
Real-time Statistical Log Anomaly Detection with Continuous AIOps
Learning

Lu An a, An-Jie Tu, Xiaotong Liu and Rama Akkiraju
IBM Watson, 555 Bailey Ave, San Jose, U.S.A.

Keywords: AI for IT Operations, Log Anomaly Detection, Online Statistical Learning, Error Entity Extraction, Continu-
ous Model Updating.

Abstract: Anomaly detection from logs is a fundamental Information Technology Operations (ITOps) management task.
It aims to detect anomalous system behaviours and find signals that can provide clues to the reasons and the
anatomy of a system’s failure. Applying advanced, explainable Artificial Intelligence (AI) models throughout
the entire ITOps is critical to confidently assess, diagnose and resolve such system failures. In this paper, we
describe a new online log anomaly detection algorithm which helps significantly reduce the time-to-value of
Log Anomaly Detection. This algorithm is able to continuously update the Log Anomaly Detection model
at run-time and automatically avoid potential biased model caused by contaminated log data. The methods
described here have shown 60% improvement on average F1-scores from experiments for multiple datasets
comparing to the existing method in the product pipeline, which demonstrates the efficacy of our proposed
methods.

1 INTRODUCTION

The exploding growth of Information Technology
(IT) systems and services make the systems and ap-
plications become increasingly more complex to op-
erate, manage and monitor. By utilizing log process-
ing, machine learning and other advanced analytics
technologies, Artificial Intelligence for IT Operations
(AIOps) (Lerner, 2017) provides a promising solution
to enhance the reliability of the IT operations. Today,
most planet-scale service operators employ their own
AIOps to collect logs, traces and telemetry data, and
analyze the collected data to enhance their offerings
(Levin et al., 2019). One of the critical tasks in AIOps
is the anomaly detection which is the essential step to
detect anomalous system behaviours and find signals
that can provide clues to the reasons and the anatomy
of a system’s failure (Goldberg and Shan, 2015; Gu
et al., 2017; Chandola et al., 2009).

As system logs are records of the system states
and events at various critical points and log data is
universally available in nearly all IT systems, it is a
valuable resource for the AIOps to process, analyze
and perform anomaly detection algorithms. We call
the anomaly detection methods utilizing logs as data
source as Log Anomaly Detection (LAD). The tradi-

a https://orcid.org/0000-0003-4050-3625

tional LAD methods were mostly manual operations
and rule-based methods, while such methods were
no long suitable for the large-scale IT systems with
sophisticated system incidents. In the recent years,
with the development of AI technologies, machine
learning based anomaly detection methods have re-
ceived more and more attention. For instance, some
works utilized unsupervised clustering-based meth-
ods (Givental et al., 2021a; Givental et al., 2021b) to
detect outliers. Though such methods do not require
labeled data for training, the anomaly detection per-
formance is not guaranteed and unstable. Moreover,
it is hard to apply such methods onto streaming log
data as the log patterns are changing over time.

Another popular and widely used LAD approach
is to first collect enough labeled training data during
the system’s normal operation period and adopt log
templates-based method for feature engineering, and
then employ Principal Component Analysis (PCA)
based methods to learn normal log patterns from
labeled training data and find anomalous log pat-
terns during inference streaming log data (Liu et al.,
2020; Liu et al., 2021). Even though the PCA-based
method is successful in certain scenarios, it still suf-
fers from some limitation in practice. Firstly, log tem-
plates learning often requires customers to provide
one week’s worth of training logs without incidents

An, L., Tu, A., Liu, X. and Akkiraju, R.
Real-time Statistical Log Anomaly Detection with Continuous AIOps Learning.
DOI: 10.5220/0011069200003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 223-230
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

223



Aggregation

Encoding

Feature Engineering

Templates Learning

Embedding Extraction

Log Parsing

Normal Patterns

Anomaly Thresholds

PCA Model Training

Sampled
Historical
Logs

Data Lake - AI Models

Aggregation

Encoding

Trained Feature Extractor

Templates Learning

Embedding Extraction

Trained Log Parser

Anomaly Detection

PCA Model Inference

Streaming 
Logs

Log Anomaly Training

Log Anomaly Detection

Alerts

Figure 1: LAD pipeline for PCA-based Method.

which may need some time to collect thus training
data is not available on Day 0. Moreover, the cus-
tomers sometimes may not know if the training logs
they provided are pure normal logs. Secondly, the log
templates learning process takes hours or days to fin-
ish, depending on the size of the datasets.

