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Abstract: Technical debt represents deficiencies in software design or implementation often caused by prioritizing fea-
ture development over fixing existing issues. Like its financial counterpart, technical debt comprises a princi-
pal and an interest. Not addressing it in time leads to development crises, where focus and resources must be
shifted to address existing issues. Existing software tools allow measuring the level of debt and pinpointing its
sources, which can help practitioners control it. In the present paper we aim to investigate the prevalence, char-
acteristics, and evolution of technical debt in several open-source applications. We used SonarQube to study
112 application versions that covered more than 15 years of development for each application. We studied
the way debt characteristics and source code distribution evolved over the target applications’ lifecycles. We
addressed concerns regarding the accuracy of the analysis and illustrated some of the limitations of existing
tools. We observed that a small number of issue types were responsible for most of the debt. We found that
each application had its own technical debt particularities. As future work, we aim to expand our selection of
analysis tools, leverage open data sets, and extend our investigation to other systems and types of software.

1 INTRODUCTION

The size and complexity of software systems are re-
flected in their development processes. Stakeholder
pressure for continued delivery of features, combined
with time and budgetary restrictions can lead to ne-
glecting internal quality attributes such as maintain-
ability, performance or reliability. This prioritization
of features over quality was first named by Cunning-
ham in 1992 (Cunningham, 1992), who coined it tech-
nical debt (TD), in similarity with financial debt. It
refers to the typical undesirable outcomes of this pri-
oritization and highlights the difficulties of carrying
out long-term software development and maintenance
(Fowler, 2019). TD is divided into the principal,
which represents the effort needed to recover the orig-
inal debt, and the interest, which represents the sup-
plementary effort that corresponds to additional sys-
tem modifications that were caused by the TD prin-
cipal. When left to accumulate over time, TD can
generate crises that halt development (Martini et al.,
2015) or lead to severe consequences (US. Securities
and Exchange Commission, 2013; Fatemi, 2016).
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Authors of (Li et al., 2014) provide a taxonomy
that classifies TD according to ten coarse-grained
types, which are then further subdivided. Of these,
the authors show code TD to be the one most widely
mentioned, followed by architectural, testing and de-
sign debts. Significant effort towards addressing TD
was made over the last decade, with both the re-
search and practitioner communities most often tar-
geting code and architectural debt. Several TD mod-
els were proposed such as SQALE (Letouzey, 2012),
CAST (Curtis et al., 2012) and SIG (Nugroho et al.,
2011). Tools such as SonarQube, NDepend, Kiuwan
or CAST Software were developed to provide solu-
tions for estimating and prioritizing it.

Even so, there still exist open issues that need to
be addressed. One of them refers to ad-hoc and in-
formal decisions regarding debt management caused
by different interpretations from researchers, devel-
opers and managers (Klinger et al., 2011). In many
cases, this results in TD being ignored for as long
as possible, leading to ”the crisis model” (Martini
et al., 2015), where feature development is inter-
spersed with periodic crises during which TD levels
must be lowered.

Other open problems regard insufficient evidence
in several areas of handling TD such as characteriz-
ing its evolution over time, taking into account differ-
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ences between programming paradigms, languages,
or the specifics of different application types. Provid-
ing evidence supported by data sets can significantly
increase the quality of TD evaluation as well as stake-
holder trust in the available tools. Most case studies
targeting TD do not provide a longitudinal view, and
very few cover the entire lifespan of their target appli-
cations. Likewise, while recent research does include
a fine-grained analysis of TD sources (Walkinshaw
and Minku, 2018; Lenarduzzi et al., 2020a; Baldas-
sarre et al., 2020; Lenarduzzi et al., 2020b), this is
not complemented by an analysis regarding its diffu-
sion across application components or its evolution.
Our goal is to provide a long-term view and detailed
characterization of source code technical debt over
the entire lifetime of the target applications. We aim
to focus on how technical debt evolves within the tar-
get applications and to compare our results with those
from existing research.

Our main contributions are to (i) provide a charac-
terization of technical debt in real-life, evolving open-
source software; (ii) investigate how technical debt is
diffused across applications and application packages
and (iii) study how the composition and distribution
of technical debt evolve over the long-term.

2 BACKGROUND

2.1 Technical Debt

The last ten years were marked by a continuous in-
terest in the research pertaining to the prevalence and
effects of TD. Several of the proposed methodologies
for measuring TD were implemented in the form of
software tools. These include the SonarQube1 plat-
form and NDepend2, both of which are based on the
SQALE method introduced in 2011 (Nugroho et al.,
2011). These tools implement the SQALE method
by estimating the time required to fix technical debt
items associated with source code. The total time
required to fix all issues represents the TD princi-
pal. Other significant approaches include CAST Soft-
ware3, which is based on the eponymous model pro-
posed in 2012 as well as the SIG method4 and Ki-
uwan5, both of which implement their own models
for TD estimation. The research community sys-
tematically publishes case studies, experience reports

1https://www.sonarqube.org/
2https://www.ndepend.com/
3https://www.castsoftware.com/
4https://www.softwareimprovementgroup.com/

services/software-risk-assessment/
5https://www.kiuwan.com/

and comparative evaluations (Izurieta et al., 2017;
Strečanský et al., 2020; Avgeriou et al., 2021; Verdec-
chia et al., 2018; Zazworka et al., 2013) where these
models and corresponding tooling are evaluated.

