
Using Software Reasoning to Determine Domain-law Violations and
Provide Explanatory Feedback: Expressions Tutor Example

Oleg Sychev a, Nikita Penskoy b and Grigory Terekhov c

Software Engineering Department, Volgograd State Technical University, Lenin Ave, 28, Volgograd, Russian Federation

Keywords: Constraint-based Intelligent Tutor, Software Reasoning, Introductory Programming Course, Expressions.

Abstract: Introducing students to a new subject domain involves getting them acquainted with many new concepts. Some
of these students need a trial-and-error process to learn these concepts, but it is time-consuming for teachers.
An intelligent tutor capable of detecting domain-law violations and providing explanatory feedback can allow
training until learning without supervision. This is especially important when teaching software engineering
because it requires learning a lot of new concepts and has well-defined laws. Our goal was to develop a tutor
capable to explain to the student the cause of their errors: the subject-domain laws that they violated. We
present an approach to modeling subject-domain concepts and laws that allows finding correct answers and
determining law violations in students’ answers. A web-based tool for learning the order of evaluation for
programming-language expressions was developed to assess the viability of this approach. The experiments
show that Apache Jena and Clingo inference engines work quickly enough to find domain-law violations after
each error in middle-sized tasks. The developed tool was evaluated by volunteer undergraduate students and
received positive feedback. After the initial evaluation, the tool was used in the learning process; the students’
learning gains after using the system were statistically significant.

1 INTRODUCTION

Programming is a rapidly growing segment of the la-
bor market, and introductory programming courses
are one of the crucial points in programming educa-
tion because they require learning a significant num-
ber of new abstract concepts before the learners start
to demonstrate skills. This leads to a high dropout
rate and poor satisfaction among the students. A lot
of various attempts and strategies are used to support
learning in introductory programming courses, rang-
ing from traditional tests (Lajis et al., 2018) to mobile
game-based tools (Daungcharone et al., 2019).

For some students, simply explaining new con-
cepts and providing examples is enough to compre-
hend them; these students, typically, can start prac-
ticing applying these concepts in higher-level cogni-
tive tasks according to Bloom’s taxonomy of educa-
tional objectives (Bloom et al., 1956), like analyzing
and synthesizing program code. However, some stu-
dents do not grasp new concepts well, and even a sin-

a https://orcid.org/0000-0002-7296-2538
b https://orcid.org/0000-0002-4443-3399
c https://orcid.org/0000-0002-0289-1834

gle poorly understood or misunderstood concept may
pose a significant obstacle for further progress. Some
of these misunderstandings can be corrected during
discussions with teaching staff and performing simple
exercises (e.g. quizzes), but limited class time mostly
does not allow the teachers to find and correct all mis-
conceptions for each student. This often results in stu-
dents trying to solve higher-level tasks using guesses
and analogy instead of understanding how their code
is supposed to work.

If explaining a concept during a lecture (or text-
book reading) failed, the student can learn the con-
cept during assignments, but the ability of the teach-
ing staff to provide feedback is limited so the feed-
back should be automated. This requires creating
learning environments where students can perform
simple tasks, exposing the concepts’ features and
subject-domain laws (or rules), while receiving im-
mediate explanatory feedback if they make a wrong
move. Only an automatic tutor can give the poorly-
performing students enough experience to learn while
experimenting with the subject-domain objects. An-
other important consideration is limiting the number
of new concepts learned at once. Most program vi-
sualization educational software shows the program

116
Sychev, O., Penskoy, N. and Terekhov, G.
Using Software Reasoning to Determine Domain-law Violations and Provide Explanatory Feedback: Expressions Tutor Example.
DOI: 10.5220/0011070100003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 1, pages 116-123
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

execution with all its complexity, including call stack,
local variables, objects and references, and statement
and/or operator order of execution. While this is use-
ful for high-performing students, it can mentally over-
load the weaker students with a lot of new informa-
tion at once and prevent learning. Ben-Bassat Levy
et al. report that complex program animations over-
whelm the weakest students (Levy et al., 2003); Sorva
et al. conclude that the success of visual programming
simulation exercises is likely to depend on the align-
ment of GUI interactions with the specific learning
goals (Sorva et al., 2013) which is easier to do with
several smaller tools, suited for teaching particular
topics. According to Kollmansberger, some students
found the exercise using his Online Tutoring System
too repetitive (Kollmansberger, 2010) - this problem
can be solved by using adaptive testing.