In this paper, we propose a Real-Time Statisti-
cal Model (RSM) based LAD method, which aims
to reduce the training time and achieve faster “time-
to-value” while performing excellent online anomaly
detection. The major contributions of this new algo-
rithm include:
(i) We introduce a fast error entity extraction method
to extract different types of error entities including er-
ror codes and exceptions at run-time. In addition, this
method is able to quickly categorize if an incoming
log contains any faults.
(ii) Instead of utilizing log templates for feature engi-
neering, the RSM algorithm adopts the extracted error
entities to build feature count vectors to learn normal
log patterns.
(iii) The proposed RSM method is able to keep the
model up-to-date by kick-starting the accumulative
retraining periodically, so that the model is able to
continuously improve itself by learning from more
and more log data.
(iv) We introduce an automatic skipping mechanism
in the model updating which can help avoid biased
model generated by contaminated log data.

The remainder of the paper is organized as fol-
lows: Section 2 outlines the log anomaly detection
system. Section 3 describes the technical details of
the RSM method. Section 4 shows the experiment re-
sults of the proposed RSM method on multiple bench-
mark datasets. Finally, Section 5 concludes the paper
and summarizes the future directions of the work.

2 LAD SYSTEM DESCRIPTION

In this section, we introduce the major steps of the
LAD pipeline and how the new RSM algorithm af-
fected the steps of log anomaly detection compared
with the PCA-based method.

2.1 PCA-based Method

The PCA-based method is illustrated in Fig. 1 and it
mainly includes the following steps:

1) Log Anomaly Training: We first ingested histori-
cal normal log data from log aggregators or streaming
data from Apache Kafka. Then the data preparation
component will apply data preprocessing to generate
a clean, normalized log data and upload them into the
cluster for further log template training. A tree-based
templates learning algorithm is then applied onto the
selected training logs to generate log templates, and
these templates are used for feature engineering and
building template/embedding count vectors.

After such count vectors are generated, they will
be aggregated and encoded for a PCA model training
where the model learns the normal patterns and the
anomaly threshold from the training logs. After the
model training, such models will be stored in the
cluster for future inference.

2) Log Anomaly Detection: During the inference,
the data preparation component first utilizes the
trained log templates generated in the training step to
perform feature engineering on the streaming infer-
ence log data. Such template/embedding count vec-
tors are aggregated and encoded and then sent to the
log anomaly detector with other metadata.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

224



Data Lake - Historical Log Data & AI Models

Aggregation

Encoding

Feature Engineering

RSM entity Extraction

Embedding Extraction

Data Preperation

Model Update

RSM Inference

Anomaly Detection

Streaming 
Logs

Log Anomaly Detection

Alerts

Save encoded
historical data

Retrieve
Historical data

& 
Update RSM

models

Load latest 
RSM models

Figure 2: LAD pipeline for RSM-based Method.

Log anomaly detector then retrieves the relative
PCA models from the cluster and applies them onto
the encoded inference data. Those inference logs with
PCA scores exceeding the trained threshold will be
tagged as anomalies.

2.2 RSM-based Method

By introducing the RSM-based method into the
product pipeline, the training step is eliminated and
the major phases of the LAD pipeline become as
follows and are shown in Fig. 2:

1) Data Preparation: In RSM-based method, data
preparation component will directly apply entity ex-
traction algorithm onto the streaming inference data.
Instead of utilizing log templates, these extracted
entities will be aggregated and encoded to generate
feature count vectors. Along with other metadata,
the encoded feature count vectors will be stored into
the clusters and sent out to log anomaly detector
simultaneously for inference.

