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Abstract: Audio classification is an important research topic in pattern recognition and has been widely used in several
domains, such as sentiment analysis, speech emotion recognition, environment sound classification and sound
events detection. It consists in predicting a piece of audio signal into one of the pre-defined semantic classes.
In recent years, researchers have been applied convolution neural networks to tackle audio pattern recognition
problems. However, these approaches are commonly designed for specific purposes. In this case, machine
learning practitioners, who do not have specialist knowledge in audio classification, may find it hard to select
a proper approach for different audio contexts. In this paper we propose AUDIO-MC, a general framework
for multi-context audio classification. The main goal of this work is to ease the adoption of audio classifiers
for general machine learning practitioners, who do not have audio analysis experience. Experimental results
show that our framework achieves better or similar performance when compared to single-context audio clas-
sification techniques. AUDIO-MC framework shows an accuracy of over 80% for all analyzed contexts. In
particular, the highest achieved accuracies are 90.60%, 93.21% and 98.10% over RAVDESS, ESC-50 and
URBAN datasets, respectively.

1 INTRODUCTION

Audio classification aims to predict a piece of audio
signal into one of the pre-defined semantic classes
(Lu and Hanjalic, 2009). It plays an important role
in pattern recognition and has received increasing at-
tention in recent years due to its numerous domains,
such as education (Uçar et al., 2017), job interviews
(Gorbova et al., 2017), robotics (Noroozi et al., 2017),
and call centers (Kopparapu, 2015). It is considered
a challenging machine learning task due to many rea-
sons, including complexity of audio data, linguistic
information and noise (Farooq et al., 2020) (Lu et al.,
2020a).

Most of the existing literature investigates the au-
dio classification in specific contexts. Some studies
(Mushtaq and Su, 2020) (Mustaqeem et al., 2020) fo-
cus on emotion recognition, which aims to differenti-
ate speeches according to their emotional states, like
happy, sad, fear, anger, or even neutral. Sentiment
analysis is also a well-studied research area and it
consists in the study of peoples’ opinions, sentiments
and attitudes. In particular, audio sentiment analy-
sis is commonly applied in call centers (Kopparapu,

2015) to measure either a positive or negative senti-
ment is present in a piece of audio. Some authors
(Palanisamy et al., 2020) (Noroozi et al., 2017) con-
sider the context of recognizing the audio stream, re-
lated to environmental sounds, such as animals, cars,
sirens, and others. However, since these approaches
are designed for specific purposes, machine learning
practitioners, who do not have specialist knowledge in
audio classification, may find it hard to select a proper
approach for a specific audio context.

A popular machine learning approach for the au-
dio classification tasks is Convolutional Neural Net-
work (CNN). Initially proposed for image recogni-
tion, CNN techniques also have achieved convincing
results in the audio classification field. Most CNN-
based models usually adopt spectrogram-based in-
puts, such as Mel Spectrograms, since it is the visual
representation of audio signal (Thornton, 2019).

In this work, we propose a general framework,
called AUDIO-MC, to automatically classify audio
data, regardless of its context. Initially, we convert
audio files into Mel Spectrograms. We also select
a CNN architecture to define as a backbone and we
feed them with the more relevant audio features. To
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achieve better performance in audio classification, we
tune both our network and the preprocessing hyper-
parameters using Bayesian optimization. Finally, we
adopt pooling operations, as Max and Average, to
help distinguish the feelings of the audios based on
the best network outputs.

In particular, the main contributions of this paper
are summarized as follows:

1. We propose a multi-context framework for au-
dio classification which explores CNNs, transfer
learning and pooling operations to automatically
classify audio data through spectrograms;

2. We conduct an extensive experimental evaluation
on five audio datasets and we demonstrate that our
framework is able to effectively classify pieces of
audio regardless of its context.

The rest of the paper is organized as follows: Sec-
tion 2 presents an overview of Spectograms and Con-
volutional Neural Networks. Section 3 summarizes
related work. Section 4 describes the AUDIO-MC
framework. Section 5 details the experimental eval-
uation in three different audio classification contexts:
sentiment analysis, emotion recognition and environ-
mental sound classification. Finally, Section 6 con-
cludes the paper and gives future work directions.

2 THEORETICAL BACKGROUND

There are two main techniques used to build the
AUDIO-MC framework: (1) Spectograms and (2)
Convolution Neural Networks. Below, we briefly de-
scribe these techniques.