The kind of feedback provided to the students dur-
ing this kind of learning is also important. Simple
feedback about the correctness of the answer is not
enough to learn without a teacher: students often get
stuck during an exercise. A significant number of vi-
sual program simulators can provide feedback about
the next correct action if the student is wrong. While
this always allows completing the exercise, this sort of
feedback does not explain why the student was wrong
and so is of limited use to foster comprehension: the
student can simply perform the hinted correct step
without understanding why it is correct. To develop
an understanding of the subject-domain concepts, stu-
dents who gave wrong answers should receive feed-
back about the subject-domain laws they broke and,
possibly, feedback about the next correct move with
the explanation of the subject-domain laws that make
this step possible. The lack of explanatory feedback
is one of the most severe problems in modern ques-
tion generation as shown in (Kurdi et al., 2020). This
problem can be solved by using the constraint-based
paradigm where each mistake is tied with breaking a
specific constraint. For example, in (Sychev et al.,
2020) a similar approach is used to verify a program
trace for the given algorithm using Pellet SWRL rea-
soner.

We hypothesized that an intelligent tutor based on
a formal subject subject-domain model, containing an
axiomatic definition of subject-domain concepts and
laws, will be able to generate both correct answers
for simple problems about the studied properties of
subject-domain concepts and explanatory feedback
about errors the student made, providing a way to
train and develop an understanding of subject-domain
concepts without teacher’s intervention. To provide
explanatory feedback, it is necessary to use declara-
tive models, expressing the logic of making decisions

without describing the algorithm to achieve it as im-
perative models do. This allows the tool to acknowl-
edge all possible correct solutions, but the most im-
portant fact is that in a declarative model, wrong so-
lutions will trigger errors in conditions determining if
the answer is correct, and the particular failed condi-
tion lets the tool determine the kind of error.

However, developing such tools poses a series of
problems. Our goals were:

1. building an example formal declarative model of
the subject subject-domain, capable of determin-
ing semantic mistakes;

2. assessing if modern software reasoners are capa-
ble of judging the solutions quickly enough to cre-
ate a real-time tutor with per-step grading;

3. evaluate if this kind of exercise is of interest for
the novice programmers.

We chose determining an evaluation order of the
given expression as the experimental task to find the
viability of developing intelligent tutors based on
declarative formal models of subject-domain laws.
This task is well-suited for experimental tutoring ap-
plications because many its problems have several
correct solutions, so the feedback cannot just say “you
are wrong because the correct move in this moment
is X” but must explain the reasons why the operator,
chosen by the student, cannot be evaluated yet.

Learning programming includes many different
topics, each of them containing a lot of concepts,
theories, methods, and algorithms (Papadakis et al.,
2016). One of these topics is expressions and their
evaluation.

While the concepts of expression evaluation or-
der and operator precedence are mostly known to
the computer-science students from basic mathemat-
ics courses, modern programming languages are more
demanding: they have more levels of precedence
and introduce new concepts like associativity and se-
quence points. The correct order of teaching con-
cepts and tasks, while checking single concepts and
their mixtures is necessary for good education (Hos-
seini and Brusilovsky, 2013) that makes developing
skills of expression analysis and synthesis an impor-
tant topic. However, during introductory program-
ming courses, it may not get enough attention in
class because of more complex problems like learning
to use control-flow statements and debugging tech-
niques.

While understanding the order of expression eval-
uation seems fairly trivial, when modeled, it proves
to be a complex intellectual skill. To answer the ba-
sic question “Can the operator X be evaluated at this
step?” the student must analyze (at most) 4 branches,

Using Software Reasoning to Determine Domain-law Violations and Provide Explanatory Feedback: Expressions Tutor Example

117

finding whether X’s left, central, and right operands
are evaluated fully and are there any operators with
the strict order of evaluating their operands blocking
X’s evaluation. All of these branches require answer-
ing from 4 to 7 questions, and the last branch includes
two “recursive” questions, implying the ability to
solve the same task ahead to identify the operands of
the operators with the strict order of evaluation. This
makes the order of evaluation of expression an inter-
esting task for developing an intelligent tutor based
on the subject-domain model.