2) Model Updating: After a preset time period,
the LAD is able to retrieve all the encoded log data
from the cluster ingested during the last time period
and compute the statistical distribution for all the
entities. Such statistical distribution information for
both entity and embedding count vectors are stored
as RSM models in the cluster for future anomaly
detection. The model updating is scheduled to
happen periodically unless contaminated log data
was detected in the last period. Moreover, the model
updating is accumulative so that the latest model
always represents all the historical data the LAD has
seen.

3) Log Anomaly Detection: Once the initial RSM
models are available, the log anomaly detector is able
to load the latest models from the cluster and utilize
them to perform statistical testing and determine if the
inference logs contain significantly different entities
or embedding distributions than the normal patterns.

If yes, the inference logs will be tagged as anomalies
and generate alerts.

From the above description of PCA-based and
RSM-based methods, we can notice that the log
anomaly training step in PCA-based method will need
customers to provide some normal training log data.
On the one hand, one week log data is typically
required to guarantee a good quality of log train-
ing. On the other hand, larger size of dataset may
cause long time template learning and model training.
While in the RSM-based method, the online learn-
ing method utilizes entity extraction instead of log
templates learning so that the time-consuming train-
ing step is eliminated which can significantly reduce
“time-to-value” of the LAD pipeline.

3 THE DESIGN OF RSM-BASED
METHOD

In this section, we will discuss the technical key-
points of the Real-Time Statistical Model based log
anomaly detection method proposed in this work in
details.

3.1 Log Entity Extraction

Figure 3: A log example from WebSphere Application
Server.

The RSM-based LAD product pipeline utilizes log
entities for feature engineering. Such log entities
could be the domain information from specific types
of logs, e.g. the logs from IBM WebSphere Applica-
tion Server (IBM, 2022). In addition, the log entities
could be specific errors, such as HTTP error response
code or specific exceptions which can be the cause or

Real-time Statistical Log Anomaly Detection with Continuous AIOps Learning

225



Error Code

Exception type

Figure 4: An example of error entity extraction for general logs.

symptoms for system incidents. During the data pre-
processing phase, the data preparation component in
the LAD pipeline is responsible for extracting such
log entities in real-time and then aggregating and en-
coding them to form the feature count vectors for fur-
ther anomaly detection.

3.1.1 WebSphere Logs

The IBM WebSphere Application Server is a flexible,
security-rich Java server runtime environment for en-
terprise applications. Each WebSphere log contains
a designated message ID or log level, or both. Fig. 3
shows an example of a WebSphere log which contains
a specific message ID “SRVE0315E” and the log level
“SEVERE”. Based on the prior domain knowledge of
the WebSphere, such message ID’s and log levels are
indicators of specific types of abnormal system be-
haviors. The task of the data preparation component
is to identify if an incoming log is from a Websphere
Application Server and then extract any shown mes-
sage ID’s and log levels for feature engineering.

3.1.2 General Logs

For all other non-WebSphere types of logs, during
the log data preparation stage, we utilize the SystemT
framework (Krishnamurthy et al., 2009) to define the
rules for log entity extraction (Mohapatra et al., 2018;
Aggarwal et al., 2021; Aggarwal and Nagar, 2021).
First, the sentiment analysis is performed on the log
as log messages usually contain missing or faulty at-
tributes while encountering any system errors. In or-
der to satisfy the run-time analysis requirement, we
adopt a dictionary-based approach as opposed to a
full-blown machine learning approach. The nega-
tive sentiment dictionary used in our product pipeline
was built based on our technical domain leveraging
on open-source sentiment dictionaries such as Vader
(Hutto and Gilbert, 2014) and SentiWordNet (Bac-

cianella et al., 2010). We have discarded some nouns
candidates and added some words denoting negation
because in log data, negative sentiments are mostly
associated with actions which mostly comprise of
verbs, adverbs or adjectives.