2.1 Spectrograms

Audio signal preprocessing is a fundamental step in
audio classification. The audio waveform is a digi-
tal representation of the audio signal by its amplitude
over time. A common strategy to obtain better re-
sults in audio classification consists of transforming
the digital signal into a more descriptive representa-
tion, like an image (Lu et al., 2020b). A spectrogram
is a visual representation of the spectrum of frequen-
cies of a signal as it varies with time. Additionally, a
mel spectrogram is a spectrogram where the frequen-
cies are converted to the mel scale, i.e., a pitch unit
such that equal distances in pitch sound equally dis-
tant to the listener. Mel frequency has a non-linear
relationship with the actual frequency. It is illustrated
in the following equation:

fm = 1125 ln(1+
fa

700
) (1)

where fm is the Mel frequency and fa is the actual
frequency.

The representation of an audio signal as an image,
through spectograms, gives more expression than the
raw audio waveform. It is able to boost the audio clas-
sification results (Thornton, 2019). When working
with mel spectograms, it is important to understand
some parameters, such as: channels number, window
length, hop length and sample rate (de Jong, 2021).
The values used for these parameters will define the
resulting image. Then, different parameters values re-
sult in different images. However, this transformation
process can result in a spectrogram image that does
not represent the original audio consistently. For in-
stance, if we perform the inverse process, that is, con-
vert the spectrogram image into raw audio waveform,
the resulting audio may be incomprehensible for hu-
mans. Therefore, it is essential to revise the spectro-
gram images since they directly impact the audio clas-
sifier’s performance.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were intro-
duced by LeCun (LeCun et al., 1998) as a novel
Deep Neural Network (DNNs) that works by reduc-
ing the number of network parameters when com-
pared to fully-connected ones. Each neuron receives
a windowed version of the data as input. Each neu-
ron shares with other neurons the weights, and this is
called a filter. Some more advanced convolution neu-
ral networks architectures have multiple filters (fea-
ture maps) to catch different interpretations over the
data.

Commonly several CNNs layers are stacked se-
quentially with pooling layers. A pooling layer works
by reducing the input dimension (downsampling) and
consequently the number of parameters (Collobert
et al., 2011). Another consequence of the pooling
layer is the position invariance, once feature maps are
sensitive to the location in the data.

One of the most common CNNs is the ResNet,
also known as Residual Net (Van Uden, 2019). It
works by adding residual blocks into the network. As
a shortcut, residual blocks perform bypassing the out-
put of the shallow layer directly to the deep layers.
Consequently, this enhancement allows the network
to solve the vanishing gradient issue.

Another well-established CNN is the natural ex-
tension of ResNet, denoted Dense Convolutional Net-
work (DenseNet) (Huang et al., 2016). The idea of
the DenseNet is to allow each layer to receive the
knowledge of the past layers, not only the last one,
as the ResNet does. Each DenseNet block receives a
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channel-wise concatenation of the output from all pre-
ceding layers. The DenseNet (Huang et al., 2017) is a
pre-trained model, where the input is passed to Dense-
Blocks and transition layer, ending with pooling layer
and full connect. The DenseBlock structure has a con-
volution layer (Conv), batch normalization (BN), and
activation function (Relu). Each layer takes the input
to convolution, BN and Relu. The output is the input
for the others layers (Feng et al., 2019). The transi-
tion layer has both a convolution layer and a pool-
ing technique layer connection between the Dense-
Blocks. The output of each layer is an input to an-
other layer, making the initial intake interfere with
the output future. The main goal of this behavior is
the backpropagation reaches the shallow layers easier
than ResNet, since direct connections between those
layers and deeper layers. Another advantage over the
ResNet is that the DenseNet layer is very narrow. In
consequence, the number of parameters is lower than
the ResNet. Resnet-110 and DenseNet-169 adopts
110 and 169 layers, respectively.

3 RELATED WORK

In recent years, different approaches were proposed
for audio classification, analyzing different types of
acoustic features extracted from speech signals (Xu
et al., 2018), (Bleiweiss, 2020), (Badr. et al., 2021).
Usually, audio classification methods adopt a two-
way strategy to analyze both low-level and utterance-
based spectral features.