2 RELATED WORK

Intelligent tutoring systems are widely used nowa-
days in many subject domains and proved to be help-
ful and decrease overall time to study course mate-
rial (Nesbit et al., 2015). There is a lot of intelli-
gent tutoring systems for software engineering educa-
tion, especially for introductory programming courses
as they are often challenging for the students (Crow
et al., 2018). They can be categorized by features like
the supported programming languages, using open- or
closed-answer questions, the kind of tutor (constraint-
based or cognitive), the level of questions according
to Bloom’s taxonomy’s, using hand-crafted or auto-
matically generated learning problems, static or dy-
namic code analysis, the method and language of
modeling knowledge, etc.

Cognitive tutors usually give more detailed feed-
back but have a lot of handwritten rules for checking
all possible situations, while constraint-based tutors
have more clear rules that can be used in tasks with
several correct solutions (Aleven, 2010). According
to a constraint-based tools survey (Mitrovic, 2012),
expression evaluation order is an ill-defined task in
a well-defined subject-domain that is the best choice
for the constraint-based approach. In well-known
tasks, all errors are generally predictable as students
have constrained knowledge about field (Singh et al.,
2013). More closed tasks like expression evaluation
order can be described without data learning using
logical rules for all possible mistakes.

Solving most of the tasks regarding expres-
sions starts from determining the evaluation or-
der. Some pedagogical program visualizers (Virta-
nen et al., 2005; Bruce-Lockhart and Norvell, 2000)
show evaluation of expressions step by step, attract-
ing attention to the evaluation order without dis-
closing the underlying laws. Interactive visualizers
WADEIn (Brusilovsky and Su, 2002), Online Tutor-
ing System (Kollmansberger, 2010), UUhistle (Sorva
and Sirkiä, 2010), and others (Donmez and Inceoglu,

2008) ask students for expression evaluation order
as a part of more complex exercises. While these
tools are useful for integrating everything the students
know about program execution, the amount of dif-
ferent tasks the students should do while solving an
exercise prevents the students from concentrating on
learning a particular topic.

Kumar developed and evaluated tutoring applica-
tions called Problets helping teaching programming
basics, using a separate tool for each topic (Kumar,
2003). The expression tool iteratively checks the eval-
uation order of the given expression, checks chang-
ing variables values, shows wrong answers, and ex-
plains the correct steps. Systems have template-based
problems generation and automatic problem solving,
but the feedback about evaluation mistakes is scarce,
showing only the fact of error. The feedback in the ex-
pression Problet tool mostly consists of demonstrat-
ing the correct solution of the entire exercise. This re-
quires the student to compare the correct solution with
theirs and make a conclusion about why they were
wrong. The same approach to feedback is used by
Sean Russel (Russell, 2021) in his tool for generating
program-tracing questions (including the expression
evaluation).

We are attempting to advance the field by devel-
oping a tool that provides explanatory feedback not
only about the correct way of solving the task but
telling the reasons why the student’s answer is wrong
right after a wrong step is made. This creates a larger
search space than simply finding a correct solution, so
measuring the program performance and choosing an
efficient reasoner is needed.

3 DEVELOPED APPLICATION

3.1 Architecture

The developed application uses client-server architec-
ture with laws database as shown in Fig. 1. Interac-
tion between its components is processed by HTTP
Json REST API. The server component contains API
to access positive and negative laws with formulations
for backends (software reasoners), decorators for the
reasoners, domains that encapsulate exercise business
logic, and helper classes for prepare and cache data.
The client component provides the user interface.

Interaction processing starts with a client con-
troller that updates a model and specifies the request
to the server through a service, the service generates
JSON and sends the request. Server helper classes re-
ceive and parse the request, call a domain to get laws,
statement facts, and solution verb list; call a backend

CSEDU 2022 - 14th International Conference on Computer Supported Education

118

Figure 1: Component diagram.

to solve the task if not found in the cache, and judge
the answer. Then the domain is called to produce text
descriptions of law violations, and the helper forms
a response by extending the request with additional
information.

To solve the learning problem, the backend uses
a formal model of the subject domain as a set of
rules. The problem and the student’s answer are rep-
resented as an RDF graph. Jena reasoner (McBride,
2002) is used to perform logical inference. After to-
kenizing the given expression, the backend builds an
Abstract Syntax Tree (AST) of expression. Then ex-
pression evaluation order graph is built based on AST
by adding the information from the operators creat-
ing sequence points like binary logical operators or
commas. It is represented as a directed acyclic graph
(DAG), describing every correct order of evaluation
and the reasons for all dependencies that can be used
for generating explanatory feedback. The graph is
cached and used for grading students’ answers step
by step, correcting mistakes as they are made.