In addition, the relation and cause extraction are
performed to extract any detected error codes and
exceptions. Relation extraction includes the follow-
ing steps: (1) Dependency parsing; (2) Verb filtra-
tion and Clause/Predicate selection; (3) Extension
of Noun phrase; (4) Negative sentiment; (5) Rela-
tion clause/phrase generation. For cause extraction,
we consider the following four rules: (1) Presence
of Causative Verbs; (2) Presence of Phrasal Verbs;
(3) Presence of prepositional Adjective or Adverbial
Phrases; (4) Absence of Noun Phrase.

With the above sentiment analysis, relation and
cause extraction tools, we are able to extract error
codes, exceptions’ types from the logs if present, and
also identify if a log message indicates erroneous sys-
tem behaviour based on symptoms or negative sen-
timent dictionaries. Fig. 4 shows an example of the
entity extraction for general logs. From Fig. 4, we can
observe that the extracted error code is “500” and the
exception type is “java.lang.IllegalStateException”
and this log message is identified as an erroneous log
based on the sentiment and symptoms.

3.2 Feature Encoding

By employing the above proposed log entity extrac-
tion method, the data preparation component is able
to extract message ID’s and log levels for WebSphere
logs and extract error entities for general erroneous
logs. Those general logs without any error entities
will be tagged as “normal” logs. We use these ex-
tracted entities to build the feature count vectors.

To build the feature count vectors, we first group
any logs that occurred in a preset time period T to-

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

226



gether, e.g. every 10 seconds, thus all logs in one time
period forms a time window. Assuming there are M
logs in the time window t, labeled as L1,L2, · · · ,LM ,
and there are total of N different possible entities that
can be extracted out for all the logs in time window t.
If the nth entity is extracted from the mth log Lm, then
we denoted en

m = 1, otherwise en
m = 0. Thus, the fea-

ture count vector for this time window t is constructed
as Xt = [x1,x2, · · · ,xN ] where the count of the nth fea-
ture is given by:

xn =
M

∑
m=1

en
m. (1)

3.3 RSM Model Update

After the customer connects streaming logs to the sys-
tem, LAD will start running with an empty statisti-
cal baseline log anomaly detection model. The RSM
model updating happens periodically, e.g. every 30
minutes. The Data lake shown in Fig. 2 stores the en-
coded historical log data and the corresponding fea-
ture count vectors happened during the last period.
Thus, the first RSM model should be ready in 30 min-
utes based on the historical data within the previous
30 minutes.

RSM is a statistical-based log anomaly detection
method, where the RSM model contains all the ex-
tracted entities’ and embedding vectors’ statistical
metrics, such as mean value, standard deviation (std),
co-variance, sample size, etc. Given a batch of en-
coded and time-windowed logs [X1,X2, · · · ,XT ] up-
loaded by the data preparation components during the
last period and a previous RSM model Mn−1, we are
able to compute and update all the above statistical
metrics which form a new RSM model Mn, which re-
flects the latest statistical distribution during normal
operation period.

Another key feature of the RSM model updating
is the automatic skipping mechanism. Before the
model updating, the LAD will automatically check
the anomaly-to-windowed-log ratio, which is defined
as the ratio of number of detected anomalies to the
number of total windowed logs ingested in the last pe-
riod. If the anomaly-to-windowed-log ratio exceeds a
preset threshold, then the LAD will tag the last period
as an incident period and skip the model update tem-
porarily for this round to avoid potential biased RSM
models. With this automatic skipping mechanism, the
RSM model is able to remember only the statistical
distribution for logs in normal operation period, with-
out manual human interference.

3.4 RSM Anomaly Detection

RSM anomaly detection is comprised of two inde-
pendent anomaly detection methods: an entity-based
detection method and an embedding-based detection
method. The entity-based method uses the statistical
metrics from extracted entities shown in Section 3.1,
while the embedding-based detection method uses
the statistical metrics from extracted embeddings (Liu
et al., 2020). The inference results from the two indi-
vidual detection methods are aggregated together to
produce a single output that forms the RSM anomaly
detection’s final inference result.