In (Farooq et al., 2020), the authors used a pre-
trained deep convolutional neural network (DCNN)
to extract deep features, and a correlation-based fea-
ture selection (CFS) technique was applied to se-
lect the most discriminative features for speech emo-
tion recognition. Next, they explored four different
classifiers for emotion recognition: support vector
machines (SVMs), random forests (RFs), K-nearest
neighbors (KNN), and multilayer perceptron (MLP).
The performed experiments evaluated two different
tasks: speaker-dependent and speaker-independent
SER, in four publicly available datasets: the Berlin
dataset of Emotional Speech (Emo-DB), Surrey Au-
dio Visual Expressed Emotion (SAVEE), Interac-
tive Emotional Dyadic Motion Capture (IEMOCAP),
and the Ryerson Audio Visual dataset of Emotional
Speech and Song (RAVDESS).

The study presented in (Mushtaq and Su, 2020)
explored the use of deep convolutional neural net-
works (DCNN) with regularization and data enhance-
ment with basic audio features, to face the Speech
Emotion Recognition (SER) problem. This work ex-

amined the performance of DCNN with max-pooling
(Model-1) and without max-pooling (Model-2). Be-
sides, the experiments exploited three audio attribute
extraction techniques, Mel spectrogram (Mel), Mel
Frequency Cepstral Coefficient (MFCC) and Log-
Mel, over three different datasets: ESC-10, ESC-50,
and UrbanSound8K (US8K). In addition, this study
also introduced offline data augmentation techniques
to enhance the used datasets with a combination of L2
regularization. The highest achieved accuracies were
94.94%, 89.28%, and 95.37% for ESC-10, ESC-50
and UrbanSound8K, respectively.

The work presented in (Palanisamy et al., 2020)
showed that ImageNet-Pretrained deep CNN mod-
els can be used as strong baseline for audio clas-
sification. Besides, the performance evaluation ex-
ploited three state-of-the-art audio datasets: ESC-50,
UrbanSound8K and GTZAN. The experimental re-
sults pointed that an ensemble of a fine-tuning simple
ImageNet pre-trained DenseNet achieved an accuracy
of 92.89%, 87.42% and 90.50% on ESC-50, Urban-
Sound8K and GTZAN datasets, respectively.

In (Seo and Kim, 2020), the authors pretrained a
log-mel spectrograms on both TESS and RAVDESS
datasets using their proposed VACNN (visual at-
tention convolutional neural network) model. The
VACNN model applies a visual attention module for
channel-wise and spatial attention. To learn the tar-
get dataset, they used a bag of visual words (BOVW)
to represent the feature vector of the log-mel spec-
trogram. Because visual words represent local fea-
tures in the image, the BOVW helps VACNN to
learn global and local features in the log-mel spec-
trogram, by constructing a frequency histogram of vi-
sual words. The proposed method showed an over-
all accuracy of 83.33%, 86.92%, and 75.00% in the
Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS), Berlin Database of Emo-
tional Speech (EmoDB), and Surrey Audio-Visual
Expressed Emotion (SAVEE) datasets, respectively.

The study presented in (Mustaqeem et al., 2020)
introduced a novel framework for SER using a key
sequence segment selection based on radial based
function network (RBFN) similarity measurement in
clusters. Next, the proposed framework converted
the selected sequence into a spectrogram by applying
the short-time fourier transform (STFT) and passed
into the CNN model to extract the discriminative and
salient features from the speech spectrogram. Fur-
thermore, it normalized the CNN features to ensure
precise recognition performance and fed them to the
deep bi-directional long short-term memory (BiL-
STM) to learn the temporal information for recog-
nizing the final state of emotion. The performed

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

376



Table 1: AUDIO-MC comparison to the main related work.

Work Multi-context Context Real Scenario # Datasets
(Farooq et al., 2020) No Emotion recognition No 4

(Mushtaq and Su, 2020) No Emotion recognition No 3
(Palanisamy et al., 2020) No Environmental sound No 3

(Seo and Kim, 2020) No Emotion recognition No 3
(Mustaqeem et al., 2020) No Emotion recognition No 3

(Kong et al., 2020) Yes Emotion and environmental No 7

AUDIO-MC Yes Emotion, environmental
and sentiment analysis Yes 5

experiments evaluated the proposed approach using
three publicly available datasets: IEMOCAP, EMO-
DB, and RAVDESS. The proposed method showed
an overall accuracy of 72.25%, 85.57%, and 77.02%
in IEMOCAP, EMO-DB, and RAVDESS datasets, re-
spectively.