3.2 Usage

The tool accepts programming language expressions
in different programming languages (Python and
C++). A teacher, after filling a small survey, can cre-
ate exercises and receive permanent URLs for them
to send to the students. The teachers can see sim-
ple statistics about the performance of the students on
their exercises. The students can also use the tool on
their own to solve the expressions of particular inter-
est to them.

The tool asks a student to press operators in the
order they are evaluated. If the operator is chosen
correctly, it is marked with green and its evaluation
order is shown next to it. If a mistake is made (i.e. an
operator that cannot be evaluated yet is chosen prema-
turely), it is marked with red color, and feedback mes-

sages are shown beneath, explaining why the student
was wrong (see Fig. 2). The button for each operator
shows its position in the expression that makes them
identifiable even if there are a few instances of one
operator. In many cases, expressions can have several
correct orders of evaluation; the tool recognizes all of
them as correct.

The tool determines six kinds of mistakes:

1. evaluating an operator with lower precedence
first,

2. evaluating two operators with the same prece-
dence and left associativity from right to left,

3. evaluating two operators with same precedence
and right associativity from left to right,

4. evaluating a two-token operator (i.e. an operator
with two tokens enclosing its operand, like square
brackets for array access, function call, or ternary
operator) before evaluating the operators inside it,

5. evaluating an operator whose operand is parenthe-
sized before the operator in these parentheses,

6. evaluating an operator belonging to the right
operand of an operator with strict operands eval-
uation order (e.g. logical or, logical and, and
comma operators in the C++ programming lan-
guage) before all of the operators belonging to its
left operand. For each mistake, the tool generates
a template-based message with the positions of all
relevant operators (see Fig. 2).

Consider the situation in Fig. 2 for the C++ pro-
gramming language. The student started by correctly
determining square brackets as the first evaluated op-
erator, but then made a mistake by choosing the “+”
operator at position 7 as the second evaluated opera-
tor. Two operators block its evaluation for different
reasons: “+” at position 5 must be evaluated first be-
cause operator “+” is left-associative while operator
“*” at position 9 must be evaluated first because its
precedence is higher. The system shows both reasons
so that the student can learn from their mistake.

The tool also can show a possible next correct step
and explain why it is correct if the student asks for
help by clicking a button. A teacher can control the
availability of hints for their exercises. The explana-
tion takes into account the two closest unevaluated op-
erators (to the left and the right of the evaluated oper-
ator) and describes why the shown operator should be
evaluated first. So if the student is stuck, they should
not resort to trying all the buttons in order but can see
the explanation of the next move.

Fig. 3 shows an example of a hint for the situation
where the operator “&” to the left should not be eval-
uated yet because of its lower precedence while the

Using Software Reasoning to Determine Domain-law Violations and Provide Explanatory Feedback: Expressions Tutor Example

119

Figure 2: Explanatory feedback after a mistake.

Figure 3: Demonstration of the next correct step with an explanation.

Table 1: Inference wall time for different engines, seconds.

Operands count Clingo Apache Jena Pellet Prolog Apache Jena ARQ
4 1.48 2.75 3.98 0.92 3.77
9 1.70 3.67 9.57 1.73 7.92

13 2.35 9.19 21.49 4.64 23.63
17 9.92 9.58 17.08 10.30 13.71
23 23.54 57.25 78.86 30.92 46.71
30 43.37 45.21 344.1 60.03 116.5

operator “+” to the right should not be evaluated yet
because the “+” operator is left-associative. Note that
the situation before the hint button is pressed has two
correct next step variants: the operator “+” at posi-
tion 4 and the operator “*” at position 10, because the
operands of binary operator ”==” can be evaluated at
any order.

4 EVALUATION AND RESULTS

4.1 Reasoners’ Performance

As the developed tool is supposed to judge answers
step by step as they are given, it is crucial to use an
efficient software reasoner as a backend. We mea-
sured the performance of 5 inference engines: Pel-
let SWRL reasoner, Apache Jena inference engine,

CSEDU 2022 - 14th International Conference on Computer Supported Education

120

Apache Jena ARQ (scripts using SPARQL Update
can “reason” by modifying the knowledge graph),
SWI-Prolog (with semweb library), and Answer Set
Programming solver Clingo. Most of the time, the
reasoning time rose with the task size, but sometimes
it decreased instead; so the kind of expression and the
reasoner can affect the reasoning time. The experi-
ments (see Table 1) showed that some engines (es-
pecially Pellet) are too slow for real-time grading of
expressions longer than 4 operators, but the best rea-
soners - Apache Jena and Clingo - can solve medium-
sized tasks quickly enough. We choose Apache Jena
inference engine as our backend because it is written
in Java and supports multithreading; it also supports
RDF natively.