Most of the available tools that provide quantita-
tive evaluation employ static code analysis to identify
existing issues based on a number of predefined rules
that correspond to different quality factors such as
maintainability, reliability, security or performance.
Issues are usually weighted by their severity, their re-
medial effort is estimated and analyzed code is cate-
gorized according to the underlying model employed
by the tool. However, the validity and trustworthiness
of these models and their corresponding tools remain
open research issues due to differences in the identifi-
cation and estimation of internal quality attributes to-
gether with the inherent limitations of static analysis
(Strečanský et al., 2020). Recent research has high-
lighted that in many cases the estimation of remedial
effort lacks accuracy and that generated issues do not
translate to actual software faults (Lenarduzzi et al.,
2020a; Lenarduzzi et al., 2020b). Current key recom-
mendations (Lenarduzzi et al., 2020a; Avgeriou et al.,
2021) are that each organization should tailor how it
configures and uses these tools according to its own
requirements.

2.2 SonarQube

SonarQube is one of the most widely used static anal-
ysis platforms for code quality and security, as re-
flected both in the research literature as well as on-
line (Avgeriou et al., 2021). It integrates the SQALE
method and is available in several editions. Its free
and open-source Community Edition enables analyz-
ing source code in 17 languages, while commercial
versions extend this to 29.

Language-based analysis features are imple-
mented in the form of plugins, which facilitates
adding support for new languages or improving the
accuracy of analysis for those already supported.
Each plugin defines a number of language-specific
rules, to which source code must conform. When
static analysis determines that a rule was violated, an
issue is generated. Issues are characterized by their
exact location in source code and information they
inherit from the generating rule. These include the
type, severity, tags and remediation time. Issue type is
one of code smell (maintainability domain), bug (re-
liability domain), vulnerability and security hotspot
(security domain). For example, Java rule java:S1106

described as ”Inheritance tree of classes should not

6Documentation for all rules is available within a de-
ployed SonarQube instance or at https://sonarcloud.io/
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be too deep” generates code smells of major sever-
ity tagged ”design”. Remediation time is estimated
to be a constant 4 hours to which a 30 minute offset
is added for each inheritance level beyond a config-
urable threshold value.

SonarQube considers total technical debt as the
time required to fix all detected code smells. Similar
to existing research (Lenarduzzi et al., 2020a; Lenar-
duzzi et al., 2020b) and in consistency with recent
standards (ISO, 2021), we extend the definition to in-
clude all detected issues. As such, we refer to tech-
nical debt as the time required to fix all the source
code issues detected by SonarQube across the main-
tainability, reliability and security domains. This time
is normalized to account for application size in the
form of the technical debt ratio: T DR = TechnicalDebt

DevTime .
DevTime represents the estimated time required to
develop the system from scratch, with 30 minutes
required to develop 1 line of production-level code.
The technical debt ratio is then assigned a SQALE
rating between A (best, T DR < 5%) and E (worst,
T DR≥ 50%).

3 RELATED WORK

A recent systematic literature review (Lenarduzzi
et al., 2021) classified different contributions to the
domain of TD into prioritization or estimation of TD,
comparison of different estimation approaches and
cross-sectional or longitudinal studies. The study
also concluded that most literature results represented
scattered approaches to TD prioritization and that
there remained a significant lack of empirical evi-
dence in tackling TD.

Other works have carried out a comparative eval-
uation between different estimation methods such as
SQALE, the SIG Method, Quamoco or the Maintain-
ability Index (Izurieta et al., 2017; Strečanský et al.,
2020). Authors of (Amanatidis et al., 2020) evalu-
ated the level of agreement between CAST, Sonar-
Qube and Squore tooling. Statistical correlation re-
vealed strong agreement when the tools were applied
to 50 open source Java and JavaScript programs.

Long term evaluation of three large open source
Java projects was reported in (Molnar and Motogna,
2020a). The study compared SonarQube TD estima-
tion with the Maintainability Index as well as a met-
ric based method. Authors concluded that SonarQube
was the most accurate of the evaluated methods in es-
timating overall TD but that it could be surpassed in
detecting debt hot spots.

We found that many of the published results were
based on cross sectional analyses of TD. In (Al-

fayez et al., 2018), authors used 91 open source
Java projects to investigate the influence of differ-
ent application characteristics on TD. They concluded
that size, application domain, number of releases and
commits all had a significant impact on TD, while no
significant relation was identified between TD and the
number of contributors, branches, or decisions regard-
ing development or management. An investigation
performed on 21 open source Java systems (Lenar-
duzzi et al., 2020a) analyzed the fault proneness of
SonarQube rules. The approach showed that only a
small number of them were harmful and that most of
the issues classified as bugs were not actually fault
inducing.