Finally, in (Kong et al., 2020), the authors pro-
pose a pre-trained audio neural networks (PANNs)
built on the large-scale AudioSet dataset. These
PANNs were transferred to six audio pattern recog-
nition tasks, overcoming the state-of-the-art perfor-
mance in several of them. Besides, the authors pro-
posed an architecture called Wavegram-Logmel-CNN
using both log-mel spectrogram and waveform as in-
put features.

Table 1 shows a comparative analysis between
AUDIO-MC and the main related work. The “Multi-
context” column indicates whether the work supports
different contexts. The “Context” column indicates
which contexts the work supports. The “Real Appli-
cation” column indicates whether the work was eval-
uated with datasets extracted from commercial ap-
plications. The last column indicates the number of
datasets explored in the experimental evaluation.

4 AUDIO-MC FRAMEWORK

In this section we detail a new framework, called
AUDIO-MC, to automatically classify audio data
through spectrograms, regardless of its context. Fig-
ure 1 shows how the framework is structured. It con-
tains two main phases: (1) Data Processing and (2)
Audio Classification. This section also describes the
AUDIO-MC model architecture.

4.1 Data Preprocessing

This phase handles all the data processing steps from
the audio labeling until the generation of the spectro-
gram images. Initially, in cases where an input dataset
is unlabeled, it is necessary to perform the labeling
process. In this process, firstly a guideline is defined

in order to conduct the data annotator for the labeling
process. Following this guideline, the annotator clas-
sifies each audio file into several classes, depending
on the context. For instance, when the annotator hear
the audio - “I hate this service!” - he labels it as a
negative audio. Next, it is essential to check the need
to carry out some audio format conversions on the la-
beled dataset. This step is necessary since some APIs
adopt audio data in a specific and uncommon format.
Thus, audios are converted into spectrogram images.
The framework extracts three spectrograms using dif-
ferent hyperparameters: (1) channel; (2) window and
(3) hop, for each audio. It is essential to highlight that
an optimization process chooses the used values for
these hyperparameters. Finally, a mel scale is applied
to each spectrogram, and the framework group these
three distinct mel spectrograms to generate a single
image for each audio.

4.2 Audio Classification

The audio classification phase consists in train a base-
line model using CCN and pooling operations. A
baseline is a machine learning model that is simple
to set up and has a reasonable chance of providing
acceptable results. It allows to obtain initial results
quickly while wasting minimal time. In this context,
to create the baseline mode, we need to select a CNN
to use as a backbone. In our experiments, we select
the DenseNet since it is a very robust network for im-
age recognition. The idea is to extract the more rele-
vant features from these pre-trained networks.

One of the most costly steps in developing a clas-
sifier is finding the optimal values for hyperparame-
ters. In the AUDIO-MC framework, there are many
hyperparameters to be set, for instance mel dimen-
sion, batch size, class weights, dropout and learning
rate. For this reason, we opt for a Bayesian Optimiza-
tion strategy once it attempts to find the global opti-
mum hyperparameters values in a minimum number
of steps. After training the baseline model, it is possi-
ble to move forward in order to explore more complex
models and obtain even better performance.
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Figure 1: AUDIO-MC framework.

4.3 The Classifier Architecture

We build an audio classifier, called AUDIO-MC, us-
ing both DenseNet-169 as a backbone and mel spec-
trogram as input. The goal of the AUDIO-MC is to
automatically classify instant audio messages in dif-
ferent classes. Figure 2 illustrates the AUDIO-MC
classifier architecture.

The first layer is the backbone DenseNet-169, a
pre-trained model. In this context, the backbone
works as a transferred learning approach. This first
layer get both common and standard information from
the input image, since this backbone was previously
trained with a general-purpose image dataset. After
the backbone, there is a dropout layer with an acti-
vation function to avoid overfitting. Next, the Max
and Average pooling operations are performed over
the dropout output. Then, the pooling results are con-
catenated together with the last hidden state of the
backbone dropout. The rationale under the use of
these pooling operations is that the most (maximum
value) and the less (average value) important back-
bone’s outputs will be provided to the model together
with the output of the last layer of the backbone, al-
lowing the model to be able to distinguish the sen-
timent of the audios based on more specific outputs.
In other words, the model will receive the value cor-
responding to the image that has the most significant
impact on the sentence sentiment (maximum value)
and two values representing the image context (aver-
age value and the result of the last hidden layer).