4.2 Evaluation by Students

We asked the first-year Computer Science students of
Volgograd State Technical University in the middle
of the CS1 course to try and evaluate the developed
tool; 14 students volunteered. To avoid the preva-
lence of the best-performing students among the vol-
unteers, the worst-performing student group was se-
lected. They used the tool to determine the order of
evaluation of 5 expressions for the C++ programming
language:

• (a + b) * c + d (requires only knowledge
of operator precedence),

• (a + b) * c * d (requires knowledge of op-
erator precedence and associativity),

• a = b = 0 (introduces right-associative opera-
tor),

• a < 0 && b > 0 (logical AND operator has the
strict operand evaluation order),

• a < 0 ? b = 0 : c = 0 (ternary conditional
operator).

The students were able to complete all the exer-
cises without asking teachers for support. After that,
the students filled a short survey. Tab. 2 shows mean
and standard deviation for the three five-point Likert
scale questions with 1 meaning “Strongly disagree”
and 5 meaning “Strongly agree”. Most of the students
rated the developed tool as very useful and wanted to
use similar tools for the other topics. Most of the stu-
dents (10 out of 14) made from 1 to 3 errors; only 2
avoided errors entirely. So even the students who al-
ready studied this topic in their course learned more
about it using the provided explanatory feedback and
only 5 simple questions. It shows that even Computer
Science students in the middle of the CS1 course have
things to learn and practice about the evaluation order

of expressions. Using our tool, it can be done without
spending more class time.

Table 2: Students survey.

Question Mean Std.dev
Were the explanations pro-
vided by the program helpful?

4.28 1.03

Are similar programs useful
for learning the basics of pro-
gramming?

4.71 0.79

Would you like to have sim-
ilar training programs for
more complex subject topics?

4.71 0.79

none 1–3 4–8 more than 8

5

10

Number of mistakes

N
um

be
ro

fs
tu

de
nt

s

Figure 4: Distribution of students by the number of mis-
takes they made.

Answering free-text questions, most participants
noted that the advantages of the developed system are
detailed feedback about mistakes and the overall idea
of narrowly focused tools for the specific concepts.
Most of the problems were caused by the slow work
of the SWRL reasoner (Sirin et al., 2007) used in the
first version of the tool and the lack of supplementary
materials about studied concepts.

The improved tool was used in the CS0 course of
Volgograd State Technical University the next year
with 23 expressions combining the studied laws in
different ways. The students had the average pre-
test score of 56% and learning gains 16% which is
statistically significant (p < 10−11, paired 2-tailed T-
test). The students with lower pre-test scores (less
than 60%) had better learning gains than the students
with high pre-test scores (p = 0.001).

5 CONCLUSIONS

We developed a tool whose key difference from the
previous works (Kumar, 2003; Russell, 2021) is
providing explanatory feedback about the violated
subject-domain laws after each wrong step. We

Using Software Reasoning to Determine Domain-law Violations and Provide Explanatory Feedback: Expressions Tutor Example

121

showed that developing a formal declarative model of
subject-domain laws is possible using different mod-
ern rule languages like SWRL, Jena Rules, SPARQL,
and Prolog. However, determining the cause of an er-
ror requires narrowing the task to closed-answer ques-
tions: it is not possible to determine the error cause
when an answer can be any number or string. But the
closed-answer questions are not necessarily simple;
some of them may have a lot of possible answers like
determining the order of evaluation of the given ex-
pression or building a program trace, so the chances
of giving a correct answer by pure guessing can be
made negligible.

Another important consideration is that some of
the found errors are not atomic. For example, if the
student evaluates a multiplication operator before an
addition operator, it can be caused by considering op-
erators’ associativity before their precedence or by
not knowing the relative precedence of these two par-
ticular operators. This can be addressed by a teacher
by asking the student a set of follow-up questions
which can be imitated in the tool as a finite automaton.
It may be possible to devise a technique of generating
follow-up questions from a formal description of the
subject-domain laws, but this requires future research
after building more similar models.