3.4.1 Entity-based Detection

In a RSM model M , using historical data, we store
the sample mean µen , the sample standard deviation,
σen , the sample size Nen , and the indicator variable
Ien for the nth extracted entity en. Ien = 1 if en cor-
responds to an error entity otherwise Ien = 0. Given
a time-windowed log Xt , let xn be the corresponding
counts for entity en in that given time-window, then
time-windowed log Xt is flagged as an anomaly if it
is the case that

1−Φ(
µen − xn

σen
)< ε | Ien = 1 (2)

for any entity en and for some threshold ε, e.g. 0.05.
Φ denotes the CDF for the standard normal distribu-
tion.

3.4.2 Embedding-based Detection

The RSM model M will also store an sample em-
bedding mean vector Mn = [µ1,µ2 · · · ,µn] for some
dimension n , e.g. 20, and a n× n covariance matrix
Σ with element (i, j) representing the covariance be-
tween dimension i and dimension j. These two met-
rics are also computed via the historical data that the
RSM model observes. An incoming time-windowed
log Xt will contain a n dimension embedding vector,
Xt,emb, that corresponds to that time-window’s em-
bedding, we denote the Mahalanobis distance of Xt ,
MD(Xt) as

MD(Xt)=
√
(Xt,emb−Mn)Σ−1(Xt,emb−Mn)

ᵀ. (3)

Under the assumption that the underlying n dimen-
sion embedding vector is a multivariate normal ran-
dom variable, then it follows that

MD(Xt)∼
√

χ2
n, (4)

with χ2
n being a chi squared distribution with n de-

grees of freedom. We flag time-windowed log Xt as

Real-time Statistical Log Anomaly Detection with Continuous AIOps Learning

227



an anomaly if MD(Xt) exceeds a certain threshold,
e.g. the square root of the 95 percentile of a χ2

n distri-
bution.

3.4.3 Aggregation Rule

Let our entity-based detection method’s inference
result on time-windowed log Xt be denoted as
RSMentity(Xt). RSMentity(Xt) = 1 if Xt is flagged as
an anomaly by the entity-based model and 0 other-
wise. Correspondingly, let our embedding-based de-
tection method’s inference result on Xt be denoted as
RSMembedding(Xt) and also be equal to 1 if flagged as
anomaly by the embedding-based model and 0 other-
wise. We aggregate the two models’ results to create
our RSM model’s inference result on Xt , RSM(Xt) to
be

RSM(Xt) = RSMentity(Xt)∨RSMembedding(Xt). (5)

4 EXPERIMENT RESULTS

In our experiments, We compare the anomaly detec-
tion performance of the LAD product pipeline be-
fore and after integrating the proposed RSM-based
method with multiple datasets. The previous version
of the LAD product pipeline adopted the PCA-based
method only. By integrating the proposed RSM-
based method, the LAD product pipeline is able to
turn on/off either PCA-based or RSM-based methods
through system configuration. Thus, in this section,
we will show evaluation results for multiple datasets
with the following three system configuration: (1)
PCA-based method only (2) RSM-based method only
(3) PCA-based & RSM-based methods.

4.1 Datasets

• Sockshop: The sockshop application is a user-
facing part of an online shop that sells socks,
which contains many microservice components
including management of the user account, cat-
alog, cart, orders, payment, shipping, etc. The
training data for PCA-based method was collected
when the application was running in normal oper-
ation with simulated user flows for one week. The
testing data was collected by running the system
in normal operation first for at least 30 minutes
and then manually ingested different types of sys-
tem incidents, with recording the timestamps of
abnormal periods to generate ground truth labels.

• Quote of the Day (QotD): The QotD applica-
tion is another simulated micro-service applica-

tion which randomly selects a quote from a fa-
mous person. The application contains many
micro-services including rating, image, author,
etc., which manage the different attributes of the
quotes. Similarly, we first collect one week nor-
mal data for PCA-based log training. The testing
data was collected in the similar way: normal logs
first, followed by abnormal logs caused by manu-
ally ingested system errors.