5 EXPERIMENTAL EVALUATION

We evaluated the AUDIO-MC framework in three dif-
ferent contexts: sentiment analysis, emotion recogni-
tion, and environment sound classification.

For each context, we searched for public audio
datasets and for audio classification methods avail-
able in related work. After this initial search, we se-
lected the RAVDESS (Livingstone and Russo, 2018)
and SAVEE (Jackson and Haq, 2014) datasets to eval-
uate AUDIO-MC framework in the emotion recogni-
tion context. For the environment sound classifica-
tion context, we selected ESC-50 (Piczak, 2015) and
UrbanSound8k (Salamon et al., 2014) datasets. Un-
fortunately, as far as we know and searched, there is
no suitable dataset in the sentiment analysis context.
Then, we only used our own dataset, called ICMA (in-
stant chat messenger), to evaluate AUDIO-MC frame-
work in the sentiment analysis context. Table 2 shows
a summary of the datasets adopted in the case studies.

The ICMA (instant chat messenger) dataset con-
sists of a set of audios from customers of a multi-
national company’s call center application. In these
audios, customers request service or report problems.
Based on sentiment and type of customer request, we
labeled these audios into two classes, neutral and neg-
ative. The negative class contains audios that cus-
tomers complain about the service with a negative
sentiment, such as anger. On the other hand, the neu-
tral class contains all other audios. After the labeling
process, the ICMA dataset stayed with 725 and 152
neutral and negative audios, respectively.

The Sound Classification 50 (ESC-50) (Piczak,
2015) dataset is composed of environmental sounds.
They consist of five-second clips of 50 different
classes across natural, human and domestic sounds
drawn from Freesound.org. Moreover, all audios are
already labeled and split in train, validation, and test.
The number of audios for validation and test is equal.
It contains 32 audio files for each label present in the
train split, forming a total of 1,600 audio clips, while
in the test split, there are eight audio files for each,
with a total of 400 audio clips. Altogether, this dataset
has 2,000 different environment audio clips. Finally,

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

378



Table 2: Datasets summary.

Dataset Context # Classes # Train # Test Is balanced?
ICMA Sentiment analysis 2 789 88 No

ESC-50 Environmental sound classification 50 1600 400 Yes
URBAN Environmental sound classification 9 6185 1547 Yes

RAVDESS Emotion recognition 8 1152 288 Yes
SAVEE Emotion recognition 7 432 48 Yes

it is interesting to note that this dataset is fully bal-
anced.

The Urban Environments Songs (UrbanSound8k)
(Salamon et al., 2014) dataset has ten different classes
from natural sounds to domestic ones: street music,
dog bark, children playing, drilling, air conditioner,
engine idling, jackhammer, siren, car horn, and gun-
shot). Furthermore, it comes with a 10-fold validation
split, and the audio’s length is less than 4 seconds. Fi-
nally, this dataset has 8,732 samples, and its audios
are roughly evenly distributed among the classes.

The Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS) (Livingstone
and Russo, 2018) dataset consists of audio files about
the feeling of some actors with different intensities.
This dataset contains 24 professional actors, 12 fe-
male, and 12 male, vocalizing two lexically-matched
statements in a neutral North American accent. More-
over, it is also provided with train, validation, and test
splits. The train split contains 154 calm, disgusted,
happy, and sad audios; 153 angry, fearful, and sur-
prised audios; and 77 neutral audios. In the test split,
there are 39, 38, and 19, of each category respectively.
As you can see, the classes of this dataset are roughly
balanced.

The Surrey Audio-Visual Expressed Emotion
(SAVEE) (Jackson and Haq, 2014) dataset contains
speeches of four native English male speakers, post-
graduate students, and researchers at the University of
Surrey. All individuals are aged from 21 to 31 years
old, in seven different emotional categories. Also,
this dataset is provided with train, validation, and test
splits. The validation and test splits have the same
size. In the train split, the audios are distributed as
follows: 54 anger, disgust, fear, happiness, sadness,
and surprise audios and 108 neutral audios. Already
test split has 6 and 12 audios in these two categories,
respectively.