Results from an interview-driven empirical study
(Klinger et al., 2011) showed that overall system de-
velopment was influenced by the introduction of both
intended and unintended TD, that TD management
was in many cases ad-hoc and carried out without any
formalization or a long-term prediction of its impact.
A multiple case study (Martini et al., 2015) accompa-
nied by interviews reported that several factors were
responsible for architectural TD and that in many
cases corrective actions were only applied as a reac-
tion to development problems. Authors also evaluated
several strategies for long-term TD management, con-
cluding that periodical efforts to address TD through
refactoring could lower its impact over the long term
and allow the development process to continue un-
interrupted. Existing literature also includes longitu-
dinal approaches that studied TD. In (Besker et al.,
2018), authors used surveys and interviews to carry
out a study which revealed that on average, 23% of
developer time was wasted to TD, with the interest on
accumulated debt playing an important role. The pa-
per highlighted the importance of introducing strate-
gies to track and manage both the principal and the
interest of debt.

Open source projects represent good candidates
for empirical research, as they facilitate direct access
to source code and complete information about their
development history is usually available. We find
most contributions either take a cross-sectional ap-
proach (Lenarduzzi et al., 2020a; Baldassarre et al.,
2020), or they are short-term longitudinal studies
(Nayebi et al., 2019; Lenarduzzi et al., 2020b). Our
approach includes all released versions of the stud-
ied applications, covering their entire development
history. We employ recent work on empirical eval-
uation of software quality (Molnar and Motogna,
2017; Lenarduzzi et al., 2020a; Molnar and Motogna,
2020b; Baldassarre et al., 2020; Lenarduzzi et al.,
2020b) in order to place these results into the proper
context, while the publicly accessible open data pack-
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age (Molnar, 2022) facilitates replicating or extending
our study, as well as carrying out a comparative eval-
uation against other existing or future studies.

4 CASE STUDY DESIGN

The present work is in line with existing research
regarding the prevalence and long-term evolution of
source code maintainability (Molnar and Motogna,
2017; Kapllani et al., 2020) and TD (Molnar and Mo-
togna, 2020b; Nayebi et al., 2019; Arif and Rana,
2020). We aimed to improve existing results in the
study of open-source software TD. As such, each step
of our case study was carried out with consideration
to existing results, which we refer to when appropri-
ate.

We used current best practices from case study re-
search (Runeson et al., 2012) in order to design, carry
out and report our results. We ensured that our work
observed the ACM SIGSOFT’s standards for empiri-
cal research (Ralph, 2021), as well as the methodolog-
ical guidelines for longitudinal research described in
(Kehr and Kowatsch, 2015). We refer to them when
appropriate.

4.1 Objective

The main objective of our case study, defined accord-
ing to the goal question metric approach (Caldiera and
Rombach, 1994) is to ”investigate source code techni-
cal debt for the purpose of evaluating its prevalence,
characteristics and evolution in the context of open-
source software”.

We operationalize our main objective using the
following research questions:
RRRQQQ1: What is the distribution and composition of
source code technical debt? Technical debt is usu-
ally introduced due to time and budgetary limitations
(Lenarduzzi et al., 2019a); as such, changes to ap-
plication architecture, development pushes for addi-
tional features (Molnar and Motogna, 2017; Martini
et al., 2015) or refactoring efforts have a more pro-
nounced effect than software size (Molnar and Mo-
togna, 2020b). Existing research has shown that a
small number of files were responsible for the ma-
jority of defects in several large systems (Walkinshaw
and Minku, 2018). In the case of TD, the top ten most
violated SonarQube rules generated 39% of the issues
reported in a large-scale case study (Baldassarre et al.,
2020), as well as over 50% of the TD in an empiri-
cal study (Molnar and Motogna, 2020b) that targeted
open-source software.

We aim to go one step further and characterize TD
in terms of composition and distribution not just at ap-
plication, but also at package level. We aim to inves-
tigate how debt is distributed across application pack-
ages and whether its composition at application level
is maintained at finer granularity.
RRRQQQ2: How does technical debt distribution and com-
position evolve over the long term? The following
step was to investigate the evolution of TD character-
istics over the application’s entire lifetime. An indus-
try survey (Besker et al., 2018) revealed developers
wasted 23% of the time to TD and were forced to in-
troduce new TD due to already existing issues. An in-
vestigation of architectural TD (Martini et al., 2015)
revealed that its long-term accumulation led to crises
where development was halted until debt was reduced
to manageable levels.

Through RQ2 we aimed to improve the long-term
characterization of TD by investigating how factors
leading to important changes in debt levels affected
its distribution and composition. Previous research
showed early application versions to be flaky with re-
gards to their maintainability (Molnar and Motogna,
2017) and TD profiles (Molnar and Motogna, 2020a).
Do early application versions provide any indication
of the TD characteristics of later versions?

For both RQs we carried out a comparative eval-
uation across the studied applications. We aimed to
determine which of our findings might be indicative
of larger trends worth further investigation, as well as
to determine any particularities of these applications
that might improve our understanding of the relation
between TD and software evolution.