• IBM Watson AI service (WA): In contrast to the
above two simulated systems, we also evaluate the
LAD performance using the logs generated by the
IBM Watson AI service which is a real system
with 48 cloud micro-services and 15 applications,
ranging from distributed systems, supercomput-
ers, operating systems to server applications. The
training data and testing data for WA were col-
lected via a data collection method similar to what
was shown previously for the other two datasets.
However, the WA system is much more complex,
which results in a much larger size of logs than
Sockshop and QotD datasets.

4.2 Metrics

Log anomaly detection is one type of binary classifi-
cation problems, where the positives are the anoma-
lous log data and the negatives are those normal
log data. However, unlike other binary classification
problems, the log data for anomaly detection is very
imbalanced as the positives are usually far way less
than the negatives. The reason is that exceptions or
incidents are rare cases for the mature systems com-
pared to the normal operations. Thus, for such imbal-
anced testing log data, we evaluate the LAD perfor-
mance with the following metrics:

• True Negative Rate (TNR):

T NR =
T N
N

(6)

• False Positive Rate (FPR):

FPR =
FP
N

(7)

• Recall or True Positive Rate (TPR)

Recall =
T P
N

(8)

• F1-score

F1 =
2T P

2T P+FP+FN
(9)

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

228



Table 1: The experiment results for three datasets with different LAD methods.

LAD method Datasets TNR FPR Recall F1-score
PCA-based 0.73 0.27 0.5 0.04
RSM-based Sockshop 1 0 0.17 0.29

PCA & RSM 0.99 0.01 0.67 0.73
PCA-based 0.99 0.01 1 0.99
RSM-based QotD 0.99 0.01 1 0.99

PCA & RSM 0.99 0.01 1 0.99
PCA-based 0.98 0.02 0.29 0.33
RSM-based WA 0.84 0.16 0.66 0.35

PCA & RSM 1 0 0.35 0.52

4.3 Results

Table 1 shows the experiment results comparison for
the three datasets with different LAD methods. First,
we observe that the PCA-based LAD method per-
forms very well on QotD dataset due to the relatively
simpler log structure. However, PCA-based method
performs bad on the Sockshop and WA dataset where
the log structure is more comprehensive and informa-
tion or parameters inside the log are more fluctuat-
ing. From Table 1, we observe that compared with the
PCA-based LAD method, the proposed RSM-based
method can improve the F1-score on both Sockshop
and WA datasets without downgrading the LAD per-
formance on QotD dataset. In addition, the LAD
product pipeline allows both models to be enabled to
further improve the detection accuracy. We can ob-
serve that by enabling both methods, the False Posi-
tive Rate (FPR) has significantly reduced for all three
datasets while the Recall is improved, thus leading to
an overall improvement on the F1-score. Comparing
to the PCA-based method, we can observe the aver-
age F1-score over all three dataset is improved around
60% when both PCA-based and RSM-based methods
are enabled in the LAD product pipeline.

5 CONCLUSION AND FUTURE
WORK

Training data is not always available or sufficient, and
identifying if the training data is contaminated, or not,
may need a lot of human effort. It is important to in-
troduce an online algorithm in the LAD which can
provide predictive insights without off-line training
data and learn a system’s normal behaviours gradu-
ally. In the meantime, it is vital for the LAD sys-
tem to be smart enough to automatically identify in-
cident periods and avoid potentially biased models.
All such features are included by enabling the RSM-
based log anomaly detection method in our current

product pipeline. Experiments on multiple datasets
demonstrate the efficacy of the proposed method.

While we made significant progress in delivering a
more robust and reliable LAD pipeline, the journey of
continuous improvement of our LAD pipeline never
stops. Here are a few things we are actively working
on for future iterations.

• Enrich ensembled models for different LAD algo-
rithms to work hand in hand to further enhance the
accuracy of the model.

