, of course,
easier enforcement of architectural principles. There-
fore, the best approach is to create separate assem-
blies.

This will ultimately result in projects divided
into platform-dependent modules and platform-
independent modules. While this is good for testabil-
ity and reusability, some challenges arise when con-
sidering the specific separation and when crossing
boundaries. They will be addressed in the following.

4.2.2 Configurable Dependencies

In implementations like hexagonalThis, the depen-
dencies are configured from a separate module. While
this is the cleanest solution, mobile applications
have the distinctive feature of incorporating platform-
dependent and platform-independent modules. A
module that configures the dependencies needs to be
platform-dependent. In addition, the starting point of

a mobile application from a typical developer’s point
of view differs from projects like hexagonalThis due
to the event and lifecycle-based programming model.

The pragmatic solution for configuring dependen-
cies is therefore to keep the application entry point,
the UI, and the dependency configuration in the same
module.

Some larger projects, multi-platform projects, and
projects with configurable UI on the other hand bene-
fit from having the dependency configuration done in
a separate module or from using a dependency injec-
tion framework.

4.2.3 Concurrency

Asynchronous calls are very important in mobile ap-
plications and are typically implemented indirectly
with concepts such as callbacks and completion han-
dlers or more directly with asynchronous functions
and operations. Although iOS and Android both pre-
fer asynchronous functions and operations at the mo-
ment, there is a good chance that different concepts
will be used heterogeneously in complex projects.
It is therefore important to integrate a homogeneous
asynchronous programming concept into the ports.

4.2.4 Platform Dependency

The mobile UI typically has platform-dependent
code, at least. It is also possible, however, that the
application core or an infrastructure implementation
may need code that depends on iOS or Android.
There are cases (like reading sensor values) where
the whole module needs to be platform-dependent as
a result. It is good practice to keep the platform-
dependent modules small or to split a module into a
platform-dependent and a platform-independent part,
if necessary.

In these situations, it is necessary to trade the use
of platform-dependent modules off against the imple-
mentation independence of the ports. To continue the
example of sensor values, there are at least two possi-
ble solutions:

• Use a platform-dependent infrastructure module
that directly accesses the required sensor

ICSOFT 2022 - 17th International Conference on Software Technologies

118

• Build an implementation-dependent port that de-
fines the required sensor values as input values
from another platform-dependent module

As mentioned above, the solutions offer different
trade-offs and deciding the best solution depends on
the specific app.

4.3 Porting the Reference Example

To fully understand the applicability of Hexagonal
Architecture for iOS and Android it is helpful to port
the reference example to iOS and Android. Although
the example is simple, it gives the opportunity to in-
tegrate the mentioned topics modularity, configurable
dependencies, asynchronous calls, and platform de-
pendency.

In contrast to the original hexagonalThis,
GetAPoem of the IObtainPoems port should be
called asynchronously as we do not know the data
source of the poems and it might take some time to
retrieve them.

The access to a bundled file, on the other hand is
an example where we may need platform-dependent
code.

4.3.1 Considerations for Mobile Platforms

The configuration of dependencies is done pragmati-
cally at application startup and with constructor-based
dependency configuration.

4.3.2 Considerations for iOS

Modularization can easily be achieved by using
XCode Workspaces and swift packages.

As stated above, asynchrony should be integrated
into the ports, which results in
func GetAPoem(completion: @escaping

(Result<String,Error>) -> Void)

or
@available(iOS 15.0.0, *)
func GetAPoem() async -> String

For the file access, platform-dependent code was
required prior to Swift 5.3, but is no longer neces-
sary. Since Swift 5.3, it has been possible to bundle
resources with swift packages.

4.3.3 Considerations for Android

Modularization can be easily achieved by using Mod-
ules.

Again, asynchrony should be integrated into the
ports, which results in
suspend fun getAPoem() : String

Access to embedded files is typically achieved
with assets which may be accessed through the app
context. This is clearly a platform-dependent solu-
tion. In platform-independent modules, however, re-
sources may be easily accessed with the help of the
class loader.

5 CONCLUSION

Popular modern architectural approaches such as
Clean, Onion, and Explicit Architecture are essential
for complex mobile applications because they assure
independence from external frameworks and testabil-
ity. However, the lack of quality-assured reference
implementations for iOS and Android means a range
of implementations and examples of varying quality.
One reason for this is that Clean Architecture is of-
ten seen as a lock, stock, and barrel approach and is
also frequently integrated too tightly with platform-
specific or even external techniques.

Hexagonal Architecture is a predecessor of Clean
Architecture that helps to achieve similar architectural
goals important for mobile applications. In contrast to
Clean Architecture, it is easier to implement and un-
derstand, but also offers the flexibility to be extended
or used in a mix-and-match approach.

There are challenges involved in adapting Hexag-
onal Architecture, but these may be overcome without
losing the advantages of the architecture or adding too
much complexity.

REFERENCES

Aljamea, M. and Alkandari, M. (2018). Mmvmi: A valida-
tion model for mvc and mvvm design patterns in ios
applications. IAENG International Journal of Com-
puter Science, 45(3):377–389.

Apple Computer, Inc. (2006). Cocoa fundamentals guide.
Beck, K. (2002). Test Driven Development: By Example.

Addison-Wesley Professional, Boston, MA.
Beller, M., Gousios, G., Panichella, A., and Zaidman, A.

(2015). When, how, and why developers (do not)
test in their ides. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2015, page 179–190, New York, NY,
USA. Association for Computing Machinery.

