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Abstract: This study aims to explore the decoding of human brain activities using EEG signals for Brain Computer 
Interfaces by utilizing a multi-view spatiotemporal hierarchical deep learning method. In this study, we ex-
plored the transformation of 1D temporal EEG signals into 2D spatiotemporal EEG image sequences as well 
as we explored the use of 2D spatiotemporal EEG image sequences in the proposed multi-view hierarchical 
deep learning scheme for recognition. For this work, the PhysioNet EEG Motor Movement/Imagery Dataset 
is used. Proposed model utilizes Conv2D layers in a hierarchical structure, where a decision is made at each 
level individually by using the decisions from the previous level. This method is used to learn the spatiotem-
poral patterns in the data. Proposed model achieved a competitive performance compared to the current state 
of the art EEG Motor Imagery classification models in the binary classification paradigm. For the binary 
Imagined Left Fist versus Imagined Right Fist classification, we were able to achieve 82.79% average vali-
dation accuracy. This level of validation accuracy on multiple test dataset proves the robustness of the pro-
posed model. At the same time, the models clearly show an improvement due to the use of the multi-layer 
and multi-perspective approach. 

1 INTRODUCTION 

This work aims to create a deep learning method to 
recognize spatial and temporal patterns in EEG sig-
nals generated by the brain. The trained model could 
be utilized to make predictions about the motor move-
ments based on the signals received from the EEG 
machine. EEG data has been used to analyze brain ac-
tivity to identify neurological disorders and to recog-
nize patterns in brain activities related to various mo-
tor movements or even imagination of such motor ac-
tivities. These signals from the brain are measured at 
specific locations on the skull and the usual approach 
is to apply signal processing techniques to that data 
for classification. Instead of using the usual 1D signal 
data in the conventional way, this work attempts to 
combine the readings of these sensors to form an “im-
age” of the brain. This opens possibilities of using 
computer vision techniques in order to recognize spe-
cific patterns in the brain activities. 

Deep learning is a state-of-the-art (SoA) method 
in terms of image classification (Voulodimos, Dou-
lamis, Doulamis, & Protopapadakis, 2018). Trans-
forming single dimensional EEG signal data into a 2D 

signal data allows the use of various image classifica-
tion techniques like convolutions in order to form 
generalized predictions. Furthermore, transforming 
the data in this way still preserves the temporal infor-
mation. It has been shown that analyzing both spatial 
and temporal information in signals can improve the 
accuracy of classification models for time series data 
(Saha and Fels, 2019). This work attempts to use a 
spatiotemporal deep learning method in order to rec-
ognize brain activities using EEG signals. 

A Brain Computer Interface (BCI) is a system that 
communicates the patterns of activities of a user’s 
brain to an interactive system. In other words, this 
could be a system where the only input is the signals 
coming from the user’s brain. As an example, this 
could be a user controlling the mouse pointer using 
only their brain, i.e., imagining the pointer going in a 
specific direction in order to make it do so. This 
makes BCI an important tool for motor-impaired us-
ers to be able to use assistive systems such as text in-
put, smart prosthetic devices, wheelchairs, etc. Motor 
Imagery (MI) is the process of mentally simulating a 
given action. For example, moving an arm is a phys-
ical task, whereas imagining or thinking of moving an 
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arm is the corresponding MI task. The models trained 
in this work can be used to recognize EEG signals for 
BCI as well as for the diagnosis of neurological dis-
orders by learning patterns in the EEG MI task data. 

There has been some significant work in the field 
of EEG MI task classification using deep learning re-
cently. Some of the methods used for these classifica-
tion tasks have a consistent pattern in the use of pre-
processing techniques as well as the methodology for 
the classification process. Whenever the dataset in-
cludes a significant number of subjects, it appears 
there is minimal need for preprocessing. There is also 
a consistent use of pattern recognition methods that 
use both spatial and temporal pattern learning tech-
niques in a fusion architecture. 