Next, we will present the experimental results for
each specific context: sentiment analysis, emotion
recognition and environment sound classification. For
each context, the experiments were conducted in the
same way. All experiments were implemented in
Pytorch (Paszke et al., 2017). So, the AUDIO-MC
classifier, and the audios preprocessing tasks, to ob-
tain its log Mel spectrogram representations, were

implemented using Pytorch infrastructure. Further-
more, during the training of AUDIO-MC classifier we
used cross-entropy loss and Adam optimizer (Kingma
and Ba, 2014). To find the optimal values for the
hyperparameters (such as learning rate, batch size,
class weights, and Mel dimension), we performed a
Bayesian optimization using the Ax platform (Face-
book, 2019) infrastructure. Table 2 shows the size
of the dataset splits used during training and test-
ing (validation) of the AUDIO-MC classifier. Finally,
for each context, we compare the AUDIO-MC results
with those obtained by the main state-of-the-art mod-
els.

5.1 Case Study 1: Sentiment Analysis

In this context, the main goal is creating a model to
analyze sentiments in the customers’ audios to prior-
itize their service according to the detected feelings.
Figure 3 presents the confusion matrix and the accu-
racy value for AUDIO-MC using the ICMA dataset.

As stated earlier, ICMA dataset has two classes:
neutral and negative. Analyzing the confusion matrix
illustrated in Figure 3, we can note that AUDIO-MC
presented a good predictive capacity in both classes,
achieving an accuracy of at least 0.80 in each class,
which is an excellent result for a heavily imbalanced
dataset. The AUDIO-MC obtained a overall accu-
racy of 0.818, since two limitations present in ICMA
dataset: 1) the heavy imbalance of the classes meant
that a very large weight was given to the negative
class, directly impacting the accuracy of the neutral
class; and 2) the small number of audios was a limit-
ing factor. So, we can argue that AUDIO-MC is suit-
able for the sentiment analysis in audio files.

5.2 Case Study 2: Emotion Recognition

To evaluate the AUDIO-MC performance in the con-
text of emotion recognition, we explored two datasets:
RAVDESS and SAVEE. As both datasets are bal-
anced, so we use accuracy as a performance metric.
Figure 4 presents the confusion matrix and the ac-
curacy value for AUDIO-MC using the RAVDESS
dataset.
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Analyzing the confusion matrix illustrated in Fig-
ure 4, we can observe that AUDIO-MC achieved an
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Figure 4: RAVDESS dataset confusion matrix.

around 80%. Analyzing these two classes separately:
it is essential to highlight that the SAD’s mispre-
diction occurred in a scattered way among the other
classes. At the same time, in the NEU, the prediction
error was concentrated in the CALM class, which in-
dicates that AUDIO-MC could not capture the char-
acteristics that distinguish the audios of these two
classes.

Figure 5 presents the confusion matrix and the
accuracy value for AUDIO-MC using the SAVEE
dataset. We can note that AUDIO-MC achieved
around 80% overall accuracy. Even though both
datasets have the same classes, it is already possi-
ble to observe that AUDIO-MC presents more diffi-
culty in classifying the audios of the SAVEE dataset
than the RAVDESS dataset. As we can see, in only
three classes, the AUDIO-MC achieved an accuracy
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Figure 5: SAVEE dataset confusion matrix.

of more than 90%, which are: HAP, NEU, and SURP.
In the other classes, AUDIO-MC always confuses the
correct class with another class, with an error of ap-
proximately 17%. The only exception is the DIS
class, where the error is spread across several other
classes by AUDIO-MC. In fact, in Section 5.4 we
compare the result of our model with the state-of-the-
art ones, and we notice that the SAVEE dataset is ac-
tually more problematic than RAVDESS dataset. So,
AUDIO-MC achieved a still reliable result. Consider-
ing that AUDIO-MC managed to overcome more than
80% global accuracy in emotion recognition, we con-
cluded that it is also very reliable for this context.

5.3 Case Study 3: Environmental Sound
Classification

To evaluate the AUDIO-MC performance in the con-
text of emotion recognition, we explored two datasets:
UrbanSound8k and ESC-50. Figure 6 presents the
confusion matrix and the accuracy value for AUDIO-
MC using the UrbanSound8k dataset.

Analyzing the confusion matrix illustrated in Fig-
ure 6, we can observe that AUDIO-MC had an ex-
citing result for all classes, achieving an astounding
overall accuracy of approximately 98%. This result
is related to the characteristic of the audios present in
the UrbanSound8k dataset. As the audios are pretty
distinct, AUDIO-MC can capture all the details that
differentiate them and, consequently, make a reason-
able classification. AUDIO-MC achieved an accuracy
of over 97% across all classes. Nevertheless, it is es-
sential to point out that AUDIO-MC only achieved
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Figure 6: URBAN dataset confusion matrix.

this result after tuning the hyperparameters through
Bayesian optimization.