One more advantage of the developed formal
model is its ability to not just solve the tasks on its
own (like many other ITS do), but to determine the
set of possible errors for the given task - i.e., the nec-
essary knowledge to solve it. This opens the way to
building exercises using a large base of expressions
mined from open-source code with automatic classi-
fication.

We found that some modern software reasoners
(like Apache Jena and Clingo) allow performing in-
ference quickly enough to judge students’ answers
step-by-step in real-time for middle-size tasks. The
time of reasoning grows quickly with the expression
growth and may require better strategies like caching
the reasoning results after each correct step, advanc-
ing the solution, to lower the number of facts that
should be reasoned each time. However, the pedagog-
ical effect of solving the tasks with really big expres-
sions (more than 20 operators in a single expression)
is questionable: avoiding large, poorly understand-
able expressions is often preferable. The developed
approach can be used for different subject domains if
the domain model and domain-specific user interface
are provided (Sychev et al., 2021).

The evaluation results show that constraint-based
learning tools with explanatory feedback generation
are a viable way to learn new concepts during home-
work without a teacher’s intervention. They visualize

the processes that are normally left to students’ imag-
ination and explain the rules that were broken by a
particular student. The students mostly perceived the
tool positively, and the majority of them were able to
improve their understanding of expression evaluation.
Even the poorest-performing students, making more
than 4 errors in 5 expressions, were able to complete
the exercises without support from the teachers. How-
ever, some of the explanatory messages were complex
and may need to be broken down into simpler state-
ments by generating a series of follow-up questions,
especially when aiming at younger learners like K-12
students. Further research may include a more rig-
orous studying of the learning gains using the devel-
oped tool (including using the tool as the only means
to practice on the topic).

The further development of the developed for-
mal model of expression domain will include enhanc-
ing studying expressions to teach determining data
types for subexpressions (using different models for
statically and dynamically typed languages) and con-
structing expressions to access modifiable data loca-
tions. It can be done by adding more rules on the
top of the Abstract Syntax Tree that the developed
subject-domain model builds. We are also going to
target more programming languages. The tool can
be improved by adding the possibility to demonstrate
and explain correct steps if the student got stuck and
ask a series of follow-up questions.

The tool can be used to teach evaluating expres-
sions during introductory programming courses on
different levels of education either as a supporting
tool for a classroom activity or on its own during
homework. The students can also use it to explore
the topic by creating and solving their own exercises.
The tool is freely accessible at https://howitworks.
app/expressions. It supports English and Russian as
interface languages and C++ and Python as program-
ming languages. Please contact the development team
if you are interested in adding support for your lan-
guage.

ACKNOWLEDGEMENTS

The reported study was funded by RFBR, project
number 20-07-00764.

REFERENCES

Aleven, V. (2010). Rule-based cognitive modeling for in-
telligent tutoring systems. In Advances in intelligent
tutoring systems, pages 33–62. Springer.

CSEDU 2022 - 14th International Conference on Computer Supported Education

122

Bloom, B. S., Engelhart, M. B., Furst, E. J., Hill, W. H.,
and Krathwohl, D. R. (1956). Taxonomy of edu-
cational objectives. The classification of educational
goals. Handbook 1: Cognitive domain. Longmans
Green, New York.

Bruce-Lockhart, M. and Norvell, T. (2000). Lifting the
hood of the computer: program animation with the
teaching machine. In 2000 Canadian Conference
on Electrical and Computer Engineering. Conference
Proceedings. Navigating to a New Era, volume 2,
pages 831–835 vol.2. IEEE.

Brusilovsky, P. and Su, H.-D. (2002). Adaptive visual-
ization component of a distributed web-based adap-
tive educational system. In International Confer-
ence on Intelligent Tutoring Systems, pages 229–238.
Springer.

Crow, T., Luxton-Reilly, A., and Wuensche, B. (2018). In-
telligent Tutoring Systems for Programming Educa-
tion: A Systematic Review, page 53–62. Association
for Computing Machinery, New York, NY, USA.

Daungcharone, K., Panjaburee, P., and Thongkoo, K.
(2019). A mobile game-based c programming
language learning: results of university students’
achievement and motivations. International Journal
of Mobile Learning and Organisation, 13(2):171–192.