Roots et al. worked with the BCI Competition IV 
dataset with 103 subjects (Roots, Muhammad, & Mu-
hammad, 2020). They used bandpass and notch filters 
on their time series data and used a fusion architecture 
to classify MI Right Fist versus MI Left Fist. Their 
model, which uses fusion of spatial and temporal fea-
tures achieved 83% validation accuracy for the binary 
model. Wang et al. used the PhysioNet dataset for 
their 2-class, 3-class and 4-class classification models 
(Wang, et al., 2020). This work used no preprocessing 
on the full 109 subject dataset. Their model was based 
on the EEGNet structure. It used Conv2D layers to 
learn spatiotemporal information with fusion struc-
ture. Their models achieved 75.07% and 82.50% val-
idation accuracy on the 3-class and 2-class models re-
spectively on MI Right Fist, MI Left Fist and MI Feet 
labels. Dose et al. also used the full PhysioNet dataset 
with 109 subjects (Dose, Møller, & Iverson, 2018). 
They used no preprocessing method either. Their 
model was trained on the global dataset and then fine-
tuned for each subject separately. Their 3 class clas-
sification had 68.82% validation accuracy while their 
binary classification had 80.38% accuracy on their 
global classifier. 

In this study, we used the EEG Motor Move-
ment/Imagery Dataset that is a collection of 14 exper-
imental runs (Schalk, McFarland, Hinterberger, 
Birbaumer, & Wilpaw, 2004). Each run was a motor 
imagery recording performed by 109 subjects. This 
dataset provides more than 1,500 such EEG record-
ings and is considered the largest EEG motor move-
ments and imagery dataset available (Goldberger, et 
al., 2000).The subjects’ brain activity was recorded 
while performing each of the four tasks: 

1. Open and close the right or left fist 
2. Imagine opening and closing the right or left fist 
3. Open and close both fists or both feet 
4. Imagine opening and closing both fists or both 

feet 

This paper is organized as follows: the previous 
section introduced the problem, described the dataset 
and explained some related work performed in the area 
of EEG task classification; followed by the next chap-
ter that goes over the tranformation of raw EEG signals 
into 3 dimensional image sequences representing each 
MI task. The next chapter also describes the structure 
of the multi-view hierarchical fusion model. The third 
chapter goes over the results and discussions. Finally 
the last chapter draws a conclusions and describes 
some possible future direction for this work. 

2 METHODS 

2.1 Creating 2D Spatiotemporal EEG 
Image Sequences 

The raw EEG signals consist of multiple 1D time se-
ries data that show the electrical activity at specific 
locations on the skull. The placement of the elec-
trodes is based on the international 10-10 system as 
shown in Figure 1.  

This collection of 1D series data is then trans-
formed into a time series of 2D data. The signal ac-
quired over a period [t, t+N] from each channel of the 
EEG system can be represented by 

 Ei= ct
i, ct+1

i , ct+2
i , ct+3

i , …, ct+N
i  (1)

where i is the index of the channel and  is the EEG 
data acquired from the ith channel at time t. EEG data 
collected from n number of channels over a period [t, 
t+N] can be represented by matrix S as provided in 
Figure 2. Each row of the matrix S is corresponding 
to EEG data collected from a single channel over the 
period [t, t+N], and each column of the matrix S is 
corresponding to EEG data collected through all 
channels at time t. 

These new spatiotemporal images were created by 
transforming each column matrix S into a 2D image, 
as shown in Figure 2. This was done by mapping ct

i to 
ct

n into a 9x9 matrix based on the actual location of 
the electrodes on the head where the data was ac-
quired, as shown in Figure 1. This is the standard 10-
10 system of placement of electrodes for recording 
EEG data. For example, the data acquired from the 
first channel at time t is placed in the 3rd row and the 
2nd column of the matrix S, which is the same loca-
tion where the first electrode is placed on the skull. In 
the same figure, the pixel values marked as x are 
empty values as there are no electrodes corresponding 
to them. These are placeholders. This transformation 
process is illustrated in Figure 2. 
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Figure 1: 10-10 system of electrodes. 

As seen in Figure 2, a 2D spatiotemporal EEG im-
age sequence is created by transforming each column 
of the matrix S into a 2D image. Each of the frames It 
to It+N in the given sequences is temporally related. 

 
Figure 2: Transformation of 1D EEG signals to 2D image 
sequences. 

2.2 Data Preparation  

At this point, the data points ranged from -0.000655 to 
0.000667. The data needed to be transformed a more 
meaningful range. Thus, normalization was required. 
Z-score normalization was applied to the data. A z-
score, also known as a standard score, is a measure of 
how far from the mean any data point is (Hayes, 2021). 
A z-score normalization is a data transformation 
method where each data point is replaced by the z-
score. This normalization was performed such that the 
placeholder values, shown in Figure 2 as x values, did 
not skew the relevant data. Each EEG reading was re-
placed by its z-score, which is given by the formula: 

z = (x - ) /  (2)

In the beginning, the raw EEG data was a collec-
tion of 1D sequences of data recorded by electrodes 
at various locations on the human head. Then those 
1D sequences were transposed into 2D arrays such 
that they became images of the human head looking 
from the top. The 1D arrays were transformed in a 
logical manner that would clearly represent the posi-
tion of the electrodes on the head where the readings 
were taken. Transforming the 1D data into 2D data 
was a way to preserve the features while creating new 
features that would represent the spatial correlations 
between nearby electrodes as well as preserve the 
temporal information from the original sequences. 