4.2 Data Collection

The present work is a finer grained investigation
based on previous results (Molnar and Motogna,
2020b). We maintain the selection of target appli-
cations, which we elaborate in this section. Our lit-
erature survey identified an abundance of empirical
research targeting complex, widely-used open-source
or commercial systems. Yet, we found research con-
sidering software evolution, especially over the long-
term to be under-represented. This was especially
the case for GUI-based applications. As such, we
decided to include GUI-driven applications having a
well-documented development period and a consis-
tent user base. We restricted the selection to Java soft-
ware, as it enabled comparative evaluation against a
broad range of existing results. We excluded applica-
tions with dependencies to external software or hard-
ware. We disregarded applications that went through
lengthy development hiatuses, or which were aban-
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Table 1: Details for the earliest and most recent version for each application in our study.

Application Version (Released) Packages LOC Issues (SQALE rating) TD
Bugs Vulnerabilities Code Smells work days

FreeMind 0.0.3 (July 2000) 5 2,770 3 E 0 A 248 A 3
1.1.0Beta2 (Feb 2016) 31 43,269 88 2 E 4,521 78

jEdit 2.3pre2 (Jan 2000) 10 22,311 62 E 0 A 1,427 A 30
5.6.0 (Sep 2020) 31 96,912 270 4 E 8,807 130

TuxGuitar 0.1pre (June 2006) 30 8,960 34 E 2 E 1,188 A 17
1.5.4 (May 2020) 239 106,457 170 13 3,692 73

doned by their original developers (Klinger et al.,
2011).

Our process resulted in the inclusion of the Free-
Mind7 mind-mapper, the jEdit8 text editor and the
TuxGuitar9 tablature editor.

FreeMind is a popular mind-mapping application
with a rich user base and a plugin environment. Its
first version comprised 5 packages and 2,770 lines of
code10. This made it the least complex release in our
study, which was visible at functionality and user ex-
perience levels. Future versions have improved upon
it greatly, with versions 0.8.0 and 1.0 updating the
user interface and introducing many new functional-
ities. We found a 2 1

2 year development hiatus after
version 0.8.0, after which development continued un-
til the most current version, 1.1.0Beta2. While sev-
eral forks exist11, FreeMind itself has remained pop-
ular, having an active user forum and recording 530k
downloads over the last year and over 25 million dur-
ing its lifetime12.

jEdit is a mature text editor targeted towards soft-
ware developers. Its first publicly available version
was 2.3pre2, released in January 2000. Comprising
over 22k lines of code organized across 10 packages,
it is the most mature initial version in our study. As
the application did not record development hiatuses
or large-scale refactoring, its development appears
steady and consistent across releases, with the most
recent version released in September, 2020. jEdit pro-
vides a plugin environment and enjoys continued pop-
ularity attested by over 86k downloads within the last
year, and 9.1 million over the application’s lifetime.

TuxGuitar is a multi-track tablature editor that
supports several GUI toolkits. We tested its releases
using the Standard Widget Toolkit. As illustrated in
Figure 1, TuxGuitar and jEdit had a similar evolu-
tion marked by incremental development. One dif-

7http://freemind.sourceforge.net/
8http://jedit.org
9http://www.tuxguitar.com.ar

10All metrics were recorded using SonarQube 9.0.1
11https://www.freeplane.org/
12Download data points recorded on September 29, 2021

through SourceForge

ference is the development hiatus between versions
1.2 and 1.3, after which development continued, with
the latest version released in mid-2020. In the case
of TuxGuitar we counted 209k downloads within the
last year and 7.1 million over its entire lifetime. Given
the number of plugins included in the default down-
load, TuxGuitar has the largest number of packages,
as well as the most important package-level changes
of the studied applications. Its initial version com-
prised 30 packages and 8,960 lines of code, with over
350 packages used within the application’s lifetime.

In addition to being widely used, several releases
of FreeMind and jEdit were used in previous research
targeting GUI testing (Arlt et al., 2012; Yuan and
Memon, 2010) and software quality (Molnar and Mo-
togna, 2017; Kapllani et al., 2020).

Existing research used either commit (Walkin-
shaw and Minku, 2018; Lenarduzzi et al., 2020a;
Lenarduzzi et al., 2019b; Lenarduzzi et al., 2020b) or
release (Izurieta et al., 2017; Baldassarre et al., 2020)
level granularity for collecting target application data.
Given the timespan and large number of application
releases, we included all publicly-released versions.
This provided sufficient measurement waves (Kehr
and Kowatsch, 2015) to provide answers to the pro-
posed RQs, while helping to mitigate issues such as
missing dependencies, misconfiguration or even com-
pilation errors, which can sometimes be found in
open-source software (Barkmann et al., 2009).

In the case of both FreeMind and jEdit, we found
several preview versions that were released in the
span of a few days; in this case, we decided to in-
clude the last release from each series, in order to keep
the number of included versions manageable. This
resulted in a total of 112 releases, comprised of 38
FreeMind, 46 jEdit and 28 TuxGuitar versions.

We manually examined and compiled each ver-
sion’s source code. We found TuxGuitar versions
were distributed together with a number of plugins,
which we considered part of the application and in-
cluded in our study. We also discovered instances
where library source code was packaged with appli-
cation code, such as the com.microstar.xml parser or
the BeanShell interpreter present in some jEdit ver-
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sions. We separated this code into external libraries
that were added to the classpath. Existing research
showed that up to 32% (Barkmann et al., 2009) of
open-source software required manual fixes to com-
pile and run; we thoroughly tested that each version
in our study compiled correctly and could be executed
with full functionalities available.

