This  project  has  considered  irradiation  data  for 
Hanoi  and  calculated  the  PV generation for  rooftop 
and facade installations for an exemplary commercial 
building.  An  energy  management  concept  is 
developed  after  modelling  of  the  generating  units 
such  as  a  stationary  battery,  EV  battery  and  the 
cooling system as thermal storage. Actual load values 
are  considered  for  the  calculations  of  the  EMS. 
Further  steps  in  the  project  are:  a)  further 
development of  the  EMS  for  the  assessment of  the 
self-  consumption  behaviour,  b)  analysis  of  the 
resulting electricity costs after implementing such an 
EMS  using  time-of-use  pricing  mechanism  and  c) 
development  of  voltage  control  strategies  for  the 
Vietnamese  distribution  grid  with  high  PV 
penetration  through  modelling  of  the  grid  and 
implementation of control. 
ACKNOWLEDGEMENT 
We acknowledge the support by the project “Reactive 
Power  Control  2”  (FKZ  0350003A)  funded  by  the 
German  Ministry  of  Economic  Affairs  and  Energy 
(BMWi) and the project “PV Vietnam” (FKZ 
01DP19002)  funded  by  the  German  Ministry  of 
Education  and  Research  (BMBF).  Only  the  authors 
are responsible for the content of the publication. 
REFERENCES 
Axaopoulos,  P.  J.  (2011).  Basic  principles  of  solar 
geometry.  Solar thermal conversion. Simmetria, 
Athens, Greece. 
Bot, K., Aelenei, L., Gomes, M. da G., & Santos Silva, C. 
(2020).  Performance  Assessment  of  a  Building 
Integrated  Photovoltaic  Thermal  System  in 
Mediterranean  Climate—A  Numerical  Simulation 
Approach.  Energies,  13(11),  2887. 
doi:10.3390/en13112887 
BMWi  (Federal  Ministry  for  Economic  Affairs  and 
Energy).  (2019).  Erneuerbare Energien.  Retrieved 
from:  https://www.bmwi.de/Redaktion/DE/Dossier/ 
erneuerbare-energien.html 
BSW  Solar.  (2021).  Statistische Zahlen der deutschen 
Solarstrombranche (Photovoltaik).  Berlin,  Germany. 
Retrieved  from:  https://www.solarwirtschaft.de/ 
datawall/uploads/2021/02/BSW_Faktenblatt_Photovol
taik_Update_2020-1.pdf (in German) 
BSW Solar. (2021 (2)). Statistische Zahlen der deutschen 
Solarstrombranche (Speicher/ Mobilität).  Berlin, 
Germany.  Retrieved  from:  https:// 
www.solarwirtschaft.de/datawall/uploads/2021/02/BS
W_Faktenblatt_Stromspeicher_Update_2020.pdf  (in 
German) 
Brito,  M.C.,  Freitas,  S.,  Guimarães,  S.,  Catita,  C.,  & 
Redweik, P. (2017). The importance of facades for the 
solar PV potential of a Mediterranean city using LiDAR 
data.  Renewable Energy,  111,  85-94.  doi: 
10.1016/j.renene.2017.03.085 
Do,  T.  N.,  Burke,  P.  J.,  Nguyen,  H.  N.,  Overland,  I., 
Suryadi,  B.,  Swandaru,  A.,  &  Yurnaidi,  Z.  (2021). 
Vietnam's  solar  and  wind  power  success:  Policy 
implications for the other ASEAN countries. Energy for 
Sustainable Development,  65,  1-11.  doi: 
10.1016/j.esd.2021.09.002  
Electrical  Power  University.  (2016).  NHD-DTTBCT 
2016.Summary Report of the Results of Science Theme 
Ministry of Industry and Trade.  Retrieved  from: 
https://en.epu.edu.vn/ (in Vietnamese) 
Ershad, A. M., Pietzcker, R., Ueckerdt, F., & Luderer, G. 
(2020).  Managing  Power  Demand  from  Air 
Conditioning Benefits Solar PV in India Scenarios for 
2040. Energies, 13(9), 2223. doi: 10.3390/en13092223 
EVN Hanoi. (2021). Rooftop PV systems. Retrieved from: 
https://evnhanoi.vn/cskh/thong-tin-dien-mat-troi  (in 
Vietnamese) 
Fraunhofer CINES. (2020). 13 Thesen zur Energiewende in 
Deutschland.  Retrieved  from:  https://www.ise. 
fraunhofer.de/de/presse-und-medien/ 
presseinformationen/2020/fraunhofer-cines-erarbeitet-
13-thesen-zur-energiewende-in-deutschland.html  (in 
German) 
Geibel, D., Degner, T., Seibel, A., Bülo, T., Tschendel, C., 
Pfalzgraf, M., Boldt, K., Müller, P., Sutter, F., & Hug, 
T.  (2013).  Active,  intelligent  low  voltage  networks-
Concept,  realisation  and  field  test  results.  doi: 
10.1049/cp.2013.0947 
Huang,  B.J.,  Hsu,  P.C.,  Wang,  Y.H.,  Tang,  T.C.,  Wang, 
J.W.,  Dong,  X.H.,  Lee,  M.J.,  Yeh,  J.F.,  Dong,  Z.M., 
Wu,  M.H.,  Sia,  S.J.,  Li,  K.,  &  Lee,  K.Y.  (2019). 
Development  of  solar  home  system  with  dual  energy 
storage.  SN Applied Science,  1(9),  1-10.  doi: 
10.1007/s42452-019-1000-8 
IEA.  (2018).  The Future of Cooling - Opportunities for 
energy efficient air conditioning.  Retrieved  from: 
https://www.iea.org/reports/the-future-of-cooling 
Lavalliere,  J.M.,  Abdelsalam,  H.A.,  &  Makram,  E.B. 
(2015). Impact of PV on peak load shaving on an actual 
distribution  system.  Proceedings  of  the  2015  North 
American  Power  Symposium.  doi: 
10.1109/NAPS.2015.7335142 
Lam, L. H., Ky, H. V. M., Hieu, T. T., & Hieu, N. H. (2021). 
Potential and Barriers to the Evolution of Rooftop Solar 
in Central VietNam. 2021 IEEE Madrid PowerTech, 1-
6. doi: 10.1109/PowerTech46648.2021.9494826 
Li, C., Disfani, V. R., Pecenak, Z. K., Mohajeryami, S., & 
Kleissl,  J.  (2018).  Optimal  OLTC  voltage  control 
scheme  to  enable  high  solar  penetrations.  Electric 
Power Systems Research,  160,  318-326.  doi: 
10.1016/j.epsr.2018.02.016 
Luthander, R., Widén, J., Nilsson, D.,  & Palm, J. (2015). 
Photovoltaic self-consumption in buildings: A review. 
Applied energy,  142,  80-94.  doi: 
10.1016/j.apenergy.2014.12.028