The image sequences now represent the brain ac-
tivity of the subjects while performing the specific 
motor actions with relation to time. Those sequences 
of images can be thought of as a video of the activity 
of the brain while those motor movements were per-
formed or imagined. Each action was carried out by 
the subjects for a short period of time, which means 
each action that was performed would be represented 
by a series of those images. These images would be 
back-to-back, creating one cohesive chunk of se-
quences that would be corresponding to only one ac-
tion that was performed. Because of this, it would 
make more sense to unify all the images that were part 
of just one action. This would mean separating the 
images into one more dimension that would represent 
the activity from start to finish. Analyzing the dataset 
and the rate of recording of the data, it seemed every 
single action was represented by roughly 650 data 
points. This meant a collection of 650 back-to-back 
9x9 images represented one single action. This data 
transformation is further illustrated in Figure 3. 

 

Figure 3: Creating 3D temporal data from 2D sequences. 

In Figure 3 (a) the image sequences with the same 
label are back-to-back with each other. Those image 
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sequences are combined in a stack of 650 images. In-
stead of each of the 650 images individually having a 
label of 0, the whole block now has the label 0 as 
shown in Figure 3 (b). Each of those blocks now has 
shape (650,9,9). 

2.3 Multiview Spatiotemporal  
Hierarchical Deep Fusion Learning 
Model for BCI 

Although the transformed EEG data consists of 2D 
spatiotemporal EEG images, EEG data collected over 
a period [t, t+N] can be considered as 3D data in 
which two of the dimensions are on the spatial do-
main and the third dimension is on the time domain, 
as illustrated in Figure 2. In order to learn the spatio-
temporal patterns in the image sequences of the EEG 
dataset, we required Deep Learning models capable 
of modeling 3-dimensional data. As seen in the intro-
duction section of this work, there are two common 
approaches for deep learning models for classifica-
tion of EEG data. The first approach is models that 
learn spatial and temporal patterns in the data. The 
second approach is models that utilize the fusion ar-
chitecture where different parts of the system learn 
different patterns. In this approach, all the learned 
patterns are then added to make a more cohesive sys-
tem. This work seeks to make use of both approaches 
for modeling our EEG data. 

We propose a custom hierarchical model that con-
sists of several 2D Convolutional models working to-
gether to model data from different perspectives. The 
idea for the custom hierarchical model was to be able 
to learn spatial patterns in the data from 3 different 
perspectives, which made the hierarchical system a 
spatiotemporal model (Sekeroglu, Soysal and Li, 
2019). 

The proposed custom hierarchical model aims to 
examine the data from 3 different perspectives as 
shown in Figure 4. Until this point, the input data was 
4-dimensional, which separates each action into 650 
images. These 650 images are treated as one singular 
data point. The new hierarchical model would create 
2 new data points for the same action. These new data 
points would be the same as above but with the axes 
swapped. As shown in Figure 6, the view from SxSy 
plane provides the information regarding the col-
lected data from all channels at time t. However, the 
views from TSx and TSy planes provide information 
regarding the collected data from certain channels 
over a period. Thus, the new proposed models will 
learn patterns in the data from three different views: 
the first view based on SxSy plane, the second view 
based on TSx plane and the third view based on TSy 

plane. Since the number of frames in the first view, 
which is based on SxSy plane, will be much greater 
than the number of frames in the second and the third 
view, we need to split the data collected over a period 
of time [t, t+N] into smaller time slots by a sliding 
window approach where the window size is 650. 

 

Figure 4: Creating multiple perspectives from EEG data. 

The SxSy data pipeline feeds in the “main view” 
models where the spatiotemporal relationship in the 
EEG data is learned by looking at each “frame” of the 
data from the top. The other two “side view” models 
where the EEG data is viewed from the side as well 
as from below, represent complex temporal infor-
mation and create some distinct patterns in the data. 
These two models represent the TSx and TSy planes 
in the above figure. These three perspectives and 
these 3 models should learn the features in the EEG 
data in a cohesive manner that would make the mod-
els perform well. 