Figure 1 illustrates application versions in our
study and their release dates. We refer to application
releases using the version numbers their developers
assigned to them; at the time of writing, all applica-
tion releases remain available for download and can
be identified by their version. However, in our analy-
sis we do not attribute additional significance to ver-
sion numbers and treat each release in the same way.
We also observed the existence of several develop-
ment hiatuses between some of the studied versions,
as discussed in the previous sections. Again, we did
not factor this into our analysis.

4.3 Data Analysis

We analyzed each application version using a local
instance of SonarQube 9.0.1 that we configured for
historical analysis. This enabled tracking the location
and status of each detected issue across application
versions; for each version, we determined the propor-
tion of newly introduced debt versus debt that was
carried over from the previous version. The vertical
bar corresponding to each application release in Fig-
ure 1 indicates its TDR, with the darker segment il-
lustrating the portion of debt ratio newly added in that
version. All TD was considered to be newly added in
the first release of an application. For context, Table 1
provides more detailed information regarding the ear-
liest and latest version for each application included
in our study.

We employed the default SonarWay profile, rule-
set and associated analysis thresholds. We restricted
our investigation to the Java language. This resulted
in a total of 55,630 issues, estimated at 1,081 days
of TD. These were broken down into 3,131 bugs, 30
vulnerabilities and 52,469 code smells. During the
monitored development period, 38,153 of these issues
were fixed or they no longer appeared in more recent
application versions.

As SonarQube automatically purges detailed issue
and metric information for older analyses, we set up a
second instance, which was configured to treat each
version as a stand-alone application. We used this
second instance to record and persist detailed file and
package-level metrics across all application versions
(SonarSource, 2021).

Data analysis was carried out using a number of

custom-written Python scripts that employ the Sonar-
Qube API to extract and process information on
source files, rules and detected issues. We prepared an
open data package (Molnar, 2022) that allows repli-
cating or extending our investigation. It includes the
database files for the required instances of Sonar-
Qube, the analysis scripts used together with their out-
put and instructions for configuring the environment
and running the analyses.

5 RESULTS AND DISCUSSION

In this section we detail and discuss our results, or-
ganized according to the previously defined research
questions.

RRRQQQ1: What is the Distribution and
Composition of Source Code Technical
Debt?

Figure 1 illustrates that most application versions
have a T DR < 5% and receive an A rating accord-
ing to SQALE. The only exception were FreeMind
versions 0.8.*, where significant additional debt was
accrued. The amount of technical debt present also
increased significantly in jEdit version 4.0pre4, where
important new functionalities were introduced. In the
case of TuxGuitar, early versions already presented a
T DR < 5%, and remained that way in all subsequent
versions.

Next, we investigated how TD was diffused across
application packages. We use Figure 2 to illus-
trate how TD was distributed across the most debt-
intensive packages for each application; the full data
set remains available in our open data package (Mol-
nar, 2022). In the case of FreeMind and jEdit, over
80% of the total debt was diffused across nine and
eight packages, respectively. In both applications,
debt distribution followed the Pareto principle, with
a few code-heavy packages also carrying most of the
existing debt. In contrast, each TuxGuitar plugin had
its own package structure. This contributed to the
large number of application packages illustrated in
Figure 2. It also meant that both source code as well
as debt were distributed more evenly across applica-
tion packages. The 21 TuxGuitar packages illustrated
in Figure 2 only carried half of the application’s total
debt. This is in line with previous findings (Molnar
and Motogna, 2020b) that showed tight correlation
between the amount of TD and lines of code count
at file level.

Next we drilled down to SonarQube rule level.
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Figure 1: Studied versions of FreeMind (top), jEdit (middle) and TuxGuitar (bottom); each bar represents the technical debt
ratio for that version, with the darker segment showing the debt newly added to that version (left-side scale). The dotted line
represents the number of packages (right-side scale).

We confirmed that a small number of rules together
generated most of the estimated technical debt. For
each application, we considered the top 10 such rules
which we illustrated in Table 2. We note the signif-
icant degree of overlap, as the selection of 15 rules
illustrated in Table 2 generated more than two thirds
of the TD in each application.

We also noted that the rules which generated
most of the TD were application specific, and we
could not identify a single rule that was dominant
across all three applications. For example, rule
java:S1948 generated the most TD in FreeMind after
code duplication. Its root cause was the presence of
non-serializable members in serializable classes; this
is a potential bug and security vulnerability in case
containing instances are serialized. Another prevalent
issue was code duplication, which generated signif-
icant debt in FreeMind and TuxGuitar. In the case
of FreeMind, this was the dominating source of debt
in versions 0.8.*, where it was concentrated in the
freemind.controller.actions.generated.instance.impl
package. The spike shown in Figure 2 was caused
by a large amount of generated code that included

duplicated sections, but also non-standard variable
names, usage of labels (java:S1119), classes specific
to a vendor’s implementation of Java (sun.* pack-
ages, java:S1191), loops with more than one break or
continue statements (java:S135) and other issues.