Brown, S. (2017). The missing chapter. In Martin, R. C.,
editor, Clean Architecture - A Craftsman’s Guide to
Software Structure and Design, pages 303–321. Pren-
tice Hall, Englewood Cliffs, NJ.

Cejas, F. (2019). Architecting android...reloaded. https:
//fernandocejas.com/blog/engineering/2019-05-08-ar
chitecting-android-reloaded. Last accessed: 04/29/22.

Using Hexagonal Architecture for Mobile Applications

119

Cockburn, A. (2005). Hexagonal architecture. http://alistair
.cockburn.us/Hexagonal+architecture. Last accessed:
08/22/18.

Coplien, J. and Bjørnvig, G. (2011). Lean Architecture: for
Agile Software Development. Wiley.

Czaplicki, E. (2016). The elm architecture. https://guide.el
m-lang.org/architecture/. Last accessed: 04/29/22.

Dobrean, D. and Dios, an, L. (2019). A comparative study of
software architectures in mobile applications. Studia
Universitatis Babes, -Bolyai Informatica, 64(2):49–64.

Evans, E. (2003). Domain-Driven Design. Addison-Wesley
Professional, Boston, MA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Boston,
MA.

Gilbert, J. and Stoll, C. (2014). Architecting ios apps with
viper. https://www.objc.io/issues/13-architecture/vip
er/. Last accessed: 04/29/22.

Graça, H. (2017). Ddd, hexagonal, onion, clean, cqrs, . . .
how i put it all together. https://herbertograca.com/
2017/11/16/explicit-architecture-01-ddd-hexagona
l-onion-clean-cqrs-how-i-put-it-all-together/. Last
accessed: 04/29/22.

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard,
G. (1992). Object-Oriented Software Engineering.
ACM, New York, NY, USA.

Knott, D. (2015). Hands-On Mobile App Testing. Addison-
Wesley Professional, Boston, MA.

König-Ries, B. (2009). Challenges in mobile application
development. it Inf. Technol., 51(2):69–71.

Kušt, I. (2019). Clean architecture tutorial for android: Get-
ting started. https://www.raywenderlich.com/359591
6-clean-architecture-tutorial-for-android-getting-star
ted. Last accessed: 04/29/22.

La, H. J. and Kim, S. D. (2010). Balanced mvc archi-
tecture for developing service-based mobile applica-
tions. In 2010 IEEE 7th International Conference on
E-Business Engineering, pages 292–299.

Law, R. (2019). The Clean Swift Handbook.
Martin, R. and Martin, M. (2006). Agile Principles, Pat-

terns, and Practices in C#. Robert C. Martin Series.
Pearson Education.

Martin, R. C. (2017). Clean Architecture - A Craftsman’s
Guide to Software Structure and Design. Prentice
Hall, Englewood Cliffs, NJ.

Nunkesser, R. (2018). Beyond web/native/hybrid: A new
taxonomy for mobile app development. In Proceed-
ings of the 5th International Conference on Mobile
Software Engineering and Systems, MOBILESoft ’18,
Piscataway, NJ. IEEE Press.

Palermo, J. (2008). Onion architecture. https://jeffreypa
lermo.com/2008/07/the-onion-architecture-part-1/.
Last accessed: 04/29/22.

Plakalovic, D. and Simic, D. (2010). Applying mvc
and pac patterns in mobile applications. ArXiv,
abs/1001.3489.

Rafi, D. M., Moses, K. R. K., Petersen, K., and Mäntylä,
M. V. (2012). Benefits and limitations of automated

software testing: Systematic literature review and
practitioner survey. In 2012 7th International Work-
shop on Automation of Software Test (AST), pages 36–
42.

Reenskaug, T. (1979). Models - views - controllers. Tech-
nical report, Xerox PARC.

Salazar, F. J. A. and Brambilla, M. (2015). Tailoring soft-
ware architecture concepts and process for mobile ap-
plication development. In Proceedings of the 3rd In-
ternational Workshop on Software Development Life-
cycle for Mobile, DeMobile 2015, page 21–24, New
York, NY, USA. Association for Computing Machin-
ery.

Shahbudin, F. E. and Chua, F. (2013). Design patterns for
developing high efficiency mobile application. Jour-
nal of Information Technology & Software Engineer-
ing, 3:1–9.

Sokolova, K. and Lemercier, M. (2014). Towards high qual-
ity mobile applications: Android passive mvc archi-
tecture. International Journal On Advances in Soft-
ware 1942-2628, 7:123 – 138.

Sommerville, I. (2016). Software Engineering. Pearson,
London, 10th edition.

Sommerville, I. (2020). Engineering Software Products.
Pearson, London.

Staltz, A. (2015). Model-view-intent. https://cycle.js.org/m
odel-view-intent.html. Last accessed: 04/29/22.

Vernon, V. (2013). Implementing Domain-Driven Design.
Addison-Wesley Professional.

Vollmer, G. (2017). Mobile App Engineering: Von den Re-
quirements zum Go Live. dpunkt.verlag, Heidelberg.

Wasserman, A. (2010). Software engineering issues for mo-
bile application development. pages 397–400.

Wichmann, D., Pielot, M., and Boll, S. (2009). Companion
platform - modulare softwareplattform zur schnellen
entwicklung von mobilen anwendungen. it - Informa-
tion Technology, 51(2):72 – 78.

ICSOFT 2022 - 17th International Conference on Software Technologies

120