Donmez, O. and Inceoglu, M. M. (2008). A web based tool
for novice programmers: Interaction in use. In Ger-
vasi, O., Murgante, B., Laganà, A., Taniar, D., Mun,
Y., and Gavrilova, M. L., editors, Computational Sci-
ence and Its Applications – ICCSA 2008, pages 530–
540, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hosseini, R. and Brusilovsky, P. (2013). Javaparser: A
fine-grain concept indexing tool for java problems. In
Workshops Proceedings of AIED 2013, volume 1009,
pages 60–63. University of Pittsburgh, CEUR work-
shop proceedings.

Kollmansberger, S. (2010). Helping students build a men-
tal model of computation. In Proceedings of the Fif-
teenth Annual Conference on Innovation and Technol-
ogy in Computer Science Education, ITiCSE ’10, page
128–131, New York, NY, USA. Association for Com-
puting Machinery.

Kumar, A. N. (2003). Learning programming by solv-
ing problems. In Informatics curricula and teaching
methods, pages 29–39. Springer.

Kurdi, G., Leo, J., Parsia, B., Sattler, U., and Al-Emari,
S. (2020). A systematic review of automatic ques-
tion generation for educational purposes. Interna-
tional Journal of Artificial Intelligence in Education,
30(1):121–204.

Lajis, A., Baharudin, S. A., Ab Kadir, D., Ralim, N. M.,
Nasir, H. M., and Aziz, N. A. (2018). A review of
techniques in automatic programming assessment for
practical skill test. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), 10(2-
5):109–113.

Levy, R. B.-B., Ben-Ari, M., and Uronen, P. A. (2003).
The jeliot 2000 program animation system. Comput.
Educ., 40(1):1–15.

McBride, B. (2002). Jena: a semantic web toolkit. IEEE
Internet Computing, 6(6):55–59.

Mitrovic, A. (2012). Fifteen years of constraint-based tu-
tors: what we have achieved and where we are going.
User modeling and user-adapted interaction, 22(1-
2):39–72.

Nesbit, J. C., Liu, Q. L. A., Liu, Q., and Adesope, O. O.
(2015). Work in progress: Intelligent tutoring systems
in computer science and software engineering educa-
tion. Proceeding 122nd Am. Soc. Eng. Education Ann.

Papadakis, S., Kalogiannakis, M., and Zaranis, N. (2016).
Developing fundamental programming concepts and
computational thinking with scratchjr in preschool ed-
ucation: a case study. International Journal of Mobile
Learning and Organisation, 10(3):187–202.

Russell, S. (2021). Automatically generated and graded
program tracing quizzes with feedback. In Pro-
ceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 2,
ITiCSE ’21, page 652, New York, NY, USA. Associ-
ation for Computing Machinery.

Singh, R., Gulwani, S., and Solar-Lezama, A. (2013).
Automated feedback generation for introductory pro-
gramming assignments. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, pages
15—-26, New York, NY, USA. Association for Com-
puting Machinery.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz,
Y. (2007). Pellet: A practical owl-dl reasoner. Web
Semant., 5(2):51—-53.

Sorva, J., Lönnberg, J., and Malmi, L. (2013). Stu-
dents’ ways of experiencing visual program simula-
tion. Computer Science Education, 23(3):207–238.

Sorva, J. and Sirkiä, T. (2010). Uuhistle: A software tool for
visual program simulation. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, Koli Calling ’10, page 49–54,
New York, NY, USA. Association for Computing Ma-
chinery.

Sychev, O., Denisov, M., and Anikin, A. (2020). Verify-
ing algorithm traces and fault reason determining us-
ing ontology reasoning. In Taylor, K. L., Gonçalves,
R., Lécué, F., and Yan, J., editors, Proceedings of
the ISWC 2020 Demos and Industry Tracks, Globally
online, November 1-6, 2020 (UTC), volume 2721 of
CEUR Workshop Proceedings, pages 49–54. CEUR-
WS.org.

Sychev, O., Denisov, M., and Terekhov, G. (2021). How
it works: Algorithms - a tool for developing an un-
derstanding of control structures. In Proceedings of
the 26th ACM Conference on Innovation and Technol-
ogy in Computer Science Education V. 2, ITiCSE ’21,
page 621–622, New York, NY, USA. Association for
Computing Machinery.

Virtanen, A., Lahtinen, E., and Järvinen, H.-M. (2005). Vip,
a visual interpreter for learning introductory program-
ming with c++. In Kolin Kolistelut - Koli Calling 2005
Conference on Computer Science Education, pages
125–130.

Using Software Reasoning to Determine Domain-law Violations and Provide Explanatory Feedback: Expressions Tutor Example

123