We compared the composition of debt in the stud-
ied applications against that uncovered in recent ex-
isting research. In (Lenarduzzi et al., 2020b), a case
study targeting 33 Java projects from the Apache
Foundation analyzed the change proneness of classes
encumbered by TD. Authors found duplicated code
to be the most often encountered code smell. Three of
the 10 most commonly violated rules in (Lenarduzzi
et al., 2020b) (duplicated, java:S1192, java:S1948)
were also well represented in our results.

In (Baldassarre et al., 2020), authors also pro-
vided details regarding the type and severity distri-
bution of SonarQube issues, which we found simi-
lar to previous results (Molnar and Motogna, 2020b).
Authors also provided a list of the 22 rules that
each generated more than 300 issues. We found the
following eight also present in our results in Table
2: java:S125, duplicated, java:S3776, java:S1948,
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Figure 2: Per package TD in FreeMind (top), jEdit (middle) and TuxGuitar (bottom, * stands for org.herac.tuxguitar) rep-
resenting 80% of total TD for FreeMind and jEdit, and 50% for TuxGuitar; vertical scale relative to represented data for
legibility.

java:S1104, java:S1192, java:S2696 and java:S1117.
In (Lenarduzzi et al., 2020a), authors used ma-

chine learning to investigate whether SonarQube is-
sues predicted actual software faults. While a reli-
able relation between most issues and documented
faults could not be discovered, a number of rules
were found to have some predictive power. Among
them, java:S125, java:S1192 and java:S1117 are also
present in Table 2.

Most of the Apache systems studied in these
works were not GUI-driven, which could represent
an important difference regarding the type and dis-
tribution of TD. There were also differences in how
TD was measured across these studies; our approach
was to measure TD in minutes, while these studies
defaulted to counting the number of issues generating
it. While these differences did not allow us to draw
definitive conclusions, we observed the existence of
overlap in the composition of TD across the studied
systems.

Empirical research has shown that a limited se-

lection of rules remained responsible for most of the
debt accrued in the studied applications. However,
this selection remains application-specific. As such,
when making decisions based on the output of analy-
sis tools, developers should be aware both of the tar-
get application’s profile as well as the fault-predictive
power of the rules responsible for the reported debt.

RRRQQQ2: How Does Technical Debt
Distribution and Composition Evolve over
the Long Term?

We started by investigating the relation between lines
of code and the amount of TD present. For each appli-
cation version, we calculated the Spearman rank cor-
relation between lines of code and TD effort at pack-
age level. We found a high correlation, with mean
values of ρ > 0.8 and σ < 0.067 considered across
each application’s versions. The common trend was
that of lower, but still significant (ρ > 0.6) correla-
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Table 2: Percentage of total TD generated by the top 10 rules in each application. Critical issues in bold.

Rule ID FreeMind jEdit TuxGuitar Description
java:S125 4.35% 34.86% 1.75% Sections of code should not be commented out
duplicated 11.71% 2.23% 23.47% Source files should not have any duplicated blocks
java:S3740 10.22% 3.59% 8.71% Raw types should not be used
java:S3776 3.06% 6.24% 9.72% Cognitive Complexity of methods should not be too high
java:S1948 11.28% 5.53% 0.42% Serializable class fields should either be transient or serializable
java:S1149 7.47% 5.57% 0.63% Synchronized classes (e.g., Vector, Hashtable) should not be used
java:S1874 4.43% 5.47% 1.85% ”@Deprecated” code should not be used
java:S1161 4.48% 2.94% 4.03% ”@Override” annotation should be used
java:S1854 1.46% 0.76% 5.20% Unused assignments should be removed
java:S1604 0.75% 0.80% 4.54% Single-method anonymous inner classes should become lambdas
java:S1104 3.10% 2.29% 0.52% Class variable fields should not have public accessibility
java:S1905 0.63% 0.29% 3.80% Redundant casts should not be used
java:S1192 1.34% 2.30% 0.51% String literals should not be duplicated
java:S2696 2.66% 0.83% 0.22% Instance methods should not write to ”static” fields
java:S1117 0.32% 0.65% 2.09% Local variables should not shadow class fields
TOTAL 67.27% 74.32% 67.47%

tion in early application versions, followed by high
correlation in mature versions. This confirmed pre-
vious observations (Molnar and Motogna, 2020b) re-
garding the increased volatility of software quality in
early application versions. It also followed existing
results (Walkinshaw and Minku, 2018) that showed
packages rich in source code accumulated the major-
ity of observed issues.

We reported on the composition of TD across each
application’s version in our answer to RQ1. We then
carried out a package-level analysis in order to deter-
mine whether the distribution and composition of TD
remained consistent across application versions at the
package level. If that was not the case, we aimed to
determine the reason for the change and its magni-
tude. The first step was to calculate the contribution of
each package to the total TD. For each pair of consec-
utive releases (e.g. FreeMind 0.8.1 and 0.9.0Beta17),
we correlated TD levels across packages using Spear-
man’s rank correlation. Spearman correlation high-
lights changes in rank, namely situations where one
or more packages accumulate or shed TD faster than
others. We obtained very high correlation (ρ > 0.9)
across most version pairs, except the following ver-
sions and their immediate predecessors: FreeMind
0.3.1 (ρ ≈ 0.4), jEdit 2.4.2 (ρ ≈ 0.8) and TuxGuitar
versions 1.0.rc1 (ρ≈ 0.45). We ascribe these changes
to the introduction of new TD as shown in Figure
1 and discussed in our answer for RQ1. Remaining
version pairs, including all jEdit releases showed TD
to be very consistently distributed across source code
packages.