• Expose precision-recall tradeoff knobs to improve
the transparency of LAD algorithms to gain trust
of AI.

• Improve log comprehension so better representa-
tion can be learned from a mixture of formats.

• Seek and leverage user feedback to fine-tune indi-
vidual LAD models and prediction aggregation.

• Customize our models to handle seasonality of log
volumes and maintenance windows better.

• Differentiate anomalies, alerts and incidents to tell
a meaningful incident story.

• Correlating alerts to golden signals, service level
objectives, and error budgets for better separating
alerts from incidents and for better incident pre-
diction.

REFERENCES

Aggarwal, P., Bansal, S., Mohapatra, P., and Kumar, A.
(2021). Mining domain-specific component-action
links for technical support documents. In 8th ACM
IKDD CODS and 26th COMAD, CODS COMAD
2021, page 323–331, New York, NY, USA. Associ-
ation for Computing Machinery.

Aggarwal, P. and Nagar, S. (2021). Fault localization in
cloud systems using golden signals. Management,
21:4.

Baccianella, S., Esuli, A., and Sebastiani, F. (2010). Sen-
tiWordNet 3.0: An enhanced lexical resource for sen-
timent analysis and opinion mining. In Proceedings

Real-time Statistical Log Anomaly Detection with Continuous AIOps Learning

229



of the Seventh International Conference on Language
Resources and Evaluation (LREC’10). European Lan-
guage Resources Association (ELRA).

Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly detection: A survey. ACM Comput. Surv.,
41(3).

Givental, G., Bhatia, A., and An, L. (2021a). Hybrid ma-
chine learning to detect anomalies. https://patents.
google.com/patent/US20210281592A1/. Pub. No.:
US 2021/0281592 A1.

Givental, G., Bhatia, A., and An, L. (2021b). Modifi-
cation of machine learning model ensembles based
on user feedback. https://patents.google.com/patent/
US20210279644A1/. Pub. No.: US 2021/0279644
A1.

Goldberg, D. and Shan, Y. (2015). The importance of
features for statistical anomaly detection. In 7th
{USENIX} Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15).

Gu, T., Dolan-Gavitt, B., and Garg, S. (2017). Bad-
nets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint
arXiv:1708.06733.

Hutto, C. and Gilbert, E. (2014). Vader: A parsimonious
rule-based model for sentiment analysis of social me-
dia text. In Proceedings of the International AAAI
Conference on Web and Social Media, pages 216–225.

IBM (2022). IBM WebSphere Application Server. https:
//www.ibm.com/cloud/websphere-application-server.

Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F.,
Vaithyanathan, S., and Zhu, H. (2009). Systemt: a
system for declarative information extraction. ACM
SIGMOD Record, 37(4):7–13.

Lerner, A. (2017). AIOps platforms. https://blogs.gartner.
com/andrew-lerner/2017/08/09/aiops-platforms/.

Levin, A., Garion, S., Kolodner, E. K., Lorenz, D. H.,
Barabash, K., Kugler, M., and McShane, N. (2019).
Aiops for a cloud object storage service. In 2019
IEEE International Congress on Big Data (BigDat-
aCongress), pages 165–169.

Liu, X., Tong, Y., Xu, A., and Akkiraju, R. (2020). Us-
ing language models to pre-train features for opti-
mizing information technology operations manage-
ment tasks. In International Conference on Service-
Oriented Computing, pages 150–161. Springer.

Liu, X., Tong, Y., Xu, A., and Akkiraju, R. (2021). Pre-
dicting information technology outages from hetero-
geneous logs. In IEEE International Conference On
Service-Oriented System Engineering.

Mohapatra, P., Deng, Y., Gupta, A., Dasgupta, G., Paradkar,
A., Mahindru, R., Rosu, D., Tao, S., and Aggarwal, P.
(2018). Domain knowledge driven key term extraction
for it services. In Pahl, C., Vukovic, M., Yin, J., and
Yu, Q., editors, Service-Oriented Computing, pages
489–504, Cham. Springer International Publishing.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

230