As Figure 5 shows the full structure of the pro-
posed hierarchical model. It consists of multiple Con-
volutional Neural Networks arranged in terms of lev-
els. Each of these levels learn different patterns in the 
data. The first one is called the MF (Module Frame) 
level. The models in this level (MF1, MF2, and MF3) 
learn patterns directly from the image sequences or 
image frames. These are the convolutional deep 
learning models. The next level is called MP (Module 
Plane) level. This level does not directly learn pat-
terns in the EEG data but learns patterns in the pre-
dictions made by the MF models. Then the MT (Mod-
ule Temporal) level is a concatenation of the 2 MP 
models that specifically learn the temporal patterns, 
i.e., MP2 and MP3. Then the last level is MST (Mod-
ule Spatio-Temporal). This is a concatenation of the 
predictions from the MT model and the spatial pre-
diction from the MP1 model. 

After each level, the outputs of the models are 
concatenated and those predictions are used as input 
for the models of the next level. The detailed structure 
and hyper parameters for all three levels are provided 
in Table 1. 
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Table 1: Model layers and hyperparameters. 

MF Models MP Models MT/MST
Input Input Input

Conv2D  
(8 filters) 

Dense  
(128 neurons) 

Dense  
(64 neurons)

MaxPooling2D Dropout (0.4) Dropout (0.4)
Conv2D  

(12 filters) 
Dense  

(64 neurons) 
Dense 

MaxPooling2D Dropout (0.4) Output
Flatten Flatten 
Dense Dense 
Output Output 

3 RESULTS AND DISCUSSION 

As shown in Table 2, the data consisted of 9 labels. 
Label 0 was the resting (control) action. Each subject 
was asked to rest by the on-screen prompt before each 
task was performed. This means that the label 0 is rep-
resented in the dataset more than any other label. 

Table 2: Labels and corresponding tasks. 

Label Task 
0 Rest 
1 Open/Close Right Fist 
2 Open/Close Left Fist 
3 Imagine Open/Close Right Fist
4  Imagine Open/Close Left Fist
5 Open/Close Both Feet 
6 Open/Close Both Fists 
7 Imagine Open/Close Both Fists
8 Imagine Open/Close Both Feet

First, a baseline model with the full dataset and all 
labels was trained. Training in this way, almost 50% 
of the labels were 0. Because of the large class imbal-
ance as well as the high intra-class similarity between 
the labels for physical and imaginary tasks, the opti-
mization of the loss was impossible. Hence, the 
model never learned any features. 

After this, most of the focus was switched to the 
Motor Imagery (MI) tasks. The classification of EEG 
patterns while the subjects imagined the tasks being 
performed was the primary concern for this work. The 
applications of this work are more dependent on the 
accuracy of classification of the MI tasks than the 
physical tasks. This is also consistent with the current 
trend with the research work that was discussed ear-
lier in the paper. So, for this goal, the three most im-
portant labels were Imagine Open/Close Right Fist 
(label 3), Imagine Open/Close Left Fist (label 4) and 
Imagine Open/Close Both Feet (label 8). For training, 
the first 10% and last 10% subjects were separated for 
validation alternatively and the average accuracy 
scores from the two were recorded. 

Table 3: Accuracy for classification of 3 labels. 

Models Accuracy (%)
MF1 36.97 
MF2 54.4 
MF3 48.03 
MP1 46.42 
MP2 67.08 
MP3 56.18 
MT 68.39 

MST 69.08 
 

 

Figure 5: Hierarchical fusion model architecture. 
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First the models were trained for 3 labels, MI 
Right Fist (R), MI Left Fist(L) and MI Feet (F). Table 
3 shows the accuracy values for each of the models 
for the 3-label softmax classification. This tops out at 
69.07% but the performance improvement from the 
MF models to the MP models can better be seen in 
Figure 6. There is also an improvement of the accu-
racy at the fusion models MT and MST. It is evident 
that the fusion architecture with the multiple perspec-
tives helps mitigate the lower performance of the 
MF1 and MP1 models. There is a clear improvement 
in accuracy scores as we go further in the hierarchy 
of the models. 

 

Figure 6: Accuracy chart for 3-label classification. 