Figure 1 shows that the versions highlighted above
accrued significant additional debt. While additional
debt was taken on in FreeMind 0.9.0Beta17, TuxGui-
tar 1.0.rc1 and 1.3.0, refactoring helped improve the
overall T DR of these versions. In the case of Free-
Mind, the large swath of TD incurred in version 0.8.0

was resolved in 0.9.0Beta17 with the elimination of
the offending package and code refactoring. The in-
troduction of additional debt in the later version was
due to development work resulting in additional func-
tionalities.

In the case of jEdit, we earmarked version 4.0pre4
for further examination, due to its increased T DR.
We found it to be an important update that included
additional functionalities such as improved text area
management, buffer events, an improved document
model and user interface updates. We examined the
debt composition of this version and discovered that
its increased debt ratio was due to a plethora of new
issues, many of which were generated by the inclu-
sion of commented code (java:S125). Closer exami-
nation uncovered that most of these comments were
used for delimiting sections of the source code such
as methods or conditional statement branches using
an annotation specific to jEdit itself, and were erro-
neously registered as deprecated code by the static an-
alyzer.

As the previous test considered total TD for each
package, we also carried out a fine grained examina-
tion where we examined whether debt composition
varied across releases in individual source code pack-
ages. As expected, we discovered the composition of
TD present in most packages to be consistent across
versions. For each application we encountered ver-
sions where packages were eliminated, introduced or
refactored. One example of the latter was TuxGui-
tar package org.herac.tuxguitar.io.gp, which carried
an important share of TD up to version 1.0.rc1, where
it was refactored into org.herac.tuxguitar.io.gtp; in-
terestingly, as illustrated in Figure 2 the refactored
package carried less than half of the initial version’s
debt, even without significant changes to the number
of lines of code.

Our conclusion for RQ2 is that the distribution and
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composition of TD remained generally stable across
multiple application versions. Notable exceptions
were early application versions that showed increased
volatility and versions where major refactoring or de-
velopment work have taken place.

6 THREATS TO VALIDITY

Our study was conducted based on existing best prac-
tices for empirical (Ralph, 2021) case study research
(Runeson et al., 2012; Kehr and Kowatsch, 2015).
We first defined the main objective, established the
research questions, carried out the target application
selection process, collected, processed and then an-
alyzed the data. We made the collected data from
the studied applications public as part of an open data
package (Molnar, 2022).

Internal threats were addressed by manually ex-
amining and publishing the source code and scripts
that were used in data collection and processing. We
included sanity checks combined with manual exami-
nation of the source code and analysis results. The re-
maining threat regards our reliance on SonarQube it-
self. Previous research has shown that differences ex-
ist between the results obtained when using different
tools (Izurieta et al., 2017; Strečanský et al., 2020). In
our experience, using different versions of the same
tool can also result in significant differences. In pre-
vious work we used SonarQube versions 7.9 (Molnar
and Motogna, 2020a) and 8.2 (Molnar and Motogna,
2020b), which target some of the application versions
included in our study. We found the presence of ad-
ditional rules in newer versions, as well as changes to
estimated remediation times lead to some changes in
reported results. This was most apparent in the case of
discovered vulnerabilities, as improved taint analysis
introduced in SonarQube 8.513 lead to the elimination
of many falsely reported issues.

External threats are related to the selection of ap-
plications and analysis tools in our study coupled with
the inherent limitations of generalizing our conclu-
sions. Restricting our inclusion criteria to a single ap-
plication type improved data triangulation (Runeson
et al., 2012) and the possibility of cross-application
comparison. Conversely, it limited extrapolating our
results to other system and system types. We ad-
dressed external threats by including all released ap-
plication versions in our study and by validating more
general conclusions with relevant results from the lit-
erature.

Previous empirical investigations addressed this

13https://www.sonarqube.org/sonarqube-8-5/

issue by creating and analyzing comprehensive stores
of collected data (Lenarduzzi et al., 2019b; Lenar-
duzzi et al., 2020b). In this regard, our focus was on
longitudinal analysis carried out on a curated set of
versions, where the additional requirement of manual
code examination made automating the process diffi-
cult.

Construct threats were addressed by using Sonar-
Qube, a well-known and widely used tool for assess-
ing software quality and security. We employed the
default SonarWay Java profile. We drilled down to
rule level and investigated the significance of our find-
ings. We put our results into the context of similar
research (Walkinshaw and Minku, 2018; Lenarduzzi
et al., 2020a; Lenarduzzi et al., 2020b).

However, an extended analysis regarding the link
between our findings and actual maintainability or
fault-proneness was beyond our scope. We believe
that SonarQube can provide valuable assistance dur-
ing the development process, but that the set of rules
and their configuration should be customized accord-
ing to requirements.