The ESC-50 dataset is composed of audios clas-
sified into fifty classes. Due to a large number of
classes, we chose to present the Accuracy, F1-score
and ROC metrics instead of presenting the confusion
matrix. Table 3 presents these metrics.

Table 3: Accuracy, F1-score and ROC of ESC-50’s result.

Accuracy F1-score ROC
0.9321 0.8922 0.9656

In the ESC-50 dataset, AUDIO-MC achieved an
overall accuracy of approximately 93%. Furthermore,
to ensure no bias concern, we also have that the F1-
score and ROC were 0.8922 and 0.9656, respectively.
Therefore, the accuracy of the individual classes is
also balanced, which ensures that AUDIO-MC is a
reliable predictor for the ESC-50. For all exposed,
we conclude that AUDIO-MC framework is also ade-
quate to classify environmental sound.

5.4 Overall Comparison

We also compare the AUDIO-MC with five state-of-
the-art specif approaches. Table 4 summarizes the ac-
curacy values achieved by these approaches for each
explored dataset.

First, it is essential to highlight that we did not find
any similar approach for audio sentiment analysis or
even a public dataset. So, we do not have a competitor
for ICMA dataset. However, we presented at least two
related works for the other four datasets.
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Table 4: AUDIO-MC and the main related works accuracy results.

Work/dataset ICMA ESC-50 RAVDESS SAVEE URBAN
(Palanisamy et al., 2020) - 92.89% - - 87.42%
(Mushtaq and Su, 2020) - 89.28% - - 95.37%

(Kong et al., 2020) - 94.70% 72.10% - -
(Farooq et al., 2020) - - 81.30% 82.10% -
(Seo and Kim, 2020) - - 83.33% 75.00% -

AUDIO-MC 81.80% 93.21% 90.60% 80.20% 98.10%

In the emotion recognition context, the AUDIO-
MC presented the best result for the RAVDESS
dataset, improving the accuracy by approximately
8% regarding the state-of-the-art best result (Seo and
Kim, 2020). On the other hand, in the SAVEE dataset,
the AUDIO-MC showed a slight accuracy deteriora-
tion of less than 2.4%, resulting in a slight loss com-
pared to the result achieved by (Farooq et al., 2020).
In any case, we can argue that AUDIO-MC is very
competitive with the state-of-the-art in the emotion
recognition context.

In the environmental sound classification context,
the AUDIO-MC presented an accuracy quite close
to that achieved by (Kong et al., 2020) for ESC-50
dataset. More precisely, the accuracy of AUDIO-MC
is only 1.5% less than the state-of-the-art best result.
Besides, the AUDIO-MC showed the best result for
the Urban dataset, improving the accuracy by approx-
imately 3% regarding the state-of-the-art best result
(Mushtaq and Su, 2020). Consequently, AUDIO-MC
is also competitive with state-of-the-art models for
classifying environmental sounds. Finally, we can
argue that the AUDIO-MC is generic enough to be
competitive in several contexts with state-of-the-art
models, particularly in sentiment analysis, emotion
recognition and environmental sound classification,
as shown by the experimental results.

6 CONCLUSION

In this work, we proposed a multi-context frame-
work for audio classification called AUDIO-MC. The
main goal of AUDIO-MC is to make more accessible
the development of audio classifiers supporting ma-
chine learning practitioners without professional au-
dio analysis knowledge. The AUDIO-MC performed
as well as the state-of-the-art in the most common
public audio datasets available, such as ESC-50, UR-
BAN, RAVDESS, and SAVEE. The experimental re-
sults also pointed out AUDIO-MC performed as well
as the state-of-the-art in the three different analyzed
contexts. In the sentiment analysis context, AUDIO-
MC achieved an accuracy of 81.80% on the ICMA
dataset. In the context of SER, AUDIO-MC achieved

an accuracy of 90.60% and 80.20% on RAVDESS
and SAVEE datasets, respectively. In the environ-
ment sound classification, AUDIO-MC achieved an
accuracy of 93.21% and 98.10% on ESC-50 and UR-
BAN datasets, respectively. Besides, the AUDIO-MC
framework overcomes the state-of-the-art specif ap-
proaches on RAVDESS and URBAN datasets. As fu-
ture work we intent to extend the AUDIO-MC frame-
work using a multi-language approach.
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