Then the binary classification for the MI Right 
Fist(R) and MI Left Fist(L) classes was performed. 
Similar to above, the first 10% and last 10% of the 
subjects were separated as a validation dataset and the 
average scores for both the training runs were rec-
orded. Table 4 shows the accuracy as well as the F1 
scores for the R versus L classification. The binary 
classification achieves an average global validation 
accuracy of 82.79% at the last fusion level. This is a 
respectable score for an EEG MI task classification 
for a global model with more than 100 subjects. 

In addition to the models showing good perfor-
mance, in Figure 7 we can also see the model to model 
improvement from the MF models to the MP models. 
Also, similar to the 3 class classification, there is also 
an improvement in the performance at the fusion levels 
of the models. The first model (MF1) starts at around 
50% accuracy, but the fusion structure means that the 
overall system is able to compensate for its poor per-
formance. At the end of the hierarchical structure, the 
other models completely make up for its lost perfor-
mance. This is yet another validating argument for the 
fusion structure using the multi perspective approach. 

Table 4: Accuracy and F1 score for binary classification. 

Models F1 Score Accuracy (%) 

MF1 53.67 52.76 

MF2 70.99 74.41 

MF3 61.44 60.77 

MP1 41.56 59.91 

MP2 81.12 83.98 

MP3 65.83 69.21 

MT 80.37 83.26 

MST 79.60 82.79 

 

Figure 7: Accuracy and F1 score chart for binary classifica-
tion. 

4 CONCLUSION AND FUTURE 
WORK 

In this work, we used hierarchical deep learning mod-
els that learned spatiotemporal patterns in EEG data 
for classification of motor imagery tasks. This work 
has achieved robust performance in terms of binary 
and respectable performance in terms of multi class 
classification of those MI tasks. 

Moreover, this work aimed to investigate the use-
fulness of fusion architecture and the multi view ap-
proach of learning the spatiotemporal information 
from EEG data. The performance of the models has 
shown that in general, a fusion architecture performs 
better than a stand-alone model. Furthermore, we 
were able to demonstrate an improvement in perfor-
mance of the models in the lower levels of the hierar-
chy. This validates the effectiveness of the hierar-
chical approach of the models in this work. In the re-
sults, we can also see that the side view models almost 
always perform better than the main view models. 
This has validated the use of the multi-view approach. 
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Table 5: Performance comparison of this work with recent related works. 

Work Preprocessing Model Architecture Dataset Classification Accuracy

Roots  
et al. 

Notch Filter 
Bandpass Filter 

Conv2D with different Kernel Sizes 
Features fused together for softmax 

BCI Competition  
103 subjects 

2 classes 83.00%

Wang  
et al. 

No  
preprocessing 

Conv2D 
Temporal and Spatial 

Fused together 
Based on EEGNET 

PhysioNet 
109 subjects 

4 classes 
3 classes 
2 classes 

65.07%
75.07%
82.50%

Dose  
et al. 

No  
preprocessing 

1D CNN on raw EEG signals 
Learn Spatial and Temporal Features on global dataset
Finetune globally trained model for per subject training

PhysioNet 
109 subjects 

4 classes 
3 classes 
2 classes 

58.58%
68.82%
80.38%

This 
work 

Z-Score  
Normalization 

Hierarichal 2D CNNs PhysioNet 
109 subjects 

3 classes 
2 classes 

69.08% 
82.79%

 
Table 5 shows the comparison between the per-

formance of the model in this work and some recent 
works in the field of EEG Motor Imagery task recog-
nition. The binary classification of MI Right Fist ver-
sus MI Left Fist has achieved competitive results 
compared to recently published works. 

However, there is some room for improvement in 
the approach used in this work. Here, we only used 
Convolutions. Even for learning time-dependent pat-
terns, 2D Convolutions were used from different per-
spectives. A more complex form of convolutions 
could be used to learn spatial and temporal infor-
mation at the same time without needing to break up 
the dataset into individual frames. This could be ac-
complished by using the Conv3D layers. Effectively 
using the multi view approach in the same manner, 
but instead of analyzing each frame from the three 
perspectives, 3D convolutions would look at all the 
frames as one. Also, convolutions are not the only 
way to learn patterns in data. They are not even the 
most used method for time sensitive data. True spati-
otemporal models use a fusion of Conv layers for spa-
tial information and LSTM layers for temporal infor-
mation. So, a fusion architecture between a Conv2D 
and an LSTM layer could be investigated. There is 
also room for investigation with a sliding window ap-
proach using the TimeDistributed layers. 
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