The decision to restrict the study to released ver-
sions lead to changes discarded between two releases
to not be represented in our study. While denser mea-
surement waves (Kehr and Kowatsch, 2015) would
have alleviated this risk, we considered that covering
all released versions was sufficient to characterize the
evolution of debt. Finally, we must mention the ex-
istence of the survival bias, represented by the possi-
bility that these applications’ TD characteristics and
their long lifecycles were not a coincidence.

7 CONCLUSIONS

We carried out a longitudinal case study targeting
all the released versions of three complex, open-
source applications. In contrast to most existing work
(Walkinshaw and Minku, 2018; Lenarduzzi et al.,
2020a; Baldassarre et al., 2020; Lenarduzzi et al.,
2020b), we investigated the relation between long-
term software evolution and TD characteristics. Our
study covered at least 15 years of development for
each studied application. We carried out a fine grained
analysis regarding the diffusion and composition of
TD across application source code, and studied the
effects of major software changes and refactoring.

We showed that a small number of rules were re-
sponsible for generating most of the technical debt
found in each application. Comparison with exist-
ing results targeting other systems revealed the exis-
tence of a subset of rule violations to be the cause of
significant debt across many applications. The most
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prevalent of them were code duplication, high cyclo-
matic complexity of functions and incorrect use of
modifiers in serializable classes. Our examination
showed that technical debt fluctuated mostly within
early application versions, as they were most affected
by both software changes and refactoring. Once core
architecture was established, we found very little vari-
ance between versions. One possible explanation is
that the combination between suitable application ar-
chitecture and experienced contributors precludes the
need for making large-scale changes.

Data collection was carried out using the default
rule set and analysis parameters for Java. We believe
some of these rules can provide valuable insight into
software issues such as increased code complexity
(java:S3776, java:S1854 and java:S1604), code du-
plication (duplicated, java:S1192) or the use of lan-
guage features in a discouraged way (java:S1117).
We also discovered problematic issues, such as struc-
tured comments that were erroneously classified as
commented out code, or custom GUI components
flagged as being too deep within their inheritance hi-
erarchy. We mirror the conclusion from (Lenarduzzi
et al., 2020a), that organizations should use the plat-
form’s customization features in order to select and
configure a subset of rules that cover their require-
ments. Our results can be beneficial to practitioners
relying on SonarQube regarding the prioritisation and
management of TD in the context of large software
systems.

We aim to extend our investigation by providing
long-term analyses for other system types. Existing
efforts such as the Technical Debt Dataset (Lenar-
duzzi et al., 2019b) or replication packages available
for related works (Herbold et al., 2020; Ferenc et al.,
2018) can be leveraged for analyses at both release
and commit levels.
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T. (2018). A public unified bug dataset for java. In
Proc. of the 14th International Conference on Predic-
tive Models and Data Analytics in Software Engineer-
ing, PROMISE’18, page 12–21. ACM.

Fowler, M. (2019). Technical debt. https://martinfowler.
com/bliki/TechnicalDebt.html.

Herbold, S., Trautsch, A., Trautsch, F., and Ledel, B.
(2020). Issues with szz: An empirical assessment of
the state of practice of defect prediction data collec-
tion.

ISO (2021). ISO/IEC 5055:2021 standard for automated
source code quality measures. https://www.iso.org/
standard/80623.html.

Izurieta, C., Griffith, I., and Huvaere, C. (2017). An indus-
try perspective to comparing the sqale and quamoco
software quality models. In 2017 ACM/IEEE Intern.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

184



Symp. on Empirical Software Engineering and Mea-
surement (ESEM), pages 287–296.

Kapllani, G., Khomyakov, I., Mirgalimova, R., and Sillitti,
A. (2020). An empirical analysis of the maintainabil-
ity evolution of open source systems. In IFIP Inter-
national Conference on Open Source Systems, pages
78–86. Springer.

Kehr, F. and Kowatsch, T. (2015). Quantitative longitu-
dinal research: A review of is literature, and a set
of methodological guidelines. ECIS 2015 Completed
Research Papers.

Klinger, T., Tarr, P., Wagstrom, P., and Williams, C. (2011).
An enterprise perspective on technical debt. In Pro-
ceedings of the 2nd Workshop on Managing Technical
Debt, MTD ’11, page 35–38. ACM.

Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., and Ar-
celli Fontana, F. (2021). A systematic literature review
on technical debt prioritization: Strategies, processes,
factors, and tools. Journal of Systems and Software,
171:110827.

Lenarduzzi, V., Lomio, F., Huttunen, H., and Taibi, D.
(2020a). Are sonarqube rules inducing bugs? In
2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pages 501–511.

Lenarduzzi, V., Orava, T., Saarimaki, N., Systa, K., and
Taibi, D. (2019a). An empirical study on technical
debt in a finnish sme. In 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–6, Los Alamitos,
CA, USA. IEEE Computer Society.

Lenarduzzi, V., Saarimäki, N., and Taibi, D. (2019b). The
technical debt dataset. In 15th Conference on Predic-
tive Models and Data Analytics in Software Engineer-
ing.
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